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1. Introduction
These notes comprise the main part of a course presented at Uppsala University in
the Fall of 1999. (The original name of the course was Geometry and Analysis.) My
initial idea was to present duality in geometry, or how to use analysis to solve geomet-
ric problems. This I did, not dodging the more difficult aspects of this duality—see
Theorems 5.10 and 5.11 and the nasty Examples 5.7–5.9 and 5.12. A natural appli-
cation was Kantorovich’s theorem, to which I found a new proof (Theorem 6.1). Also
duality of sets which are not convex was considered (Section 8). Finally, my interest
in image analysis led me to an attempt to survey some results in digital geometry;
since existing proofs of Khalimsky’s Jordan curve theorem turned out to be difficult
to present, I tried to find a simple one, which appears now in Section 11.

I am grateful to Björn Ivarsson for valuable criticism of an early draft of Section 2;
to Thomas Kaijser for sharing his knowledge on the Monge–Kantorovich problem;
and to Ingela Nyström and Erik Palmgren for helpful comments on an early version
of Section 11.

2. Closure operators and Galois correspondences
An order relation in a set X is a relation (a subset of X2) which satisfies three
conditions: it is reflexive, antisymmetric and transitive. This means, if we denote the
relation by 6, that for all x, y, z ∈ X,

(2.1) x 6 x;

(2.2) x 6 y and y 6 x implies x = y;
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(2.3) x 6 y and y 6 z implies x 6 z.

An ordered set is a set X together with an order relation. (Sometimes one says
partially ordered set.)

A basic example is the set P (W ) of all subsets of a set W , with the order relation
given by inclusion, thus A 6 B being defined as A ⊂ B for A,B ∈ P (W ).

A closure operator in an ordered set X is a mapping X 3 x 7→ x ∈ X which is
expanding, increasing (or order preserving), and idempotent ; in other words, which
satisfies the following three conditions for all x, y ∈ X:

(2.4) x 6 x;

(2.5) x 6 y implies x 6 y;

(2.6) x = x.

In checking (2.6) it is of course enough to prove that x 6 x if we have already
proved (2.4).

The element x is said to be the closure of x. Elements x such that x = x are
called closed (for this operator). An element is closed if and only if it is the closure
of some element (and then it is the closure of itself).

A basic example of a closure operator is of course the topological closure operator
which associates to a set in a topological space its topological closure, i.e., the smallest
closed set containing the given set. In fact a closure operator in P (W ) defines a
topology in W if and only if it satisfies, in addition to (2.4), (2.5), (2.6) above, two
extra conditions, viz. that Ø = Ø and

(2.7) A ∪B = A ∪B for all A,B ⊂W.
Another closure operator of great importance is the operator which associates

to a set in Rn its convex hull, the smallest convex set containing the given set.
In both these examples X is the power set of some set W , and the closure

operator is given as an intersection:

A =
⋂

(Y ;Y is closed and Y ⊃ A).

More generally, if a closure operator x 7→ x is given and we denote by F the set of
its closed elements, then

(2.8) x = inf(y ∈ F ; y > x).

Conversely, any subset F of X such that the infimum of a subset of F always exists
defines a closure operator by formula (2.8).

A Galois correspondence is a pair (f, g) of two decreasing mappings f :X → Y ,
g:Y → X of two given ordered sets X,Y such that g ◦ f and f ◦ g are expanding. In
other words we have f(x1) > f(x2) and g(y1) > g(y2) if x1 6 x2 and y1 6 y2, and
g(f(x)) > x and f(g(y)) > y for all x ∈ X, y ∈ Y ; Kuroš [1962:6:11].

The name Galois correspondence alludes to the first correspondence of that kind,
established by Galois1 with X as the subsets of a field, Y as the sets of isomorphisms
of this field, f(x) as the group of all isomorphisms leaving all elements of x invariant,
and g(y) as the subfield the elements of which are left fixed by all elements of y.

1Évariste Galois, 1811–1832.
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Proposition 2.1. Let f :X → Y , g:Y → X be a Galois correspondence. Then
g ◦ f :X → X and f ◦ g:Y → Y are closure operators. Moreover, f ◦ g ◦ f = f and
g ◦ f ◦ g = g.

Proof. That g ◦ f and f ◦ g are expanding is part of the definition of a Galois corre-
spondence; that they are increasing follows from the fact that they are compositions
of two decreasing mappings. We know that f ◦g is expanding, so (f ◦g)(f(x)) > f(x);
thus f ◦ g ◦ f > f . On the other hand, also g ◦ f is expanding, i.e., g ◦ f > idX , so
f ◦ g ◦ f 6 f ◦ idX = f , hence f ◦ g ◦ f = f . By symmetry, g ◦ f ◦ g = g. From either
one of these identities we easily obtain that g ◦ f and f ◦ g are idempotent.

It is now natural to ask whether the closure operators one obtains from Galois
correspondences have some special property. The answer is no: every closure operator
comes in a trivial way from some Galois correspondence.

Proposition 2.2. Let x 7→ x be a closure operator defined in an ordered set X.
Then there exist an ordered set Y and a Galois correspondence f :X → Y , g:Y → X
such that x = g(f(x)) for all x ∈ X.

Proof. We define Y as the set of all closed elements in X with the opposite order,
thus y1 6Y y2 shall mean that y1 >X y2. Let f :X → Y and g:Y → X be defined by
f(x) = x and g(y) = y. Then both f and g are decreasing, and g ◦ f(x) = x >X x,
f ◦ g(y) = y >Y y. So g ◦ f and f ◦ g are expanding, and x = g(f(x)) as desired.

This proposition is, in a sense, completely uninteresting. This is because the
Galois correspondence is obtained from X and the closure operator in a totally trivial
way. However, there are many Galois correspondences in mathematics that are highly
interesting and represent a given closure operator. This is because they allow for
important calculations to be made or for new insights into the theory.

We now ask whether the composition of two closure operators is a closure oper-
ator.

Example. Let A be the set of all points (x, y) in R2 satisfying y > 1/(1 + x2). This
is a closed set, so A = A if we let the bar denote topological closure. The convex
hull of A is the set cvxA = {(x, y) ∈ R2; y > 0}, which is not closed; its closure is
cvxA = {(x, y); y > 0}. Hence we see that it is not true that the convex hull of a
closed set is closed; on the other hand we shall see that the closure of a convex set
is convex. Define f(A) = cvxA and g(A) = A. Then the composition h = g ◦ f is a
closure operator, whereas the other composition k(A) = f ◦ g(A) = cvxA defines a
mapping k = f ◦ g which is not a closure operator (k ◦ k 6= k).

Proposition 2.3. Let f, g:X → X be two closure operators. The following properties
are equivalent:
(i) g ◦ f is a closure operator;
(ii) g ◦ f is idempotent;
(iii) g ◦ f ◦ g = g ◦ f ;
(iv) f ◦ g ◦ f = g ◦ f ;
(v) g(x) is f-closed if x is f-closed.
If one of these conditions is satisfied, then g ◦ f is the supremum of the two closure
operators f and g in the ordered set of all closure operators; moreover f ◦ g 6 g ◦ f .
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Proof. That h = g ◦ f is expanding and increasing is true for any composition of
expanding and increasing mappings, so it is clear that (i) and (ii) are equivalent.
It is also easy to see that (iv) and (v) are equivalent. If (iii) holds, then h ◦ h =
g ◦ f ◦ g ◦ f = g ◦ f ◦ f = g ◦ f = h, so h is idempotent. Similarly, (iv) implies (ii).
Conversely, if (ii) holds, then

g ◦ f 6 g ◦ f ◦ g 6 h ◦ h = h = g ◦ f
and

g ◦ f 6 f ◦ g ◦ f 6 h ◦ h = h = g ◦ f,

so we must have equality all the way in both chains of inequalities, which proves that
(iii) and (iv) hold. The last statement is easy to verify.

Corollary 2.4. Two closure operators f and g commute if and only if both g ◦f and
f ◦ g are closure operators.

Proof. If g ◦ f = f ◦ g, then (iii) obviously holds, so g ◦ f is a closure operator.
Conversely, if g ◦ f is a closure operator, then (iii) applied to f and g says that
g ◦ f ◦ g = g ◦ f ; if also f ◦ g is a closure operator, then (iv) applied to g and f says
that g ◦ f ◦ g = f ◦ g. Thus f and g commute.

When two closure operators f and g are given, it may happen that f 6 g. Then
the semigroup generated by f and g consists of at most three elements, idX , f, g. If
both g ◦ f and f ◦ g are closure operators, then the semigroup generated by f and g
has at most four elements, idX , f, g, and g ◦ f = f ◦ g. If precisely one of g ◦ f and
f ◦ g is a closure operator, then the semigroup generated has exactly five elements,
idX , f, g, g ◦ f , and f ◦ g, of which four are closure operators. When none of g ◦ f
and f ◦ g is a closure operator, the semigroup of all compositions fm ◦ · · · ◦ f1, with
fj = f or fj = g, m ∈ N, may be finite or infinite.

Applying Proposition 2.3 to the case f(A) = cvxA, g(A) = A we see that
the operation of taking the topological closure of the convex hull, A 7→ cvxA is a
closure operator. We call cvxA the closed convex hull of A. This is a case where the
semigroup generated by f and g consists of five elements.

Example. Let E be a finite-dimensional vector space over R and let E∗ denote its
dual. (We can think of Rn, but it is often clarifying to distinguish E and its dual.) We
shall define a Galois correspondence: the ordered set X shall be the power set of E,
the set of all subsets of E, with inclusion as the order, and the set Y = [−∞,+∞]E

∗

shall be the set of all functions with values in the extended real line and defined on
the dual of E, the order being the opposite of the usual order, defined by set inclusion
of the epigraphs, so that ϕ 6Y ψ iff ϕ(ξ) > ψ(ξ) for all ξ ∈ E∗; see Definition 3.10.
Thus the constant +∞ is the smallest function, corresponding to vacuum, while −∞
is the largest element, corresponding to an infinitely dense neutron star. We define
mappings f :X → Y and g:Y → X as follows. Let HA denote the supporting function
of a subset A of E, i.e.,

HA(ξ) = sup
x∈A

ξ(x), ξ ∈ E∗.
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Let f(A) = HA. To any function ϕ on E∗ with values in the extended real line
[−∞,+∞] = R ∪ {−∞,+∞} we associate a set

g(ϕ) =
⋂
ξ∈E∗
{x; ξ(x) 6 ϕ(ξ)}.

It is an intersection of closed half-spaces (including possibly the whole space and the
empty set). Then both f and g are decreasing, and g ◦ f and f ◦ g are expanding as
shown by the formulas

(g ◦ f)(A) =
⋂
ξ∈E∗
{x ∈ E; ξ(x) 6 HA(ξ)} ⊃ A for all setsA,

(f ◦ g)(ϕ) = Hg(ϕ) >Y ϕ for all functions ϕ.

This is a highly interesting Galois correspondence. We shall determine its closed
elements in Section 5.

3. Convex sets and functions
Given two points a, b in a vector space E we define the segment between a and b as
the set

[a, b] = {(1− t)a+ tb; 0 6 t 6 1}.
A subset A of E is said to be convex if it contains the whole segment [a, b] as soon
it contains a and b. The convex subsets of the real line are precisely the intervals.
The definition can therefore be given as follows: for any affine mapping ϕ: R → E
the inverse image ϕ−1(A) shall be an interval.

The notion of a convex set has a sense in affine spaces, which, roughly speaking,
are like vector spaces without a determined origin. In affine spaces sums like

∑
λjxj

have a sense if and only if
∑
λj = 1, which is the case in the sums we need to work

with when considering convexity. If under this hypothesis we perform a translation
by a vector a, then form the sum, and finally perform a translation by the vector −a,
we get a result independent of the translation. Indeed,

∑
λj(xj − a) + a =

∑
λjxj .

The convex hull of a set X is the set

(3.1) cvxX =
⋂
Y

(Y ;Y is convex and contains X) ;

cf. (2.8). It is clear that cvxX is convex and that it is the smallest convex set
containing X.

The description (3.1) of the convex hull is a description from the outside: we
approach the hull by convex sets containing it. There is also a description from
within:

Theorem 3.1. Let X be any subset of a vector space E. Then cvxX is the set of
all linear combinations

∑N
j=1 λjxj, where N is an arbitrary integer > 1, where the

points xj belong to X, and where the coefficients λj satisfy λj > 0,
∑
λj = 1.

The proof of this proposition is left to the reader; cf. Hiriart-Urruty & Lemaréchal
[1993: Prop. 1.3.4], Kiselman [1991a or b: Theorem 2.1], or Rockafellar [1970: The-
orem 2.3].

The linear combinations that occur in the proposition are called convex combina-
tions. (The requirement that N be at least 1 is important; thanks to this requirement
we obtain that the convex hull of the empty set is empty.)
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Theorem 3.2 (Carathéodory’s2 theorem). Let X and E be as in Theorem 3.1 and
assume that E is of finite dimension n. Then it is enough to take N in the represen-
tation equal to n+ 1.
For the proof of this result see Kiselman [1991a or b: Theorem 6.1] or Rockafellar
[1970: Theorem 17.1]. In one and two dimensions, maybe even three, it is intuitively
obvious.

Corollary 3.3. The convex hull of a compact subset of Rn is compact.

Proof. It is clear that for N = 1, 2, ... the set

KN =
{∑N

1 λjxj ;λj > 0,
∑N

1 λj = 1
}

is compact, for it is the continuous image of a compact set under a continuous map-
ping. In general, the convex hull of K is the union of all the KN , N > 1. But thanks
to Carathéodory’s theorem, the sequence is stationary and the union of the sequence
is equal to Kn+1.

Theorem 3.4. The closure of a convex set in a topological vector space is convex;
more generally, this is true in a vector space E equipped with a topology such that all
translations x 7→ x− a, a ∈ E, and all dilations x 7→ λx, λ ∈ R, are continuous.

Proof. Suppose that A is convex and let a0, a1 ∈ A. We have to prove that [a0, a1] ⊂
A. Consider a = (1 − t)a0 + ta1 for an arbitrary fixed t ∈ [0, 1], and let V be an
arbitrary neighborhood of a. Then we can choose a neighborhood V0 of a0 such
that (1 − t)V0 + ta1 ⊂ V . Since a0 belongs to the closure of A, there exists a point
b0 ∈ A∩V0. Next we can find a neighborhood V1 of a1 such that (1− t)b0 + tV1 ⊂ V .
There exists a point b1 ∈ A∩V1. Hence the linear combination (1− t)b0 + tb1 belongs
to A and since it also belongs to V , we have proved that V intersects A, thus that
a ∈ A.

Thanks to this theorem we can state that cvxX is the smallest closed and convex
set which contains X. The set is called the closed convex hull of X.

We shall now study the possibility of separating two convex sets by a hyperplane.
A hyperplane is an affine subspace of codimension one; in other words it consists

of all solutions to a single linear equation ξ(x) = b, where ξ is a nonzero linear
form on the space and where b is a real number. In general we need to distinguish
between a general hyperplane, defined by a not necessarily continuous linear form on
the one hand, and a closed hyperplane, defined by a continuous linear form on the
other hand. However, we shall restrict attention here to finite-dimensional spaces
equipped with the unique separated vector space topology—when in the sequel we
consider a finite-dimensional vector space we shall always assume that it carries this
topology. For these finite-dimensional spaces all linear forms are continuous and all
affine subspaces closed. To every hyperplane we associate two closed half-spaces,
D+ = {x; ξ(x) > b} and D− = {x; ξ(x) 6 b}. There is a choice to be made here,
since −ξ(x) = −b defines the same hyperplane as ξ(x) = b.

We shall say that a hyperplane H = {x; ξ(x) = b} separates two subsets X and
Y of E if ξ(x) 6 b 6 ξ(y) for all x ∈ X and all y ∈ Y . We shall say that H separates
X and Y strictly if we have ξ(x) < b < ξ(y) for all x ∈ X and all y ∈ Y .

2Constantin Carathéodory, 1873–1950.
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Theorem 3.5. Let F be a closed convex subset of a finite-dimensional vector space
E, and y ∈ E a point which does not belong to F Then there exists a hyperplane
which separates F and y strictly, even in the strong sense that for some numbers
b0, b1 we have ξ(x) < b0 < b < b1 < ξ(y) for all x ∈ F .

Theorem 3.6. Let A be a convex subset of a finite-dimensional vector space E, and
y ∈ E a point which does not belong to A or which belongs to the boundary of A.
Then there exists a hyperplane which separates A and y.

Theorem 3.7. Let F and K be closed convex subsets of a finite-dimensional vector
space E, and assume that they are disjoint and that K is compact. Then there exists
a hyperplane which separates F and K strictly, even in the strong sense that for some
numbers b0, b1 we have ξ(x) < b0 < b < b1 < ξ(y) for all x ∈ F and all y ∈ K.

Theorem 3.8. Let X and Y be convex subsets of a finite-dimensional vector space
E, and assume that they are disjoint. Then there exists a hyperplane which separates
X and Y .

Proof of Theorem 3.5. We may assume that y = 0. If F = Ø the result is certainly
true, so we may assume that F is nonempty. Let d = infx∈F ‖x‖, where we use
a Euclidean norm. Then d is positive, since F is closed, and d < +∞, since F is
nonempty. Moreover, there exists a point a in (the possibly unbounded set) F where
the infimum is attained. This is because the infimum over all of F is the same as
the infimum over the compact set K = {x ∈ F ; ‖x‖ 6 2d}. I claim that a · x > ‖a‖2
for all x ∈ F . Study the function f(t) = ‖(1 − t)a + tx‖2, where x is a point in
F . We must have f ′(0) > 0, for if f ′(0) were negative, f(t) would be smaller than
f(0) = d2 for small positive t contrary to the definition of d and a; note that all
points (1− t)a+ tx with t ∈ [0, 1] belong to F . Now it is easy to calculate f ′:

f ′(t) = −2(1− t)‖a‖2 − 2ta · x+ 2(1− t)a · x+ 2t‖x‖2;

in particular f ′(0) = −2‖a‖2 + 2a · x. Since this quantity has to be nonnegative, we
must have a · x > a · a as claimed. Any hyperplane a · x = b with 0 < b < a · a is now
strictly separating.
Proof of Theorem 3.6. Let (aj)j∈N be a sequence which is dense in A. We apply
Theorem 3.5 to the compact set Fm = cvx{a0, ..., am}, m ∈ N. If y does not belong
to A, it does not belong to Fm either. If y belongs to the boundary of A, it may
belong to A, and some care is needed to avoid that y belongs to Fm. We can choose
ym /∈ A such that ym tends to y and apply Theorem 3.5 to Fm and ym.

For every m there is a hyperplane ξm(x) = bm which separates ym and Fm. We
may assume that ‖ξm‖ = 1. Then the sequence (bm) is also bounded, so there are
subsequences (ξmj )j and (bmj )j which converge to limits ξ and b respectively. The
hyperplane ξ(x) = b separates y from A.
Proof of Theorem 3.7. The set F −K is closed and does not contain the origin. If
ξ(x) = b is a hyperplane which separates the origin from F −K in the strong sense
indicated in Theorem 3.5, we know that 0 = ξ(0) < b0 < b < b1 < ξ(x − y) for all
x ∈ F and all y ∈ K, so that

b1 6 inf
x∈F,y∈K

(ξ(x− y)) = inf
x∈F

ξ(x)− sup
y∈K

ξ(y),
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implying that supK ξ + b1 6 infF ξ, an inequality which proves the theorem.
Proof of Theorem 3.8. We observe that if X and Y are as in the theorem, then
A = X − Y does not contain the origin. We apply Theorem 3.6 and argue as in the
proof of Theorem 3.7.

An immediate consequence of Theorem 3.5 is that every closed convex set is
equal to the intersection of all the closed half-spaces which contain it. But the proof
actually gives more: the half-spaces used to form the intersection can all be chosen so
that their boundaries contain a point of the given set. More precisely, we considered
the largest open ball B(y, r) with center at y /∈ F which does not meet F and found
that there is a unique point a common to its closure and F ; the tangent plane to the
ball at a is a separating hyperplane. A supporting half-space of a set A is a half-space
D such that its boundary H (a hyperplane) contains a point of A. We also say in this
situation that H is a supporting hyperplane of A. Sometimes, to a given separating
hyperplane there is a parallel hyperplane which is supporting, but not always:
Example. The set {(x, y) ∈ R2; x > 0, xy > 1} is convex, and the hyperplane
H = {(x, y); x = 0} lies in its complement, but there is no supporting hyperplane
parallel to H.

Theorem 3.9. Every closed convex set in a finite-dimensional vector space is equal
to an intersection of closed, supporting half-spaces.

Proof. We just have to note that the half-space D = {x; x · a > a · a} found in the
proof of Theorem 3.5 is indeed a supporting half-space: the point a lies both in F
and the hyperplane which bounds D.

Definition 3.10. Let f :X → [−∞,+∞] be a function defined on an arbitrary set
X. Then its epigraph is the subset of X ×R defined as

epi f = {(x, t) ∈ X ×R; t > f(x)}.

The strict epigraph is the set

epis f = {(x, t) ∈ X ×R; t > f(x)}.

Definition 3.11. A function f :X → [−∞,+∞] defined on a subset X of a vector
space E is said to be convex if its epigraph is a convex set in E ×R.
It is equivalent to require that the strict epigraph be convex. We shall use the
notation CVX(X) for the set of all convex functions defined in a set X ⊂ E and with
values in the extended real line [−∞,+∞].

If we extend f to a function g defined in all of E by putting g(x) equal to +∞
outside X we see that the extended function is convex at the same time as f , since
the two functions have the same epigraph. Therefore we may always assume (if we
like) that convex functions are defined in the whole space.

The constants +∞ and −∞ are convex, since their epigraphs are, respectively,
Ø and all of E. Furthermore, the maximum max(f1, ..., fm) of finitely many convex
functions is convex, since its epigraph is the intersection of the convex sets epi fj .
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However, if we want to prove for instance that the sum of two convex functions is
convex, it is convenient to have an inequality to test: the inequality which says that
the graph hangs below the chord. Since convex functions may assume both +∞ and
−∞ as values, we must handle undefined sums like (+∞)+(−∞). It is convenient to
introduce upper addition +· and lower addition +· . These operations are extensions
of the usual addition R × R 3 (x, y) 7→ x + y ∈ R. We define without hesitation
(+∞) + (+∞) = +∞, (−∞) + (−∞) = −∞, and use these definitions for both +·

and +· . In the ambiguous cases we define

(3.2) (+∞) +· (−∞) = +∞, (+∞) +· (−∞) = −∞.

Upper addition defines an upper semicontinuous function [−∞,+∞]2 → [−∞,+∞],
and, similarly, lower addition a lower semicontinuous mapping.

Very useful rules for computing infima and suprema are

(3.3) inf
x∈X

(a+· f(x)) = a+· inf
x∈X

f(x), sup
x∈X

(a+· f(x)) = a+· sup
x∈X

f(x),

which are valid without exception. The proof of (3.3) consists in checking the equal-
ities for a = +∞,−∞ and X empty.

Proposition 3.12. Let E be a vector space. A function f :E → [−∞,+∞] is convex
if and only if

f
(
(1− t)x0 + tx1

)
6 (1− t)f(x0) +· tf(x1)

for all x0, x1 ∈ E and all numbers t with 0 < t < 1.
We leave the simple proof as an exercise.

The proposition implies that the values of a convex function must satisfy an
infinity of inequalities, and in general that means that the values are severely re-
stricted. However, note that this is not always the case. As an example consider a
function which is +∞ for ‖x‖ > 1 and −∞ for ‖x‖ < 1. Such a function is convex
irrespective of its values on the unit sphere ‖x‖ = 1. This phenomenon is related to
the fact that all sets A containing the open unit ball and contained in the closed unit
ball are convex. (Of course in these examples we need Euclidean norms, or at least
strictly convex norms.) We shall exploit this phenomenon in Section 8.

The effective domain of a function f :X → [−∞,+∞] is the set where it is
smaller than plus infinity:

(3.4) dom f = {x ∈ X; f(x) < +∞}.

If f is convex, so is its effective domain.

Theorem 3.13. Let E be a finite-dimensional vector space, let f :E → [−∞,+∞]
be a convex function and define Ω = (dom f)◦. (Thus Ω is the interior of the set
where the function is less than plus infinity.) Then Ω is convex and the restriction of
f to Ω is either equal to the constant −∞ or else a real-valued continuous function.
We leave the proof as an exercise. See Kiselman [1991a or b, Theorem 9.5].
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Corollary 3.14. Let f and Ω be as in the theorem and suppose that there exists a
point x ∈ Ω such that f(x) is real. Then there exists a linear functional ξ on E such
that ξ(x) 6 f(x) for all x ∈ E. Moreover, g(x) = lim infy→x f(y) is convex and does
not take the value −∞ if f > −∞. We have g = f except on ∂Ω.
In analogy with (3.1) we define the convex hull of a function as the largest convex
minorant of the function:

(3.5) cvx f = sup(g ∈ CVX(E); g 6 f).

This is the approach from below. There is also an approach from above, as in Theorem
3.1:

Theorem 3.15. Let f :E → [−∞,+∞] be any function on a vector space E. Then
its convex hull is given as an infimum of linear combination of values of f :

(3.6) cvx f(x) = inf
[ N∑

1

λjf(xj);N > 1, λj > 0,
N∑
1

λj = 1,
N∑
1

λjxj = x

]
, x ∈ E.

The proof is analogous to that of Theorem 3.1.
When f is positively homogeneous, i.e., f(tx) = tf(x) for all t > 0 and all x ∈ E,

then (3.6) can be simplified to

(3.7) cvx f(x) = inf
[ N∑

1

f(xj);N > 1,
N∑
1

xj = x

]
, x ∈ E.

4. Infimal convolution

Definition 4.1. Let G be an abelian group and let f, g:G → [−∞,+∞] be two
functions defined on G and with values in the extended real axis. Then their infimal
convolution f ut g is defined by

(4.1) (f ut g)(x) = inf
y∈G

(
f(y) +· g(x− y)

)
, x ∈ G.

Often we take G = Rn, but it is important to note that the definition works in any
abelian group G. In image analysis Z2 and, more generally, Zn are very common
groups.

Points outside dom f and dom g play no role in (4.1). This is in accordance with
the interpretation already mentioned of the constant +∞ as vacuum and of −∞ as
an infinitely dense neutron star. Think of e−f as a particle—there is an interesting
analogy between infimal convolution of f and g and ordinary convolution of e−f and
e−g; see Kiselman [1999a or b, Chapters 8 and 9].

Infimal convolution generalizes vector addition (Minkowski addition) of sets. If
X and Y are subsets of G we have

(4.2) iX ut iY = iX+Y ,
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where iX denotes the indicator function of the set X; it takes the value 0 in X and
+∞ in its complement.

Another important relation to vector addition—a relation which can actually
serve to define infimal convolution—is

(4.3) epis(f ut g) = epis(f) + epis(g),

where the plus sign denotes vector addition in G × R. This equation leads to a
geometric interpretation of infimal convolution.

For a thorough study of infimal convolution, see Strömberg [1996].

Proposition 4.2. The infimal convolution is commutative and associative.

Proof. Since vector addition is commutative and associative, the same is true for
infimal convolution in view of (4.3).

Thanks to this proposition we can define generally f1 ut · · · ut fm; no parantheses
are needed. It is easy to see that

(4.4) dom(f1 ut · · · ut fm) = dom f1 + · · ·+ dom fm.

Example. The function i{0} is the neutral element for infimal convolution: f ut i{0} =
f for all functions f .
Example. If g:G→ R is additive, then f ut g = g +C for some constant C = Cf,g ∈
[−∞,+∞]. Actually Cf,g = (f ut g)(0).
Example. Define gk(x) = k‖x‖ on a normed space E with norm ‖·‖, with k a positive
constant. Study the infimal convolution fk = f ut gk. Assuming that f is bounded
we see that fk is Lipschitz continuous. Moreover fk ↗ f as k → +∞ if f is bounded
and lower semicontinuous.

Let us say that a function f :G → [−∞,+∞] is subadditive if it satisfies the
inequality f(x+ y) 6 f(x) +· f(y), x, y ∈ G.

Proposition 4.3. A function f :G → [−∞,+∞] defined on an abelian group G is
subadditive if and only if it satisfies the inequality f ut f > f . If in addition we
assume that f(0) 6 0, then this is equivalent to f ut f = f .

Proof. If f is subadditive we have f(x − y) +· f(y) > f(x), so taking the infimum
over all y ∈ G gives f ut f > f . Conversely, we have

f(x) +· f(y) > (f ut f)(x+ y),

so f ut f > f implies subadditivity. Finally, since the inequality (f ut f)(x) 6
f(x) +· f(0) always holds, we conclude that f(0) 6 0 implies f ut f 6 f .

Theorem 4.4. If f and g are subadditive, then so is f ut g.

Proof. Using the associativity and commutativity of infimal convolution we can write

(f ut g) ut (f ut g) = (f ut f) ut (g ut g) > f ut g.
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Subadditive functions are of interest because of their relation to metrics on
abelian groups, a fact which we shall discuss now.

Let us call a function d:X ×X → R a distance if it is positive definite, i.e., for
all x, y ∈ X,

d(x, y) > 0 with equality precisely when x = y,

and symmetric, i.e.,
d(x, y) = d(y, x), x, y ∈ X.

We shall say that a distance is a metric if it satisfies in addition the triangle inequality,
i.e.,

d(x, z) 6 d(x, y) + d(y, z), x, y, z ∈ X.

If X = G is an abelian group, translation-invariant distances are of interest, i.e.,
those that satisfy

d(x− a, y − a) = d(x, y), a, x, y ∈ G.

Lemma 4.5. Any translation-invariant distance on an abelian group G defines a
function f(x) = d(x, 0) on G which is positive definite,

f(x) > 0 with equality precisely when x = 0;

and symmetric,
f(−x) = f(x), x ∈ X.

Conversely, a function f which is positive definite and symmetric defines a trans-
lation-invariant distance d(x, y) = f(x− y).
The proof is easy.

Lemma 4.6. Let d be a translation-invariant distance on an abelian group G and
f(x) = d(x, 0). Then d is a metric if and only if f is subadditive,

f(x+ y) 6 f(x) + f(y), x, y ∈ G.

Proof. If d is a metric, we can write, using the triangle inequality and the translation
invariance,

f(x+ y) = d(x+ y, 0) 6 d(x+ y, y) + d(y, 0) = d(x, 0) + d(y, 0) = f(x) + f(y).

Conversely, if f is subadditive,

d(x, z) = f(x− z) 6 f(x− y) + f(y − z) = d(x, y) + d(y, z).

Theorem 4.7 (Kiselman [1996]). Let F :G → [0,+∞] be a function on an abelian
group G satisfying F (0) = 0. Define a sequence of functions (Fj)∞j=1 by putting
F1 = F and Fj = Fj−1 ut F , j = 2, 3, ... . Then the sequence (Fj) is decreasing and
its limit limFj = f is subadditive. Moreover dom f = N · domF , i.e., f is finite
precisely in the semigroup generated by domF .
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Proof. That the sequence is decreasing is obvious if we take y = 0 in the definition
of Fj+1:

Fj+1(x) = inf
y

(Fj(x− y) + F (y)) 6 Fj(x) + F (0) = Fj(x).

Next we shall prove that f(x+ y) 6 f(x) + f(y). If one of f(x) and f(y) is equal to
+∞, there is nothing to prove, so let us assume that f(x), f(y) < +∞ and let us fix
a positive number ε. Then there exists numbers j and k such that Fj(x) 6 f(x) + ε
and Fk(y) 6 f(y) + ε. By associativity Fj+k = Fj ut Fk, so we get

f(x+ y) 6 Fj+k(x+ y) 6 Fj(x) + Fk(y) 6 f(x) + f(y) + 2ε.

Since ε is arbitrary, the inequality f(x+y) 6 f(x)+f(y) follows. The last statement
follows from (4.4).

In image analysis it is customary to define distances between adjacent points and
then extend the definition to arbitrary pairs of points by going on a path, assigning to
each path the sum of the distances between the adjacent points, and finally taking the
infimum over all paths. In the translation-invariant case, this amounts to assigning
values to a function F at finitely many points, and then define the distance by the
function f = limFj of Theorem 4.7. (Of course some extra conditions are needed to
ensure that the limit is symmetric and positive definite.) Indeed the paths consists
of segments [0, x1], [x1, x1 + x2],..., [x + · · · + xk−1, x] and we evaluate the sum
F (x1) + F (x2) + · · ·+ F (xk) for all possible choices of x1, ..., xk with sum x.

Examples of such functions are the following. We always define F (0) = 0 and
let F (x) < +∞ for x in a finite set P only. The following distances have been
studied, assuming P and F to be invariant under permutation and reflection of the
coordinates. If we take P = {x ∈ Z2;

∑
|xj | 6 1} and F (1, 0) = 1 we get the city-

block distance, also called l1. If we let P = {x ∈ Z2; |xj | 6 1} and F (1, 0) = F (1, 1) =
1 we get the chess-board metric, or l∞ distance. Other choices are F (1, 0) = a,
F (1, 1) = b with (a, b) = (1,

√
2), (2, 3), (3, 4). We can also increase the size of P and

define G(1, 0) = 5, G(1, 1) = 7, G(2, 1) = 11. For references to the work mentioned
here see Kiselman [1996].

Proposition 4.8. Let f :E → [−∞,+∞] be a function defined on a vector space E
and define fs by fs(x) = sf(x/s), x ∈ E, s ∈ Rr {0}. Then f is convex if and only
if fs ut ft > fs+t for all s, t > 0, and if and only if fs ut ft = fs+t for all s, t > 0.

Proof. We note that the inequality fs ut ft 6 fs+t always holds, so the two last
properties are indeed equivalent, and the convex functions are those that satisfy
the functional equation fs ut ft = fs+t; in other words the mapping s 7→ fs is a
homomorphism of semigroups.

If f is convex, we can write

fs(y) +· ft(x− y) = sf(y/s) +· tf((x− y)/t) > (s+ t)f
( y

s+ t
+
x− y
s+ t

)
= fs+t(x).

If we now vary y we obtain fs ut ft > fs+t. Conversely, suppose that this inequality
holds. Then we obtain, writing xt = (1− t)x0 + tx1, that

f(xt) = f1(xt) 6 (f1−t ut ft)(xt) 6 f1−t(y) +· ft(xt − y)
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for every y. We now choose y = (1− t)x0 and get

f(xt) 6 f1−t((1− t)x0) +· ft(xt − (1− t)x0) = (1− t)f(x0) +· tf(x1),

which means that f is convex.

Theorem 4.9. If f and g are convex, then so is f ut g.

Proof. It is easy to verify that (f ut g)s = fs ut gs. We now perform a calculation like
that in the proof of Theorem 4.4:

(f ut g)s ut (f ut g)t = (fs ut gs) ut (ft ut gt) = (fs ut ft) ut (gs ut gt)
> fs+t ut gs+t = (f ut g)s+t.

Thus f ut g satisfies the criterion of Proposition 4.8 and so is convex.

For a positively homogeneous function convexity is equivalent to subadditivity.
This observation will yield a nice formula for the supporting function of the inter-
section of two closed convex sets, see formula (5.9). Here we note the following easy
result.

Proposition 4.10. Let f, g be two positively homogeneous convex functions. Then
f ut g is the convex hull of their minimum:

(4.5) cvx(min(f, g)) = f ut g.

Proof. We always have f ut g 6 f , f ut g 6 g since f(0), g(0) 6 0. If h is convex and
positively homogeneous and h 6 f, g, then h = h ut h 6 f ut g. Thus f ut g is the
largest positively homogeneous convex minorant of min(f, g). However, it is easy to
see that it is also the largest convex minorant of min(f, g), whence (4.5).

5. Convex duality: the Fenchel transformation
The affine functions x 7→ ξ(x) + c, where ξ is a linear form and c a real constant, are
the simplest convex functions. It is natural to ask whether all convex functions can be
somehow represented in terms of these simple functions. The question is analogous
to the problem of representing an arbitrary function in Fourier analysis in terms of
the simplest functions, the pure oscillations. The Fenchel transformation, which we
shall introduce now, plays a role in convexity theory analogous to that of the Fourier
transformation in Fourier analysis.

More precisely we ask whether, given a function f on a vector space E, there
exists a subset A of E∗ ×R such that

(5.1) f(x) = sup
(ξ,c)∈A

(
ξ(x) + c

)
, x ∈ E.

Here E∗ denotes the algebraic dual of E, i.e., the vector space of all linear forms
on E. We first note that if this is at all possible, then c 6 f(x) − ξ(x) for all
x ∈ E and all (ξ, c) ∈ A, so that c 6 infx∈E(f(x) − ξ(x)). For reasons which will
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be apparent in a moment, it is convenient to consider instead −c; we must have
−c > supx∈E(ξ(x)− f(x)) for all (ξ, c) ∈ A. We define

(5.2) f̃(ξ) = sup
x∈E

(
ξ(x)− f(x)

)
, ξ ∈ E∗.

The function f̃ is called the Fenchel3 transform of f . Other names are the Legendre4

transform of f and the function conjugate to f . Since the constant c in (5.1) must
satisfy c 6 −f̃(ξ), and since f(x) > ξ(x)− f̃(ξ) for all x ∈ E and all ξ ∈ E∗, we can
conclude that (5.1) implies

f(x) = sup
ξ∈E∗

(
ξ(x)− f̃(ξ)

)
, x ∈ E.

In other words, the supremum in (5.1) does not change if we add points outside A
and replace c everywhere by −f̃(ξ).

Now the right-hand side of this formula looks like (5.2), so it is natural to apply
the transformation a second time. It is convenient here to consider an arbitrary vector
subspace F of E∗, and to introduce topologies on E and F as follows. There is a
weakest topology on E such that all elements of F are continuous; this is denoted by
σ(E,F ). There is similarly a weakest topology σ(F,E) on F such that all evaluation
mappings F 3 ξ 7→ ξ(x), x ∈ E, are continuous. We may for instance choose F = E∗,
or F = E′, the topological dual of E under a given topology, i.e., the space of all
continuous linear forms on E. Actually E∗ is the topological dual of E equipped
with the topology σ(E,E∗). Thus, when we speak about the topological dual in the
sequel, the case of the algebraic dual is always included as a special case. If E is
finite-dimensional and we equip it with the separated vector space topology, then
E′ = E∗. If E is a normed space of infinite dimension, we always have E′ 6= E∗. It
is not necessary that E and F be in duality; we may even choose F = {0}.

The Fenchel transform of a function g on F is of course a function on the algebraic
dual F ∗ of F :

(5.3) g̃(X) = sup
ξ∈F

(
X(ξ)− g(ξ)

)
, X ∈ F ∗.

Given any element x of E we define an element X of F ∗ by the formula X(ξ) = ξ(x),
ξ ∈ F . Using this idea we may define for any function g on F ,

(5.4) g̃(x) = sup
ξ∈F

(
ξ(x)− g(ξ)

)
, x ∈ E.

We also note that f ut ξ is an affine function and that in fact (f ut ξ)(x) =
ξ(x) − f̃(ξ) for all x ∈ E and all ξ ∈ E∗. The function f ut ξ is a minorant of f
and in fact the largest affine minorant of f which has linear part equal to ξ. So the
supremum of all affine minorants of f with linear part in F is

sup
ξ∈F

(ξ(x)− f̃(ξ)) = sup
ξ∈F

(f ut ξ)(x) = ˜̃
f(x), x ∈ E.

3Werner Fenchel, 1905–1988.
4Adrien Marie Legendre, 1752–1833.
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The question whether (5.1) holds for A = F × R can therefore be formulated

very succintly: is it true that ˜̃f = f? However, it might still be of interest to find a
smaller A for which (5.1) holds.

From the definition of f̃ we immediately obtain the inequality

(5.5) ξ(x) 6 f(x) +· f̃(ξ), x ∈ E, ξ ∈ E∗,

called Fenchel’s inequality. It can be stated equivalently as

ξ(x)− f̃(ξ) 6 f(x), x ∈ E, ξ ∈ E∗.

If f is the indicator function of a set A, f = iA, then f̃ = HA, the supporting
function of A. So the question about closed elements for the Galois correspondence
studied in the example after Proposition 2.3 will be answered in the more general
framework of Fenchel transforms.

We summarize the properties of the Fenchel transformation that we have found
so far.

Proposition 5.1. The Fenchel transformations defined by (5.2) and (5.4) for func-
tions on a vector space E and a subspace F of its algebraic dual form a Galois
correspondence, the order of the functions being that of inclusion of their epigraphs.
Thus, in terms of the usual order between functions, f 6 g implies f̃ > g̃, the second

transform satisfies ˜̃f 6 f , and the third transform is equal to the first,
(
f̃
)˜̃ = f̃ .

All Fenchel transforms are convex, lower semicontinuous with respect to the topology
σ(E,F ) or σ(F,E), and take the value −∞ only when they are identically −∞.

Proof. Only the last statement does not follow from general properties of Galois
correspondences; cf. Proposition 2.1. A supremum of a family of convex functions is
convex, in particular so is f̃ . Also the supremum of a family of lower semicontinuous
functions is lower semicontinuous. The last property is obvious: if a Fenchel transform
f̃ assumes the value −∞ for a particular ξ, then f must be equal to +∞ identically,
and so f̃ is equal to −∞ identically.

For examples of Fenchel transforms, see for instance Kiselman [1991a or b].

Proposition 5.2. For any function f :E → [−∞,+∞] on a finite-dimensional vector
space the following three conditions are equivalent:

1. f is lower semicontinuous, i.e., lim infy→x f(y) = f(x) for all x ∈ E;
2. epi f is closed in E ×R;
3. For every real number a the sublevel set {x ∈ E; f(x) 6 a} is closed in E.

We leave the proof as an exercise.

Theorem 5.3. Let a function f :E → [−∞,+∞] on a finite-dimensional vector
space E be given. Then the following properties are equivalent:
(A) f is a Fenchel transform;
(B) f is equal to the supremum of all its affine minorants;
(C) f is equal to the supremum of some family of affine functions;
(D) f is convex, lower semicontinuous, and takes the value −∞ only if it is identically
equal to −∞.



Lectures on Geometry 17

Proof. From Proposition 5.1 and the discussion preceding it is clear that (A), (B),
and (C) are all equivalent, and that they imply (D). We need to prove that (D)
implies (B), say.

Let us first note that (B) certainly holds if f is either +∞ or −∞. We may
therefore suppose that epi f is nonempty and not equal to the whole space.

We shall prove, assuming that (D) holds, that for any point x0 the supremum
of all affine minorants of f is equal to f(x0); equivalently, that for any point (x0, t0)
not in the epigraph of f there is an affine function which takes a value greater than
t0 at x0. Since (x0, t0) /∈ epi f there is a supporting half-space containing epi f and
not containing (x0, t0). Such a half-space in E ×R is defined by an inequality

ξ(x) + bt > c

for some ξ ∈ E′ and some real numbers b, c. Since the half-space is supporting, we
know that there is some point (x1, t1) ∈ epi f which satisfies ξ(x1)+bt1 = c. If b < 0,
the half-space is the epigraph of an affine function, and since its value at x0 is larger
than t0, we are done. If b > 0, the half-space is the hypograph of an affine function,
and it can contain epi f only if the latter is empty, i.e., f = +∞ identically, a case we
already considered. Thus only the case b = 0, that of a vertical half-space, remains
to be considered. A vertical hyperplane is not the graph of an affine function, and
we need to prove that these vertical hyperplanes, although they can occur, do not
influence the intersection of all supporting half-spaces.

Thus we have a point (x0, t0) not belonging to epi f and a vertical half-space
{(x, t) ∈ E × R; ξ(x) > c} which contains epi f and is such that the closest point
(x1, t1) in epi f lies in the boundary of the half-space. Then this point must have the
same t-coordinate as (x0, t0), so t1 = t0. Since (x1, t1) belongs to epi f , the value t2
of f at x1 must satisfy −∞ < t2 = f(x1) 6 t1 = t0. It is now clear that the closest
point in epi f to the point (x0, t2) is (x1, t2) and that the hyperplane obtained from
our construction is the same, ξ(x) > c = ξ(x1). But for points (x0, t3) with t3 < t2
the supporting hyperplane cannot be vertical. Even more interesting is the fact that
the supporting hyperplane has a large slope when t3 is close to t2. Consider the
largest open ball which does not meet epi f and has its center at (x0, t3). Its closure
contains a single point of epi f ; denote that point by (x2, t4) and let R be the radius
of the ball. We must have t4 > t3. The tangent plane to the ball at (x2, t4) intersects
the line x = x0 at a point (x0, t3 + T ), where T = R2/(t4 − t3). Since (x1, t3) does
not belong to epi f we must have R > ‖x1 − x0‖ and t4 > t3. On the other hand

R =
√
‖x2 − x0‖2 + (t4 − t3)2 6

√
‖x1 − x0‖2 + (t2 − t3)2,

since (x2, t4) is the point in epi f closest to (x0, t3) and (x1, t2) is a point in epi f .
Now ‖x2 − x0‖ > ‖x1 − x0‖, so

(t4 − t3)2 6 ‖x1 − x0‖2 + (t2 − t3)2 − ‖x2 − x0‖2 < (t2 − t3)2.

Thus 0 < t4 − t3 < t2 − t3. The value at x0 of the affine function defined by the
tangent plane is t3 + T and tends to plus infinity as t3 ↗ t2 since

T =
R2

t4 − t3
>
‖x1 − x0‖2

t2 − t3
;
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in particular t3 + T is larger than t0 for some t3 close to t2. This proves that the
intersection of all supporting half-spaces is not affected if we remove the vertical
half-spaces and completes the proof of the theorem.

We now know that the closed elements for the Galois correspondence defined in
Proposition 5.1 consists of the functions satisfying condition (D) of Theorem 5.3. An
indicator function iA is closed if and only if the set A is closed and convex. Under
the Fenchel transformation these functions are in bijective correspondence with the
supporting functions of closed convex sets.

The supporting function mapping A 7→ HA embeds the semigroup of all non-
empty compact convex subsets of a vector space E into the group of real-valued
functions on E′. Thus for instance the equation A + X = B, which for nonempty
compact convex sets is equivalent to HA + HX = HB , can sometimes be solved by
a set X, viz. when HX = HB − HA is convex. For applications of the supporting
function in image analysis, see Ghosh & Kumar [1998].

Next we shall study the relation between infimal convolution and the Fenchel
transformation. The first result is very easy.

Proposition 5.4. For all functions f, g: Rn → [−∞,+∞] we have

(5.6) (f ut g)˜ = f̃ +· g̃.

In particular, if we take f = iX , g = iY with arbitrary sets X and Y ,

(5.7) HX+Y = (iX ut iY )˜ = HX +· HY .

Proof. An easy calculation thanks to the rule (3.3).

We note that we have lower addition in (5.6). We know that f̃ +· g̃ is convex.
However, it turns out that f̃ +· g̃ = f̃ +· g̃ except when f̃ +· g̃ is the constant−∞. Thus

also f̃ +· g̃ is convex. In (5.7) we can write HX+HY without risk of misunderstanding
if X and Y are nonempty.

Corollary 5.5. If ˜̃f = f and ˜̃g = g, then

(5.8) (f +· g)˜ = (f̃ ut g̃)˜̃.
In particular, taking f = iX , g = iY with X and Y closed and convex we have

(5.9) HX∩Y = (iX + iY )˜ = (HX ut HY )˜̃ = (min(HX ,HY ))˜̃,
and, taking f = HX , g = HY with X and Y closed and convex,

(5.10) (HX +· HY )˜ = (iX ut iY )˜̃ = (iX+Y )˜̃ = iX+Y .

Proof. The proof consists of a straightforward application of the proposition, except
for the last equality in (5.10), which follows from Theorem 5.3.
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More generally, we can obtain the supporting function of an intersection X =⋂
i∈I Xi of closed convex sets Xi, i ∈ I, as

(5.11) HX =
[

cvx
(

inf
i∈I

HXi

)]˜̃ =
(

inf
i∈I

HXi

)˜̃.
Theorem 5.6. Suppose that ˜̃f = f , ˜̃g = g and that f̃ ut g̃ is lower semicontinuous
and either nowhere minus infinity or else identically minus infinity. Then

(5.12) (f +· g)˜ = f̃ ut g̃.

In particular we can take the value at the origin of both sides and obtain

(5.13) − inf
x

(f(x) +· g(x)) = inf
ξ

(f̃(ξ) +· g̃(−ξ)).

Proof. For the proof we only need to combine Corollary 5.5 with Theorem 5.3.

If (5.12) holds, then f̃ ut g̃ is of course lower semicontinuous, so in this respect
the result cannot be improved, but it is unpleasant to have lower semicontinuity as an
assumption to be verified. Formula (5.12) can be obtained from (5.13) by translation.

We remark that the assumption on f̃ ut g̃ is satisfied if the function is real-valued
everywhere, for such functions are automatically continuous as shown by Theorem
3.13. However, in applications it is important to allow the value +∞.

There are important cases when (5.12) does not hold.

Example 5.7. Let f̃ = iX and g̃ = iY (then X and Y are automatically closed and
convex). Then f̃ ut g̃ = iX+Y and Theorem 5.3 shows that

(
f̃ ut g̃

) ˜̃ = iX+Y , the
indicator function of the closure of the convex set X + Y . However, X + Y is not
necessarily closed. A simple example is

X = {x ∈ R2; x2 > 0, x1x2 > 1}, Y = {x ∈ R2; x2 = 0},

X + Y = {x ∈ R2; x2 > 0}, X + Y = {x ∈ R2; x2 > 0}.

Then f̃ ut g̃ 6=
(
f̃ ut g̃

) ˜̃. The formula (5.12) does not hold.

Example 5.8. Define two functions f, g: R2 → [0,+∞] by

f(x) =
{

0, x1 6 −1,
+∞, otherwise;

g(x) =
{

0, x1 > 1,
+∞, otherwise.

Thus f = iX , g = iY where X and Y are disjoint closed half-spaces. Then f +· g =

+∞ identically and f̃(ξ) = HX(ξ) = −ξ1 when ξ2 = 0, ξ1 > 0 and +∞ otherwise,
whereas g̃(ξ) = HY (ξ) = ξ1 when ξ2 = 0, ξ1 6 0 and +∞ otherwise. The convex
function f̃ ut g̃ takes the value −∞ when ξ2 = 0 and +∞ otherwise. Therefore
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(f +· g)̃ =
(
f̃ ut g̃

) ˜̃ = −∞ identically while
(
f̃ ut g̃

)
(ξ) = +∞ when ξ2 6= 0. Thus

(5.12) does not hold.

The next example is similar to the one we just considered, but in a sense worse,
since now (f̃ ut g̃)(0) = 0.
Example 5.9. Let

X = {x ∈ R2; x1 > 0, x1x2 > 1}, Y = {x ∈ R2; x1 6 0},

and considerf = iX , g = iY . Then X∩Y = Ø, so HX∩Y = −∞ identically. However,

f̃(ξ) = HX(ξ) =
{−2

√
ξ1ξ2, ξ1 6 0, ξ2 6 0,

+∞, otherwise,

and

g̃(ξ) = HY (ξ) =
{

0, ξ1 > 0, ξ2 = 0,
+∞, otherwise,

so that, by Proposition 4.10,

(f̃ ut g̃)(ξ) = (HX ut HY )(ξ) = cvx(min(HX ,HY ))(ξ) =


−∞, ξ2 < 0,
0, ξ2 = 0,
+∞, ξ2 > 0.

In particular we note that HX∩Y (0) = −∞ while cvx(min(HX ,HY ))(0) = 0.

Thus the double tilde in (5.8), (5.9) or (5.10) cannot be omitted in general.
The formulas (5.12) and (5.13) are important in optimization, but they are quite
subtle—in contrast to (5.6).

Theorem 5.10. If I is a finite or infinite index set and the Ai are compact con-
vex subsets of a finite-dimensional vector space, then (5.11) can be simplified: the
supporting function of the intersection A =

⋂
Ai is

(5.14) HA = cvx
(

inf
i
HAi

)
.

In particular A is nonempty if and only if

(5.15)

∑
HAi(ξ

i) > 0 for all vectors ξi, i ∈ I, such that ξi 6= 0

for only finitely many indices i ∈ I and
∑

ξi = 0.

Proof. Let us denote by g the right-hand side of (5.14). Clearly HA 6 g. On the
other hand, ˜̃g is the supporting function of some set, say ˜̃g = HY , and this set must
be contained in every Ai, thus Y ⊂ A and ˜̃g = HY 6 HA. So ˜̃g 6 HA 6 g; it remains
to be proved that ˜̃g = g.
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If I is empty, both sides of (5.14) equal +∞ identically; if one of the Ai is empty,
both sides equal −∞. So let us assume that I 6= Ø and that Ai 6= Ø for all i ∈ I.
Then the HAi are real-valued and the right-hand side g of (5.14) never takes the
value +∞, so (dom g)◦ is the whole space. By Theorem 3.13 g is either the constant
−∞ or else a continuous real-valued function. So it satisfies ˜̃g = g in all cases. This
proves (5.14). The last statement follows if we use the expression (3.7) for the convex
hull of infiHAi and note that HA(0) > 0 if and only if A 6= Ø. This completes the
proof.

As shown by Example 5.8, (5.14) does not necessarily hold if the Ai are closed
half-spaces and I is finite. Moreover, Example 5.9 shows that (5.15) does not imply
that the intersection is nonempty if the Ai are finitely many closed convex subsets.
In spite of this, (5.15) does imply that the intersection is nonempty if the Ai are
closed half-spaces, finite in number:

Theorem 5.11. Let Ai, i ∈ I, be finitely many closed half-spaces in a finite-dimen-
sional vector space E. Then their intersection A =

⋂
Ai is nonempty if and only if

(5.15) holds; more explicitly, if we assume that the half-spaces are defined by

(5.16) Ai = {x ∈ E; ηi(x) 6 αi}, i ∈ I,

for some nonzero linear forms ηi ∈ E′ and some real numbers αi, then (5.15) takes
the form

(5.17)
∑
i

λαi > 0 for all λi > 0 with
∑
i

λiη
i = 0.

Proof. The set
M = {(ηi, αi); i ∈ I} ⊂ E′ ×R

is finite and its convex hull is

cvxM =
{∑

λi(ηi, αi); λi > 0,
∑

λi = 1
}
.

We define M+ as the set of all points (ξ, τ ′) with τ ′ > τ for some point (ξ, τ) in
M . Then cvx(M+) = (cvxM)+. Condition (5.15) means that a point of the form
(0, τ) ∈ cvxM must satisfy τ > 0. Therefore either 0 /∈ cvxM or 0 ∈ ∂(cvxM); we
also have 0 /∈ (cvxM)+ or 0 ∈ ∂

(
(cvxM)+

)
. There exists a half-space

D = {(ξ, τ) ∈ E′ ×R; ξ(x) + τt 6 0}

which contains M+. Because M+ contains points with large τ , t must be negative
or zero—unless M is empty, but then the conclusion is true anyway. If t < 0, the
inequality defining D can be written ξ(−x/t) 6 τ , and the fact that D contains M
can be expressed as ηi(−x/t) 6 αi, which means that −x/t ∈ A; we are done.

In case t = 0 we have a vertical hyperplane in E′ × R. We cannot use the
technique in the proof of Theorem 5.3 to tilt the hyperplane, for we are not allowed
to lower it, i.e., change the value at the origin of the linear function defining it. But
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on the other hand, (cvxM)+ is a polyhedron, which will enable us to use another
method: we can tilt the hyperplane and still let it pass through the origin.

So assume that t = 0, meaning that we have a vertical half-space

D = {(ξ, τ); ξ(x) 6 0}

containing M . We must then have x 6= 0. Consider the set

J = {i ∈ I; ηi(x) = 0}.

If J is empty, we have ηi(x) < 0 for all i and we see that ηi(sx) 6 αi, thus sx ∈ A,
if only s is large enough. Otherwise we consider the problem with points (ηi, αi),
i ∈ J , and the subspace

F = {ξ ∈ E′; ξ(x) = 0}.

We may assume that the result is already proved in the space F , which is of smaller
dimension. (For spaces of dimension 0 the result is certainly true.) So there exists a
point y such that ηi · y 6 αi for all i ∈ J . We now have sx + y ∈ A for s large: if
i /∈ J , then ηi(x) < 0 and ηi(sx) + ηi · y 6 αi for s� 0; if on the other hand i ∈ J ,
then ηi(sx+ y) = ηi(y) 6 αi by hypothesis. Thus A is nonempty.

Finally, to see that (5.15) takes the form (5.17), it is enough to remark that the
supporting functions are

HAi(ξ) =
{
λαi if ξ = ληi for some λ > 0, and
+∞ otherwise.

Example 5.12. The conclusion of Theorem 5.11 is not necessarily true if we admit
infinite intersections. Let E = R2 and define infinitely many half-spaces as in (5.16),
taking ηi = (1, i) ∈ R2, i ∈ Z, and αi as arbitrary real numbers. Then (5.17) is
satisfied regardless of the choice of the αi. But A 6= Ø if and only if

(5.18) ∃C1 ∃C2 ∀i ∈ Z αi > −C1 − iC2.

Thus for instance the choice αi = γ|i| yields a nonempty intersection if and only
if γ > 0. If we take a look at the proof of Theorem 5.11 in this situation, we see
that the set M is contained in a vertical half-space {(ξ, τ); ξ1 > 0}. This half-space
can be tilted to a non-vertical half-space {(ξ, τ); τ > −C1ξ1 − C2ξ2} containing M
if and only if αi > −C1 − iC2 for some constants C1, C2. (Half-spaces of the form
{(ξ, τ); τ > −Cξ1 −C2ξ2 − ε} with ε > 0 are not allowed here.) Thus the method of
proof we have used works if and only if (5.18) holds.

Maybe we can sum up our experience concerning Theorems 5.10 and 5.11 and
the related counterexamples as follows. The calculus of infimal convolution and the
Fenchel transformation is highly successful and also quite easy when we consider
compact convex sets. When the sets are unbounded, certain difficulties appear—
but they have to be confronted! Then again polyhedra with finitely many faces are
quite well-behaved even if they happen to be unbounded—but the proofs are quite
different!
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6. The Monge–Kantorovich problem
We shall now discuss an application of convex duality, the Monge–Kantorovich5 prob-
lem. It is about moving masses of earth around in the most economical way. But
the masses could also be images. Kantorovich’s theory has applications in economics
and image analysis.

Given two probability measures as finite sums of Dirac measures

(6.1) µ =
∑

Ajδaj and ν =
∑

Bkδbk ,

the Kantorovich cost functional is

(6.2) C(µ, ν) = inf
M

∑
mjkc(aj , bk),

where c(a, b) denotes the cost in Euro to move one ton of earth from place a to place
b, or the cost in öre to move one pixel from a to b on the screen, and where the
infimum is taken over all matrices M = (mjk) such that

∑
kmjk = Aj (moving the

mass Aj out from aj to the various bk) and
∑
jmjk = Bk (moving the mass Bk to

bk from all possible aj).
On a screen we may have 512 × 1024 = 219 pixels, so M is a matrix with 238

entries. Therefore the problem is unwieldy. Thomas Kaijser [1998] has studied it and
devised algorithms to calculate the functional.

Kantorovich let the measures be arbitrary probability measures and defined the
cost (or work) as an integral.

We can approximate the Aj and Bk by rational numbers, and then we can even
assume that they are all equal to 1/m for some m, for the locations aj and bk can be
repeated at will. This is the situation we shall consider here; it can be viewed as an
approximation to the general problem.

So let us consider a metric space X with metric d and linear combinations of
Dirac measures

(6.3) µ =
1
m

m∑
j=1

δaj , ν =
1
m

m∑
j=1

δbj ,

where m ∈ N r {0} and aj and bj are points in X, j = 1, ...,m. The points could
represent pixels in an image, and the number of indices j such that aj is equal to a
particular point represents the brightness of the image at that point.

Let us define a distance d1 for such measures by putting

(6.4) d1(µ, ν) = inf
σ

1
m

m∑
j=1

d(aj , bσ(j)),

where the infimum is taken over all permutations σ of {1, 2, ...,m}. In this case M is
equal to 1/m times a permutation matrix, and the cost c(a, b) is a metric d(a, b); the

5Gaspar Monge, 1746–1818; Leonid Vital′evič Kantorovič, 1912–1986.
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triangle inequality will be needed. (It is probably of interest to consider other cost
functionals, but then they can hardly be equal to the dual distance defined below.)
Thus d1 measures the work needed to move µ to ν: we choose to move each aj to
some bk and then take the most economical permutation. This is the Kantorovich
distance between µ and ν. With m = 219 pixels, the infimum in (6.4) is taken over
(219)! permutations—it is indeed unwieldy.

The dual distance d2 between two measures is defined by

(6.5) d2(µ, ν) = sup
f∈Lip

|µ(f)− ν(f)|,

where Lip denotes the set of all Lipschitz functions with Lipschitz constant 1; i.e.,
functions f :X → R such that

|f(x)− f(y)| 6 d(x, y), x, y ∈ X.

Theorem 6.1 (Kantorovich [1942]). For any two measures as in (6.3) we have
d1(µ, ν) = d2(µ, ν).
This is Kantorovich’s classical theorem restricted to this special case, which, however,
can be easily extended to the general case by approximating arbitrary probability
measures by sums of Dirac measures. We shall present a new proof here using convex
duality, more precisely Theorem 5.11.
Proof. It is easy to see that d2 6 d1. To prove the inequality in the other direction
we shall construct a function f = minj fj ∈ Lip, where

fj(x) = cj + d(x, bj), x ∈ X, j = 1, ...,m,

for some skilfully chosen real numbers cj . We want that, after some permutation of
the bj , f(x) = fj(x) for x = aj , bj . If we succeed in this construction, we will have
f(aj)− f(bj) = d(aj , bj) for all j and we shall obtain

d2(µ, ν) > |µ(f)− ν(f)| = 1
m

∑
(f(aj)− f(bj)) =

1
m

∑
d(aj , bj) > d1(µ, ν),

which will finish the proof.
Thus the question is to find levels cj so that f(aj) = fj(aj) and f(bj) = fj(bj).

Here the first equality holds if and only if fk(aj) > fj(aj) for all k, i.e., ck+d(aj , bk) >
cj + d(aj , bj). The second holds if and only if fk(bj) > fj(bj) for all k, i.e., ck +
d(bj , bk) > cj . We note that the second condition follows from the first, for if the
first is satisfied, then ck−cj > d(aj , bj)−d(aj , bk) > −d(bj , bk) in view of the triangle
inequality. So let us forget about the second condition. We introduce the numbers
θjk = d(aj , bk). Our task is to find numbers cj such that ck − cj > θjj − θjk for
all j, k. Such numbers can be found if and only if the θjk satisfy the condition (6.7)
below.

Proposition 6.2. Given real numbers θjk, j, k = 1, ...,m, there exists numbers cj,
j = 1, ...,m, such that

(6.6) ck − cj > θjj − θjk, j, k = 1, ...,m,
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if and only if

(6.7)
m∑
1

θjj 6
m∑
1

θj,σ(j) for all permutations σ of {1, ...,m}.

Proof. It is clear that (6.7) follows from (6.6). For the converse we note that we have
a purely geometric problem in Rm with m2 closed half-spaces

(6.8) Ajk = {c ∈ Rm; cj − ck 6 θjk − θjj};

we wish to show that their intersection A is nonempty. We shall use Theorem 5.11
and the criterion (5.17); thus A is nonempty if and only if (5.17) holds. We now apply
this criterion to the situation we have in the proposition. We have m2 half-spaces
(6.8), where, in the notation of (5.16), ηjk = e(j) − e(k) and αjk = θjk − θjj . We
conclude that the intersection A is nonempty if and only if

(6.9)
∑
jk

λjk(θjk − θjj) > 0 for all λjk > 0 such that
∑
k

λsk =
∑
j

λjs for all s.

Since we can add diagonal matrices freely to (λjk) without changing either the as-
sumption or the conclusion in (6.9), it is enough that (6.9) be satisfied for bistochastic
matrices (λjk). It is even enough to require it for a special type of bistochastic matri-
ces, viz. the permutation matrices, for the convex hull of all permutation matrices is
precisely the set of bistochastic matrices. This is because the permutation matrices
are the extremal points of the set of all bistochastic matrices, and a well-known theo-
rem states that a compact convex set is the closed convex hull of its extremal points.
But when (λjk) is a permutation matrix, (6.9) reduces to (6.7). This concludes the
proof the proposition.

Proof of Theorem 6.1, cont’d. Is condition (6.7) satisfied in the situation of Theorem
6.1? If we put θjk = d(aj , bk), then (6.7) becomes∑

d(aj , bj) 6
∑

d(aj , bσ(j)).

There exists a permutation π such that∑
d(aj , bπ(j)) = inf

σ

∑
d(aj , bσ(j)).

We can now renumber the points bj so that π becomes the identity. Then (6.7) holds,
and we have proved the theorem.

7. The Brunn–Minkowski inequality
In my lectures on the Brunn–Minkowski inequality and the Prékopa–Leindler in-
equality I followed Ball [1997] closely. Therefore I do not include anything from
these lectures here.

8. Non-convex sets
Can we extend the techniques used in convexity theory to non-convex sets? Here I
shall indicate very briefly how it is possible to use the supporting function of a convex
set to describe faithfully also non-convex closed sets.
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Proposition 8.1. Consider the mapping p:x 7→
(
x, 1

2‖x‖
2
)

from Rn into Rn+1,
where ‖ · ‖ is a Euclidean norm. The inverse image of the convex hull of the image
of any set in Rn is equal to the set itself:

(8.1) p−1
(

cvx p(A)
)

= A, A ⊂ Rn.

For closed subsets A of Rn we can take the closed convex hull:

(8.2) p−1
(

cvx p(A)
)

= A, A closed in Rn.

Proof. The mapping p is an embedding of Rn into Rn+1, preserves the C∞ structure
of Rn, and realizes Rn as the paraboloid P = p(Rn) = {(x, t) ∈ Rn+1; t = 1

2‖x‖
2}.

Also P is the graph of the mapping ϕ:x 7→ 1
2‖x‖

2, which has the property that
gradϕ = idRn .

Clearly A is contained in p−1(cvx p(A)). To prove the other inclusion, observe
that the tangent plane to P at a point (a, s) ∈ P is {(x, t); t− s = a · (x− a)}. The
closed half-space {(x, t); t− s > a · (x− a)} contains the paraboloid. If a /∈ A, then
the corresponding open half-space D = {(x, t); t− s > x · (x− a)} contains p(A) and
therefore also its convex hull. Now D does not contain (a, s), so p−1(D) does not
contain a. This proves (8.1).

If A is closed and a /∈ A, then there is even a closed half-space of the form
Dε = {(x, t); t− s > a · (x− a) + ε} for some positive ε which contains p(A), hence
also its closed convex hull. More precisely, if (x, t) ∈ P ∩Dε, then ‖x − a‖ >

√
2ε.

Hence a /∈ p−1
(

cvx p(A)
)
. This proves (8.2).

The supporting function of the paraboloid P is given by

HP (ξ, τ) =


− 1

2τ ‖ξ‖
2, τ < 0,

+∞, τ > 0 or τ = 0, ξ 6= 0,
0, (ξ, τ) = (0, 0).

The closed convex hull of the image of a set A is the intersection of all closed
half-spaces containing p(A), thus

cvx p(A) =
⋂
ξ,τ

{(x, t) ∈ Rn+1; ξ · x+ τt 6 Hp(A)(ξ, τ)}.

Hence the inverse image of cvx p(A) is

(8.3) p−1
(

cvx p(A)
)

=
⋂
ξ,τ

{x ∈ Rn; ξ · x+ 1
2τ‖x‖

2 6 Hp(A)(ξ, τ)}.

Therefore any closed set A can be recovered from the supporting function of p(A).
We can simplify (8.3): it is not necessary to take the intersection over all (ξ, τ) ∈

Rn ×R. With the notation

Eτ =
⋂
ξ

{(x, t) ∈ Rn ×R; ξ · x+ τt 6 Hp(A)(ξ, τ)},
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we can write cvx p(A) =
⋂
τ Eτ = E1 ∩ E0 ∩ E−1, for Eτ = E1 if τ is positive,

Eτ = E−1 if τ is negative. I claim that E−1∩P = E1∩E0∩E−1∩P . Indeed, if (x, t)
belongs to E−1 ∩ P , then x belongs to A, as shown by the proof of Proposition 8.1,
for there we used the half-spaces Dε which have τ = −1. And if x ∈ A, then clearly
p(x) belongs to all Eτ . Therefore it is enough to take τ = −1 in the intersection in
(8.3).

Finally we note that p(A) = p
(
A
)

and that cvx p(A) = cvx
(
p(A)

)
(cf. Propo-

sition 2.3), so that A = p−1(cvx(p(A)); cf. (8.2). We may now write

A = p−1
(

cvx p(A)
)

=
⋂
ξ

{x ∈ Rn; ξ · x− 1
2‖x‖

2 6 Hp(A)(ξ,−1)}.

We also note that Hp(A)(a,−1) 6 HP (a,−1) with equality precisely when a ∈ A. We
sum up the discussion as follows.

Proposition 8.2. Define for any subset A of Rn a function

ΓA(ξ) = sup
x∈A

(
ξ · x− 1

2‖x‖
2
)

= Hp(A)(ξ,−1), ξ ∈ Rn.

Then ΓA(a) 6 1
2‖a‖

2 everywhere, with equality if and only if a belongs to the closure
of A.
This idea can be used to recover the support, not just the convex hull of the support,
from the Fourier transform of a distribution with compact support; see Kiselman
[1981].

9. Notions of topology

9.1. Mappings
Let f :X → Y be a mapping from a set X into a set Y , and denote by P (X) the
power set of X, i.e., the set of all subsets of X. We associate with f a mapping
f∗:P (Y )→ P (X) and a mapping f∗:P (X)→ P (Y ) defined as follows.
(9.1.1)

f∗(B) = {x ∈ X; f(x) ∈ B} = f−1(B), f∗(A) = {f(x) ∈ Y ; x ∈ A} = f(A).

Thus f∗(B) = f−1(B) is the preimage (inverse image) of B ⊂ Y and f∗(A) = f(A)
is the direct image (or just image) of A ⊂ X. It is however sometimes convenient
to have a special notation for f∗:P (X) → P (Y ), so that it is not confused with
f :X → Y ; similarly f∗ is not the pointwise inverse of f .

We note that

(9.1.2) f∗ ◦ f∗ > idP (X) and f∗ ◦ f∗ 6 idP (Y ).

Thus f∗(f∗(A)) ⊃ A; equality holds for all A if and only if f is injective, and
f∗(f∗(B)) = B ∩ im f ⊂ B; equality holds for all B if and only if f is surjective.

We also note that f∗ is a homomorphism of Boolean algebras: it satisfies

(9.1.3) f∗(B1 ∪B2) = f∗(B1) ∪ f∗(B2), f∗(B1 ∩B2) = f∗(B1) ∩ f∗(B2),
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(9.1.4) f∗(B1 rB2) = f∗(B1)r f∗(B2), in particular f∗
(
{B
)

= {f∗(B).

More generally, (9.1.3) can be generalized to infinite unions and intersections. The
homomorphism f∗ is an endomorphism if and only if f is surjective, and an epimor-
phism if and only if f is injective.

The mapping f∗ is not so well-behaved: it always satisfies

f∗(A1 ∪A2) = f∗(A1) ∪ f∗(A2),

but only f∗(A1 ∩A2) ⊂ f∗(A1)∩ f∗(A2), and there is in general no inclusion relation
between f∗

(
{A
)

and {f∗(A).

9.2. Definition of topologies
A topology on a set X is a collection U(X) of subsets of X, thus an element of
P (P (X)), which is stable under arbitrary unions and finite intersections. The ele-
ments of U(X) are called open sets; thus any union of open sets is open and any
finite intersection of open sets is open. In particular, the union and the intersection
of the empty family is open, so Ø and X are always open subsets of X.

However, a topology can be given in several different ways. We define a set as
closed if its complement is open. Then the family F(X) of all closed sets is stable
under arbitrary intersections and finite unions. We may also impose these conditions
as axioms, and define a set to be open if its complement is closed. A topology can
be equivalently defined using open or closed sets.

Another notion is that of neighborhood. If a topology U(X) is given, we say
that a set V is a neighborhood of a point x if there exists an open set U such that
x ∈ U ⊂ V . The families V(x), x ∈ X, of neighborhoods of points in X satisfy the
following conditions:

(9.2.1) If V ∈ V(x), then x ∈ V ;

(9.2.2) If V ∈ V(x) and W ⊃ V , then W ∈ V(x);

(9.2.3) If V1, V2 ∈ V(x), then V1 ∩ V2 ∈ V(x);

(9.2.4) If V ∈ V(x), then there exists W ∈ V(x) such that V ∈ V(y) for all y ∈W .

These properties are easy to verify if the topology is given and the neighborhoods are
defined as above. On the other hand, if we have a collection V(x) for every x ∈ X
satisfying the axioms (9.2.1)–(9.2.4) and define a set U to be open if it belongs to
V(x) for every x ∈ U , then we get a topology for which the neighborhoods are the
given ones.

We can also define a topology using closure operators. If a topology is given,
then we can define a closure operator by taking A as the intersection of all closed
sets containing A. Then this closure operator satisfies Ø = Ø and A ∪B = A ∪ B.
Conversely, if a closure operator is defined satisfying these conditions we can define a
set to be closed if A = A; we then get a topology, a topology for which the topological
closure operator is the given one.
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Finally, the interior A◦ of a set A is the largest open set contained in the set. It
is related to the closure by the formula

A◦ = {
(
{A
)
.

The operation A 7→ A◦ is shrinking, increasing (order preserving), and idempotent:

A◦ ⊂ A;

A1 ⊂ A2 implies A◦1 ⊂ A◦2; and

(A◦)◦ = A◦.

This means that it is a closure operator if we reverse the order: A 6 B shall mean
A ⊃ B. In addition to being a closure operator, it satisfies X◦ = X and (A ∩B)◦ =
A◦ ∩B◦. Conversely, we may take these properties as axioms and define a set to be
open if it is in the image of the operator. Then we get a topology and the operation
of taking the interior of a set for this topology is equal to the original operator.

Summing up, we have five equivalent ways to define a topology: using open sets,
closed sets, neighborhoods, taking the topological closure, and taking the interior.

If we have two topologies U1(X) and U2(X) on the same set X we say that the
first is weaker or coarser than the second, and that the second is finer or stronger
than the first, if U1(X) ⊂ U2(X). Expressed in terms of closure operators, this means
that c2 6 c1 if cj denotes the closure operator associated with Uj(X), j = 1, 2. The
weakest topology is the chaotic topology {Ø, X} and the strongest is the discrete
topology P (X). The closure of a nonempty set in the chaotic topology is always the
whole space, wheras the closure of a set in the discrete topology is the set itself.

A two-point space can have four topologies: in addition to the two just men-
tioned, they are {Ø, {x}, {x, y}} and {Ø, {y}, {x, y}}. The two latter are called
Sierpiński6 topologies. How many topologies are there on a three-point space?

9.3. Transport of topologies
If f :X → Y is a mapping from a set X into a topological space Y we can transport
the topology on Y to X by defining a subset of X to be open if and only if it is of the
form f∗(U) for some open subset U of Y . Because of (9.1.3) and the corresponding
formula for infinite unions it is clear that the family of all sets

(f∗)∗(U(Y )) = {f∗(U); U ∈ U(Y )}

is a topology. Here we have used the notation introduced in (9.1.1) at the next higher
level: f∗:P (Y ) → P (X), (f∗)∗:P (P (Y )) → P (P (X)). For brevity we shall denote
(f∗)∗(U(Y )) by f

←
(U(Y )), the pull-back of U(Y ).

If d:Y → Y is a closure operator in Y , then d
←

= f∗◦d◦f∗ is a closure operator in
X, and if d satisfies the topological axioms d(Ø) = Ø and d(B1∪B2) = d(B1)∪d(B2),
then d

←
does the same. Thus we can transport topological closure operators from Y

6Wac law Sierpiński, 1882–1969.
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to X. One can verify that the transported open sets correspond to the transported
closure operator.

A particularly common case is when X is a subset of Y and f is the inclusion
mapping. Then we say that the topology f

←
(U(Y )) defined on X is the induced

topology. We see that U is open in X if and only if U = V ∩ Y for some open set in
Y ; we also see that the closure operator d

←
in X is defined as d

←
(A) = d(A) ∩X.

If X is a topological space and f :X → Y a mapping of X into a set Y , we
can of course consider the family {f∗(A); A ∈ U(X)}. However, since f∗ is not so
well-behaved, it is usually not a topology on Y . Instead we use again f∗ and declare
a subset B of Y to be open if f∗(B) is open in X. And we can verify that this is
indeed a topology on Y ; we shall denote it by

f→(U(X)) = (f∗)∗(U(X)) = {B ∈ P (Y ); f∗(B) ∈ U(X)},

the push-forward of U(X).
A common instance of this definition is when Y is a quotient set of X, i.e., when

we have an equivalence relation ∼ in X and let Y = X/∼ be the set of all equivalence
classes in X with respect to the relation. The mapping f associates to each element
in X its equivalence class in Y . Then a subset B of Y is open in Y with respect to the
topology we have pushed forward from X if and only if the union of all equivalence
classes in B is open in X. The topology obtained in this way on X/∼ is called the
quotient topology.

If f :X → Y is injective, and if we have a topology on X, push it forward
to Y and then pull it back to X, the new topology agrees with the original one:
f
←

(f→(U(X))) = U(X). Similarly, if f is surjective and we start with a topology on
Y , pull it back to X and then push it forward to Y , we obtain the original topology;
f→(f

←
(U(Y ))) = U(Y ). (This works so well because we did not use f∗ but f∗ in the

definition.)
However, if we have a closure operator c in X, we cannot define a closure operator

in Y by something like c→ = f∗ ◦ c ◦ f∗. In general c→ will not be expanding,
nor idempotent. (Construct examples!) How shall we define the closure operator
connected with the topology f→(U(X)) on Y ?

9.4. Continuous mappings
Let f :X → Y be a mapping of a topological space X into a topological space Y and
x a point in X. We say that f is continuous at x if f∗(V ) is a neighborhood of x
for every neighborhood V of f(x). It is called continuous if it is continuous at every
point in X. We now translate this well-known notion into the language of open sets,
closed sets, and closure operators. Then we can prove that f is continuous if and
only if f∗(U) ∈ U(X) for every U ∈ U(Y ); in other words if and only if the topology
f
←

(U(Y )) is weaker than the topology U(X).

9.5. Connectedness
The family of all open and closed sets of a topological space X (sometimes called
the clopen sets) forms a Boolean algebra. This algebra must contain the two sets
Ø, X, for they are always both open and closed. (If X is empty there is only one
such set, of course.) A topological space is said to be connected if it is nonempty and
the only sets which are both open and closed are the empty set and the whole space.
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A subset of a topological space is called connected if it is connected as a topological
space with the induced topology.7 A connectivity component of a topological space is
a connected subset which is maximal with respect to inclusion.

A connected subset which is both open and closed is a component. It is easy to
prove that the closure of a connected subset is connected. Therefore all components
are closed. They need not be open.

Proposition 9.5.1. Let f :X → Y be a continuous mapping of a topological space
X into a topological space Y . If X is connected, then so is f∗(X) = im f .

Proof. Let B be a clopen subset of im f . Then f∗(B) is clopen in X. Hence f∗(B)
is either empty or equal to X. Therefore f∗(f∗(B)) = B ∩ im f = B is either empty
or equal to im f . This means that im f is connected.

Corollary 9.5.2. Let f :X → Y be a mapping of a topological space X into a set
Y . Equip Y with the strongest topology such that f is continuous. Suppose that X
is connected. Then im f is connected, and the points in Y r im f are isolated. In
particular, any quotient space of a connected topological space is connected.

Proof. For any point y ∈ Y not in the image of f , the inverse image f−1(y) = f∗({y})
is empty, thus both open and closed. This means that Y r im f has the discrete
topology and the connectivity components are just the singleton sets.

In particular we shall use Corollary 9.5.2 with X = R and Y = Z to define
connected topologies on the digital line Z. Let f : R → Z be a surjective mapping.
Then Z equipped with the strongest topology such that f is continuous is a connected
topological space. Thus we consider Z as a quotient space of R, not as a subspace.
It is not unnatural to restrict attention to increasing mappings f : R→ Z. For every
n ∈ Z we then have two numbers an < bn such that

]an, bn[ ⊂ f∗(n) ⊂ [an, bn].

We can normalize the situation to an = n, bn = n + 1; this does not change the
topology on Z. Then f(x) = bxc for all x ∈ R r Z, and f(n) = n or f(n) = n − 1,
n ∈ Z. The topology is therefore determined if we know for which n we have f(n) =
n−1. For every subset A of Z we get a topology on Z by declaring that f(n) = n−1
for a ∈ A and that, for all other real numbers x, we have f(x) = bxc.

Another normalization is to take an = n− 1
2 , bn = n+ 1

2 . This can be explained
as follows. It is natural to think of Z as an approximation of the real line R and
to consider mappings f : R → Z expressing this idea. We may define f(x) to be the
integer closest to x; this is well-defined unless x is a half-integer. So when x = n+ 1

2 we
have a choice for each n: shall we define f(n+ 1

2 ) = n or f(n+ 1
2 ) = n+1? If we choose

the first alternative for every n, thus putting f∗(n) =
]
n− 1

2 , n+ 1
2

]
, the topology

defined in Corollary 9.5.2 is called the right topology on Z; if we choose the second,
we obtain the left topology on Z; cf. Bourbaki [1961:I:§1: Exerc. 2]. Another choice is

7According to Bourbaki [1961:I:§11:1] the empty space is connected. Here I follow
instead the advice of Adrien Douady (personal communication, June 26, 2000). In
these notes it will not matter whether the empty set is said to be connected or not.
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to always choose an even integer as the best approximant of a half-integer. Then the
closed interval [− 1

2 ,
1
2 ] is mapped to 0, so {0} is closed, whereas the inverse image

of 1 is the open interval
]

1
2 ,

3
2

[
, so that {1} is open. This topology was introduced

by E. D. Halimskĭı (Efim Khalimsky), and we shall call it the Khalimsky topology ;
Z with this topology is called the Khalimsky line. The Khalimsky line is connected,
but the complement of any point is disconnected. Among all the topologies defined
by increasing surjections f : R→ Z only two have this property: the one just defined
and the one obtained by translating everything by one step.

9.6. Separation axioms and adjacency
The closure of a subset A of a topological space X will be denoted by A. The
intersection of all neighborhoods of a point x will be denoted by N(x). We note that
x ∈ {y} if and only if y ∈ N(x). The relation x ∈ {y} defines a preorder in X,
i.e., a relation satisfying (2.1) and (2.3) but not necessarily (2.2). We shall denote
it by x 4 y; thus x 4 y if and only if x ∈ {y}. It was introduced by Aleksandrov
[1937:503]. We shall call it the specialization preorder ; cf. Kong et al. [1991:905].

A Kolmogorov space (Bourbaki [1961:I:§1: Exerc. 2]), also called a T0-space, is a
topological space such that x ∈ N(y) and y ∈ N(x) only if x = y, thus precisely when
the specialization preorder is an order (satisfies (2.2)). Conversely, every ordered set
can be made into a T0-space by defining the smallest neighborhood of a point x to be
N(x) = {y ∈ X; x 4 y}. It is quite reasonable to impose this axiom; if x belongs to
the closure of {y} and vice versa, then x and y are indistinguishable from the point of
view of topology. (We should therefore identify them and consider a quotient space.)

The separation axiom T1 states that N(x) = {x}. It is too strong to be of
interest for the spaces considered here. Also the specialization preorder becomes
uninteresting: we have x 4 y if and only if x = y.

Two points x and y in a topological space Y are said to be adjacent if x 6= y and
{x, y} is connected. We note that {x, y} is connected if and only if either x ∈ N(y)
or y ∈ N(x). We shall say that two points x, z are second adjacent if x 6= z; x and z
are not adjacent; and there exists a third point y ∈ Y such that x and y are adjacent
and y and z are adjacent.

10. Smallest neighborhood spaces
In a topological space the union of any family of open sets is open. It may happen
that also the intersection of any family of open sets is open. Equivalently, every
point in the space possesses a smallest neighborhood. A space with this property
we shall call here a smallest neighborhood space. Another suitable name would be
a P. S. Aleksandrov space, in honor of P. S. Aleksandrov,8 who introduced them in
[1935, 1937]. It is equivalent to require that the union of an arbitrary family of closed
sets is closed.

The intersection N(x) of all neighborhoods of a point x is open for all x if and
only if the space is a smallest neighborhood space.

Aleksandrov [1935, 1937] introduced the term espace discret, diskreter Raum
(discrete space) for a topological space such that the intersection of any family of

8Pavel Sergeevič Aleksandrov, 1896–1982; not to be confused with Aleksandr Danilo-
vič Aleksandrov, b. 1912.
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open sets is open. The intersection of all closed sets containing a set M he called its
Hülle (hull), and denoted it by M or AM . The intersection of all open sets containing
a set M he called its Stern (star) and denoted it by OM . He noted that the star of a
set is a closure operation, and therefore defines a topology, which he called réciproque
[1935] or dual [1937]. The closed set of a smallest neighborhood space satisfies the
axioms of the open sets of a topology, so there is a complete symmetry between the
two topologies in such a space.

Alexandrov’s choice of terms seems fortunate, but nowadays it is not possible
to use the term discrete space in Aleksandrov’s sense, since the discrete topology in
modern usage refers only to the topology where every set is open, the strongest of
all topologies. This is why I propose to call a discrete space in Aleksandrov’s sense
a smallest neighborhood space or a P. S. Aleksandrov space.

The closed points, i.e., the points x such that {x} = {x}, Aleksandrov called
Eckpunkte (vertices), and the open points, i.e., the points x such that the singleton
{x} is open, he called Grundpunkte (base points).

We can define a topology on the digital line Z by declaring all odd points to be
open, thus N(2k+1) = {2k+1}, and all even points to have a smallest neighborhood
N(2k) = {2k − 1, 2k, 2k + 1}. It follows that the even points are closed, for the
complement of an even point 2k is the union of all N(x) with x 6= 2k, thus an
open set. This is the Khalimsky topology already defined in Section 9.5. Thus
in the Khalimsky topology the even points are Eckpunkte and the odd points are
Grundpunkte in Aleksandrov’s terminology. In the specialization order, the base
points are higher than the vertices...

A Khalimsky interval is an interval [a, b]∩Z equipped with the topology induced
by the Khalimsky topology on Z. A Khalimsky circle is a quotient space Zm = Z/mZ
of the Khalimsky line for some even integer m > 4. (If m is odd, the quotient space
receives the chaotic topology, which is not interesting.)

The Khalimsky plane is the Cartesian product of two Khalimsky lines, and more
generally, Khalimsky n-space is the Cartesian product of n copies of Z. Equivalently,
we can define Khalimsky n-space on Zn by declaring {x ∈ Zn; ‖x− c‖∞ 6 1} to be
open for any point c ∈ (2Z)n and then taking all intersections of such sets as open
sets, then all unions of such intersections.

There are, however, other topologies in Z2 which are of interest: we may declare
{x ∈ Z2; ‖x − c‖1 6 1} to be open for any c such that

∑
cj ∈ 2Z as well as all

intersections of such sets.9 The Khalimsky topology and the topology just defined
are not comparable: none is stronger than the other. However, they are related, for if
we turn the Khalimsky plane 45◦ and delete all points which are not open or closed,
we obtain the new topology; see the proof of Theorem 11.3.1.

11. Digital Jordan curve theorems

The classical Jordan curve theorem says that the complement of a Jordan curve
in the Euclidean plane R2 consists of exactly two connectivity components. Efim

9I found this topology in response to a question asked by Timur Sadykov on Febru-
ary 1, 2000. However, I found out later that it was defined already by Wyse [1970];
see Section 11.3.
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Khalimsky’s digital Jordan curve theorem states the same thing for the digital plane
Z2. Of course we must use a suitable definition of the concept of digital Jordan curve,
as well as a suitable topology on Z2. In this case Z2 is given the Cartesian product
topology of two copies of the digital line Z equipped with the Khalimsky topology.

A proof of Khalimsky’s theorem was published in 1990 by Khalimsky, Kopper-
man and Meyer [1990]. They refer to earlier proofs by Khalimsky (E. D. Halimskĭı)
[1970, 1977]. We shall present a new, short proof here.

The idea of the proof is simple. For the smallest Jordan curves (having four or
eight points) the conclusion of the theorem can be proved by inspection. Given any
other Jordan curve J , we construct a Jordan curve J ′ which has shorter Euclidean
length and is such that its complement has as many components as the complement
of J . Since the possible Euclidean lengths form a discrete set, this procedure will lead
to one of the smallest Jordan curves, for which the theorem is already established.
The construction of J ′ can intuitively be described as follows: attack J where its
curvature is maximal and shorten it there; it cannot offer resistance from within.

We then consider a topology on Z2 which is not a product topology. In con-
trast to the Khalimsky topology it has the property that every point is either open
or closed. We prove that the Jordan curve theorem holds for this topology for a
restricted class of Jordan curves.

11.1. Khalimsky Jordan curves
Khalimsky, Kopperman and Meyer [1990: 3.1] used the following definitions of path
and arc in the Khalimsky plane. We just extend them here to any topological space.
We modify slightly their definition of a Jordan curve [1990: 5.1]. A Jordan curve in
the Euclidean plane R2 is a homeomorphic image of the circle R/Z, and similarly a
Khalimsky Jordan curve is a homeomorphic image of a Khalimsky circle.

Definition 11.1.1. Let Y be any topological space. A Khalimsky path in Y is a
continuous image of a Khalimsky interval. A Khalimsky arc is a homeomorphic
image of a Khalimsky interval. A Khalimsky Jordan curve in Y is a homeomor-
phic image of a Khalimsky circle.

Sometimes Khalimsky Jordan curves are too narrow. We impose a condition on them
to make their interior fatter:

Definition 11.1.2. Let J be a Khalimsky Jordan curve in a topological space Y . We
shall say that J is strict if every point in J is second adjacent to exactly two points
in J .

We note that if x, z ∈ J are second adjacent, then the intermediary y required by
the definition need not belong to J . Thus the concept of strict Jordan curve is not
intrinsic.

A three-set {x, y, z} such that all three points are adjacent to each other can be
a Khalimsky path but never a Khalimsky arc. This follows from the fact that in a
Khalimsky interval [a, b], the endpoints a and b are not adjacent unless b = a + 1.
Let us say that a three-set {x, y, z} in a topological space is a forbidden triangle if
all points are adjacent to each other. The absence of forbidden triangles is therefore
a necessary condition for Khalimsky arcs and consequently for Khalimsky Jordan
curves, and it is often easy to check.
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Different topologies may induce the same adjacency structure. However, when
the adjacency structure is that of a Khalimsky circle, the topology of the space must
also be that of a Khalimsky circle. More precisely we have the following result.

Theorem 11.1.3. Given a subset J of a topological space Y , the following conditions
are equivalent.
(A) J is a Khalimsky Jordan curve.
(B) J has at least four points, and for every a ∈ J , J r {a} is homeomorphic to a

Khalimsky interval.
(C) J is finite, connected, with cardinality at least 4, and each of its elements has

exactly two adjacent points.
(D) J has the adjacency structure of a Khalimsky circle, i.e., J = {x1, x2, ..., xm}

for some even integer m > 4 and for each j = 1, ...,m, xj−1 and xj+1 and no
other points are adjacent to xj. (Here we count indices modulo m.)

Proof. If (A) holds, then for every a ∈ J , J r {a} is homeomorphic to a Khalim-
sky circle minus one point, thus to a Khalimsky interval. Conversely, suppose that
(B) holds and consider J r {a} and J r {b} for two points a, b ∈ J which are not
adjacent. Then we have homeomorphisms of J r {a} and J r {b} into a Khalimsky
circle Zm. We can modify them by rotating the circle so that the two mappings
agree on J r {a, b}. Then they define a local homeomorphism of J onto Zm, thus a
homeomorphism; we have proved (A).

It is clear that (A) implies (C) and (D).
Suppose that (C) holds. Then call an arbitrary point x1 and one of its adjacent

points x2 and then go on, always choosing xj+1 after xj so that xj+1 is adjacent to
xj but not equal to any of the already chosen x1, ..., xj−1. After a while we must
arrive at a situation where there are no new points left, i.e., we arrive at xm and
the two points adjacent to xm are xm−1 and a point which has already been chosen,
say xk. A priori k may be any of 1, 2, ...,m − 2, but in fact the only possibility is
k = 1—any other choice would mean that xk had three adjacent points contrary
to the assumption. It remains to be seen that m is even. That xj and xj+1 are
adjacent means that we have either xj ∈ N(xj+1) or xj+1 ∈ N(xj). If xj ∈ N(xj+1),
then we cannot have xj+1 ∈ N(xj+2), for that would imply that xj belonged to
N(xj+2), so that xj+2 would have three adjacent elements, viz. xj , xj+1 and xj+3.
So the statement xj ∈ N(xj+1) holds only for j of a certain parity. Since this is true
modulo m, that number must be even. Thus we have proved (D). Conversely, (D)
obviously implies (C) since (D) is just a more detailed version of (C).

It remains to be seen that (D) implies (A). First of all it is clear that, assuming
(D), N(x) can never have more than three elements—a fourth element would mean
that x had at least three adjacent points. So N(xj) ⊂ {xj−1, xj , xj+1}. Considering
the three points xj−1, xj , xj+1, we note that either xj−1 ∈ N(xj) or xj ∈ N(xj−1),
and that xj ∈ N(xj+1) or xj+1 ∈ N(xj). However, these alternatives cannot be
chosen at will, for as we have seen in the previous paragraph xj−1 ∈ N(xj) implies
xj /∈ N(xj+1). Consider now the case xj−1 ∈ N(xj). Then xj+1 ∈ N(xj), so
that N(xj) ⊃ {xj−1, xj , xj+1}. On the other hand we know already that N(xj) has
at most three elements; we conclude that N(xj) = {xj−1, xj , xj+1}. By the same
argument, N(xj+2) = {xj+1, xj+2, xj+3}. Therefore N(xj+1) = {xj+1}, and we have
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proved that Y is a Khalimsky circle where points with indices of the same parity
as j have three-neighborhoods and points with indices of the other parity are open.
The other possibility, viz. that xj ∈ N(xj−1), can be reduced to the former by just
shifting the indices one step.

It follows from property (C) that two Khalimsky Jordan curves can never be
contained in each other. More precisely, if J and K are Khalimsky Jordan curves
and J ⊂ K, then J = K.

A point on a Khalimsky Jordan curve J consisting of at least six points has at
least two second adjacent points; with the order introduced in property (D), xj−2 and
xj+2 are second adjacent to xj and xj−2 6= xj+2 when m > 4. Then xj±1 serve as
intermediaries, but there may also exist other intermediaries. When a Jordan curve
is not strict and m > 4, then some point, say xj , has at least one second adjacent
point in addition to xj−2 and xj+2, say xk. Then an intermediary b such that xj and
b are adjacent and b and xk are adjacent cannot belong to J .

Suppose now that Y is a metric space with metric d. Since every Khalimsky arc
Γ is homeomorphic either to [0,m−1]∩Z or to [1,m]∩Z for some m, it can be indexed
as {x1, ..., xm}, where the indices are uniquely determined except for inversion. We
may define its length as

length(Γ) =
m−1∑

1

d(xj+1, xj).

Similarly, a Khalimsky Jordan curve can be indexed as {x1, ..., xm}, where the
indices are uniquely determined up to inversion and circular permutations, and its
length can be defined as

length(J) =
m∑
1

d(xj+1, xj),

where we count the indices modulo m.
We shall use the following norms in R2 to measure distances in Z2:

‖x‖p = ‖(x1, x2)‖p =

{(
|x1|p + |x2|p

)1/p
, x ∈ R2, 1 6 p < +∞;

max
(
|x1|, |x2|

)
, x ∈ R2, p =∞.

11.2. Khalimsky’s digital Jordan curve theorem
The Khalimsky topology of the digital plane is the Cartesian product topology of
two copies of the Khalimsky line Z. A point x = (x1, x2) in the product Z2 = Z×Z
is closed if and only if both x1 and x2 are closed, thus if and only if both x1 and x2

are even; similarly x is open if and only if both coordinates are odd. These points
are called pure; the other points, which are neither open nor closed, are called mixed.

Perhaps the quickest way to describe Khalimsky’s topology τ∞ on Z2 is this:
We first declare the nine-set

(11.2.1) U∞ = {x ∈ Z2; ‖x‖∞ 6 1} = {(0, 0),±(1, 0),±(1, 1),±(0, 1),±(−1, 1)}
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to be open, as well as all translates U∞ + c with c1, c2 ∈ 2Z. Then all intersections
of such translates are open, as well as all unions of the sets so obtained. As a
consequence, {(1,−1), (1, 0), (1, 1)}, the intersection of U∞ and U∞ + (2, 0), and
{(1, 1)}, the intersection of U∞ and U∞ + (2, 2), are open sets, and {(0, 0)} is a
closed set. The sets {(1, 0)} and {(0, 1)} are neither open nor closed.

Theorem 11.2.1. Given a subset J of Z2 equipped with the Khalimsky topology, the
conditions A, B, C and D of Theorem 11.1.3 are all equivalent to the following.
(E) J = {x(1), x(2), ..., x(m)} for some even integer m > 4 and for all j, x(j−1) and
x(j+1) and no other points are adjacent to x(j); moreover each path consisting of three
consecutive points {x(j−1), x(j), x(j+1)} turns at x(j) by 45◦ or 90◦ or not at all if x(j)

is a pure point, and goes straight ahead if x(j) is mixed.
Here we use the informal expression “turn by 45◦” etc. with reference to angles in
the Euclidean plane of which we consider the Khalimsky plane to be a subset (not a
subspace).
Proof. If (D) holds, we see that J cannot turn at a mixed point and cannot turn
135◦ at a pure point—otherwise we would have a forbidden triangle. So (D) implies
(E). Conversely, (E) is just a more precise version of (D), so (E) implies (D).

In this section we shall measure the lengths of Khalimsky Jordan curves using
the Euclidean metric, d(x, y) = ‖x− y‖2. It is not possible to use ‖ · ‖1 or ‖ · ‖∞ in
the proof of the Jordan curve theorem.

The smallest possible Jordan curve in Z2 is the four-set

J4 = {x ∈ Z2; ‖x− (1, 0)‖1 = 1} = {(0, 0), (1,−1), (2, 0), (1, 1)}.

We add all translates of J4 by a vector c ∈ Z2 with c1 + c2 even and call these the
Jordan curves of type J4.

There is also a Jordan curve having eight points,

(11.2.2) J8 = {x ∈ Z2; ‖x‖∞ = 1} = U∞ r {(0, 0)}.

This curve and all its translates by a vector c ∈ Z2 with c1 + c2 even we call the
Jordan curves of type J8.

Let us agree to call the three-set

(11.2.3) T = {(1, 1), (0, 0), (1,−1)}

and rotations of T by 90◦, 180◦ and 270◦, as well as all translates of these sets by
vectors c ∈ Z2 with c1 + c2 even, a removable triangle. It turns out that elimination
of removable triangles is a convenient way to reduce Jordan curves, as shown by the
following lemma.

Lemma 11.2.2. Let J be a Jordan curve in the Khalimsky plane and assume that
J contains the three-set T defined by (11.2.3). Define

J ′ = (J r {(0, 0)}) ∪ {(1, 0)}.

Then either J = J4 or else J ′ is a Jordan curve such that {J ′ and {J have the same
number of components, and length(J ′) = length(J)− 2

√
2 + 2.
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Proof. Assume first that (2, 0) ∈ J , thus that J ⊃ J4. Then necessarily J = J4.
Next we suppose that (2, 0) /∈ J . Then J ′ is a Jordan curve: J ′ is a set where

the new point (1, 0) plays exactly the same role topologically as the old point (0, 0)
in J . Thus J ′ is also homeomorphic to a Khalimsky circle.

Finally we must check that the number of components in {J ′ is the same as that
of {J ′. Indeed, (1, 0) and (2, 0) belong to the same component of {J , and (0, 0) and
(−1, 0) belong to the same component of {J ′.

Theorem 11.2.3 (Khalimsky’s Jordan curve theorem). Let us equip the digital plane
Z2 with the Khalimsky topology τ∞ (see (11.2.1)). Then for any Khalimsky Jordan
curve J in Z2, the complement {J = Z2

rJ has exactly two connectivity components.

Proof. The complement of J4 consists of A = {(1, 0)} and the set B of all points x
with |x1 − 1| + |x2| > 1. It is obvious that these two sets are connected. Moreover,
A is closed and open in {J4, so it is a component. Therefore, also B is closed and
open in {J4 and also a component. The proof for J8 is similar.

Thus we know that the conclusion of the theorem holds for Jordan curves of
types J4 and J8.

Next we shall prove that if J is not of the kind already treated, then there exists
a Jordan curve J ′ of strictly smaller Euclidean length such that {J and {J ′ have
the same number of components. After a finite number of steps we must arrive at
a situation where the hypothesis is no longer satisfied, which means that we have a
Jordan curve of type J4 or J8, for which the complement has two components as we
already proved.

The construction of J ′ is as follows. First we may assume, in view of Lemma
11.2.2, that J contains no removable triangles. Define

a2 = inf(x2;x ∈ J).

Thus x2 > a2 for all points x ∈ J with equality for at least one x. Consider a
horizontal interval

H = {(x1, a2)}+ {(0, 0), (1, 0), ..., (p, 0)}

which is maximal with respect to inclusion and consists of points in J with ordinate
equal to a2. The maximality implies that the two points (x1−1, a2) and (x1+p+1, a2)
do not belong to J . Then we see that p must be an even number, but we cannot have
p = 0, since that would imply that J contained a removable triangle, contrary to the
assumption. Thus H contains at least three points. Moreover, at the endpoints of H,
J must turn upwards. Indeed, since (x1 − 1, a2) does not belong to J , exactly one of
the points (x1−1, a2 +1), (x1, a2 +1) belongs to J ; when we go left from (x1, a2), the
curve must turn upwards by either 45◦ or 90◦; it cannot turn downwards. Similarly,
the curve turns upwards by 45◦ or 90◦ when we go right from the last point in H,
viz. from (x1 + p, a2).

We now consider the set I of all maximal horizontal intervals I in J such that
J turns upwards at the endpoints of I. The previous argument served just to prove
that there exists such an interval. Now there exists an interval K ∈ I of smallest
length,

K = {y}+ {(0, 0), (1, 0), ..., (q, 0)},
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containing q + 1 points for some even number q > 2. We shall assume that K is of
smallest length also among all intervals that can be obtained from the intervals in I

by rotating them 90◦, 180◦ or 270◦.
To simplify the notation we may assume (after a translation if necessary) that

y = (0, 0), so that

K = {(0, 0), (1, 0), ..., (q, 0)} = [(0, 0), (q, 0)] ∩ Z2.

Case 1. J turns upwards by 45◦ at both ends of K. This means that (−1, 1)
and (q + 1, 1) both belong to J . In this case, we define

J ′ = (J rK) ∪ (K + (0, 1)).

This operation shortens the Euclidean length by 2
√

2−2 (but it does not shorten the
l∞ length). We note that the interval K + (0, 1) is disjoint from J ; otherwise some
point in K would have three adjacent points. Moreover K + (0, 2) must be disjoint
from J . Indeed, if (K + (0, 2)) ∩ J were nonempty, then either J would contain a
removable triangle (contrary to our assumption) or there would exist a subinterval
K ′ of K + (0, 2) contained in J and such that J turns upwards at its endpoints; thus
K ′ ∈ I. This subinterval must have fewer than q + 1 points, since (0, 2) and (q, 2)
cannot belong to J—otherwise there would be a removable triangle in J . Now a
shorter interval is impossible, since K is by assumption an interval in I of shortest
length. One checks that J ′ is a Jordan curve. Indeed, the points of K+(0, 1) play the
same role topologically in J ′ as do the points of K in J . The number of components
in the complement of J ′ is the same as for J .

Case 2. J turns upwards by 90◦ at one end of K. Assume that (0, 1) ∈ J , the
case (q, 1) ∈ J being symmetric. Then also (0, 2) ∈ J . We consider the subcases 2.1
and 2.2.

Case 2.1. (2, 2) /∈ J . We cut off a corner, i.e., we remove (0, 1), (0, 0), (1, 0),
and add (1, 1). This operation shortens the Euclidean length by 4− 2

√
2 (but J ′ has

the same l1-length as J). Since (1, 1) and (2, 2) belong to the same component of
{J , and (0, 1), (0, 0), (1, 0), and (−1, 0) belong to the same component of {J ′, the
number of components in the respective complements are the same.

Case 2.2. (2, 2) ∈ J . We consider four subcases, 2.2.1.1, 2.2.1.2, 2.2.2.1 and
2.2.2.2.

Case 2.2.1.1. (2, 1) ∈ J , (1, 2) ∈ J . Then J contains a Jordan curve of type J8,
more precisely J ⊃ (1, 1) + J8. So J must be equal to that curve.

Case 2.2.1.2. (2, 1) ∈ J , (1, 2) /∈ J . Remove the five points (0, 1), (0, 0), (1, 0),
(2, 0), (2, 1), and add (1, 2). Thus J ′ is shorter by 4. We can check that J ′ has all
desired properties.

Case 2.2.2.1. (2, 1) /∈ J , (1, 2) ∈ J . Turn 90◦ to reduce to case 2.2.1.2.
Case 2.2.2.2. (2, 1) /∈ J , (1, 2) /∈ J . This case cannot occur since q is smallest

possible. To see this, define I ′ as the set of all points (2, 2), (3, 2), ..., (q′, 2) ∈ J with
q′ as large as possible. If J turns upwards at (q′, 2), then I ′ belongs to I with q′ < q,
which contradicts the definition of K and q. If on the other hand J turns downwards
at (q′, 2), then there exists a vertical interval consisting of three points, which becomes
an interval in I if we turn it 90◦, thus again contradicting the definition of I.
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11.3. The Jordan curve theorem for another topology
We define a topology τ1 on Z2 by first declaring the five-set

(11.3.1) U1 = {x ∈ Z2; ‖x‖1 6 1} = {(0, 0),±(1, 0),±(0, 1)}

to be open, then all translates U + c with c ∈ Z2, c1 + c2 ∈ 2Z to be open, as well as
all intersections of such translates. This implies that {(1, 0)} is open, and that the
origin is closed. In fact, all points x ∈ Z2 with x1 +x2 ∈ 2Z are closed, and all points
with x1 + x2 /∈ 2Z are open; there are no mixed points. This topology was described
by Wyse et al. [1970] and Rosenfeld [1979: 624].

The four-set
J ′4 = {(0, 0), (1, 0), (1, 1), (0, 1)}

is a Jordan curve for τ1. However, it is not strict, for a point in J ′4 has only one
second adjacent point. Its complement is connected, so the Jordan curve theorem
does not hold. The set J8 defined by (11.2.2) is a Khalimsky Jordan curve and its
complement has exactly two components. Also J8 is not strict, because the point
(1, 0) has three second adjacent points, viz. (0, 1), (0,−1) and (−1, 0).

Another example is the twelve-set

J12 = {(0, 0), (1, 0), (2, 0), (2, 1), (3, 1), (3, 2), (3, 3), (2, 3), (1, 3), (1, 2), (0, 2), (0, 1)}.

It is a Jordan curve, not strict, and its complement has three connectivity compo-
nents, viz. an infinite component and the two singleton sets {(1, 1)} and {(2, 2)}.

Theorem 11.3.1. Let Z2 be equipped with the topology τ1 just defined (see (11.3.1)).
Then the complement of every strict Jordan curve has exactly two components.

Proof. For the proof we shall use the fact that Z2 equipped with the topology τ1 is
homeomorphic to the subspace of all pure points in the Khalimsky plane. This fact
was used also by Kong, Kopperman and Meyer [1991: 915].

Let X be the digital plane Z2 with the topology τ1, and Y the Khalimsky
plane (Z2 with the topology τ∞). Consider the mapping ϕ:X → Y defined by
ϕ(x) = (x1 − x2, x1 + x2). Its image ϕ(X) is the set of all pure points in Y , and
if we equip it with the topology induced by Y it is homeomorphic to X. Moreover,
the image of any Khalimsky Jordan curve J in X is a Khalimsky Jordan curve in Y .
Therefore Y r ϕ(J) has exactly two components by Theorem 11.2.3. We claim that
ϕ(X) r ϕ(J) has exactly two components. It is clear that this set has at least two
components, so the problem is to prove that a component A of Y r ϕ(J) gives rise
to a connected set A ∩ ϕ(X), i.e., that the pure points in A form a connected set.

To this end, assume that a, a′ ∈ A ∩ ϕ(X), and consider a Khalimsky arc

{a = a(0), a(1), ..., a(s) = a′}

contained in Y rϕ(J). (Connectedness in Y is the same as arcwise connectedness; cf.
Khalimsky et al. [1990: Theorem 3.2].) We shall prove that this arc can be replaced
by another consisting only of pure points. So assume that a(j) is a mixed point. Then
its predecessor a(j−1) and its successor a(j+1) are both pure points. Without loss of
generality, we may assume that a(j−1) = (0, 0), a(j) = (0, 1), and a(j+1) = (0, 2).
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We may then replace a(j) by one of the pure points (−1, 1), (1, 1), because both
of them cannot belong to ϕ(J). To see this, suppose that (1, 1), (−1, 1) ∈ ϕ(J).
Then (−1, 1) would be a second adjacent point to (1, 1), and this point has, by
hypothesis, exactly two second adjacent points in ϕ(J) (considering everything in the
space ϕ(X)). However, none of them can be equal to (−1, 1), for the only possible
intermediaries would then be (0, 0) and (0, 2), none of which belongs to ϕ(J). (In
a strict Jordan curve, one of the possible intermediaries to a second adjacent point
must belong to the curve.) This contradiction shows that not both of (1, 1) and
(−1, 1) can belong to ϕ(J). Thus we may define b = (−1, 1) or b = (1, 1) so that
b /∈ ϕ(J) and observe that

{a(0), ..., a(j−1), b, a(j+1), ..., a(s)}

is a Khalimsky arc with a mixed point replaced by a pure point. After finitely many
such replacements we obtain an arc connecting a and a′ and consisting only of pure
points. This shows that ϕ(X)rϕ(J) has at most as many components as Y rϕ(J);
therefore exactly two components, and then the same is true of X r J .
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1962 Lekcii po obščej algebre. Moscow: F.M.

Rockafellar, R. Tyrrell
1970 Convex Analysis. Princeton, NJ: Princeton University Press.

Rosenfeld, Azriel
1979 Digital topology. Amer. Math. Monthly 86, 621–630.

Strömberg, Thomas
1996 The operation of infimal convolution. Dissertationes Math. 352. 58 pp.

Wyse, Frank, et al.
1970 Solution to problem 5712. Amer. Math. Monthly 77, 1119.

Author’s address: Uppsala University, Department of Mathematics,

P. O. Box 480, SE-751 06 Uppsala, Sweden.

Telephone: +46 18 4713216 (office); +46 18 300708 (home) Fax: +46 18 4713201

Electronic mail: kiselman @ math.uu.se URL: http://www.math.uu.se/~kiselman


