UPPSALA UNIVERSITET
Matematiska institutionen
Christer Kiselman

ÖVNINGAR, Blad 4
Transformer för beräkningar 20010504
$01 \operatorname{trp} 4$
4.1. Let $u, v \in l^{2}\left(\mathbf{Z}_{8}\right)$ be the vectors

$$
u=(1 / \sqrt{2}, 1 / \sqrt{2}, 0,0,0,0,0,0), \quad v=(1 / \sqrt{2},-1 / \sqrt{2}, 0,0,0,0,0,0)
$$

(The first-stage Haar basis.)
(a) Prove that the vectors $R_{2 k} u, R_{2 k} v, k=0,1,2,3$, form an orthonormal system in $l^{2}\left(\mathbf{Z}_{8}\right)$.
(b) Define

$$
\begin{equation*}
P(z)=\sum_{k=0}^{3}\left\langle z, R_{2 k} u\right\rangle R_{2 k} u, \quad Q(z)=\sum_{k=0}^{3}\left\langle z, R_{2 k} v\right\rangle R_{2 k} v . \tag{3}
\end{equation*}
$$

Calculate $P(z)$ and $Q(z)$ when $z=(1,2,4,6,10,12,10,8)$.
4.2. Suggest an $O(N \log N)$ algorithm for computing matrix-vector multiplication, assuming the matrix to be Toeplitz. (Recall that the elements of a Toeplitz matrix are constant along diagonals. A circulant matrix is Toeplitz but not necessarily conversely.)
4.3. Define $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ by $f(x)=1-\|x\|_{2}^{2}$ when $\|x\|_{2}<1, f(x)=0$ when $\|x\|_{2} \geqslant 1$. Calculate the Radon transform $\varphi=\mathcal{R} f$ of f, i.e., calculate $\varphi(\omega, p)$ for $\omega=$ $(\cos \theta, \sin \theta) \in S^{1}, p \in \mathbf{R}$. Tenta 2000 05 22:7
4.4. For any $z \in l^{\infty}(\mathbf{Z})$ let us denote by $K(z)$ the smallest interval $I \subset \mathbf{Z}$ such that $z(j)=0$ for all $j \notin I .(K(0)=\emptyset$. $)$ Prove that if $K(z)$ and $K(w)$ are of finite length, then

$$
K(z * w)=K(z)+K(w)
$$

(An easy form of Titchmarsh' theorem on supports.) Show by an example that this may not be true if $K(z)$ or $K(w)$ is infinitely long. But it is true if $K(z)$ and $K(w)$ are contained in the set of nonnegative integers.
4.5. Prove that \hat{z} is a continuous function, $\hat{z} \in C(\mathbf{R})$, if $z \in l^{1}(\mathbf{Z})$. Here $\hat{z}(t)=$ $\sum z(k) e^{i k t}, t \in \mathbf{R}$.
4.6. Prove that if $f \in C^{2}(\mathbf{R})$ is periodic with period 2π, then $\check{f} \in l^{1}(\mathbf{Z})$. Here $\check{f}(n)=(2 \pi)^{-1} \int_{-\pi}^{\pi} f(t) e^{-i n t} d t, t \in \mathbf{R}$.
4.7. Prove that the convolution equation $a * z=b$ can be solved with $z \in l^{1}(\mathbf{Z})$ if $\hat{a}, \hat{b} \in C^{2}(\mathbf{R})$ and have period 2π, and if in addition we assume that there exists an $\varepsilon>0$ such that $|\hat{a}(t)| \geqslant \varepsilon$ for all t such that $\hat{b}(t) \neq 0$.
4.8. Prove that the convolution equation $z * z=\delta$ has exactly two solutions $z \in l^{1}(\mathbf{Z})$, but infinitely many solutions $z \in l^{2}(\mathbf{Z})$.
4.9. When does the FRFT-algorithm perform better than the usual mixed-radix implementation of FFT? Motivate your answer.
4.10. Consider a filterbank transform of $z \in Z_{N}$, where $N=2^{p}$ and the coarsest level in the transform has $N_{0}=2^{q}$ points, independent of N. Assume that the filters have the same number of non-zero elements on all levels. Show that the transform can be computed in $\mathrm{O}(N)$ arithmetic operations.
4.11. Let Q be a matrix representing some fast transform. Assume that A is diagonalised by Q. Show that the eigenvalues of A are given by

$$
\lambda=m Q D^{-1}
$$

where m is a row of A and the corresponding row in Q are the diagonal entries of the diagonal matrix D.
4.12. Suggest a fast algorithm for solving a system of equations with A as coefficient matrix.

