UPPSALA UNIVERSITET
Matematiska institutionen
Christer Kiselman

ÖVNINGAR, Blad 3
Transformer för beräkningar 20010416
3.1. Let a and b be two vectors in $l^{2}\left(\mathbf{Z}_{3}\right), a$ given by its Fourier transform $\hat{a}=(1,2,0)$, and $b=\left(1, \omega, \omega^{2}\right)$, where $\omega=e^{-2 \pi i / 3}=-\frac{1}{2}-\frac{i}{2} \sqrt{3}$.
(a) Calculate \hat{b}.
(b) Calculate $a * b$.
3.2. Study the convolution equation $b * z=w$, where b is a given vector in $l^{1}(\mathbf{Z})$ (the black box), z is the input signal and w is the output signal. The problem is to decide which output signals w are possible with certain black boxes b.
(a) Let $b=\delta_{0}+\delta_{1}+\delta_{2}, w=\delta_{0}+\delta_{1}$. Prove that there is no solution z to the equation $b * z=w$ such that $z(j)=0$ for all large $|j|$.
(b) Now let $b=\delta_{0}+\delta_{1}, w=\delta_{0}+2 \delta_{1}+\delta_{2}$. Prove that there exists an input signal z such that $b * z=w$ and such that $z(j)=0$ for all large values of $|j|$.
(c) Finally let $b=\delta_{0}+\delta_{1}, w=\delta_{0}$. Find all solutions $z \in l^{\infty}(\mathbf{Z})$ to $b * z=w$.

Tenta 200005 22:2
3.3. Suppose we know that $b \in l^{2}\left(\mathbf{Z}_{6}\right)$ satisfies $\hat{b}(0)=0, \hat{b}(k) \neq 0, k=1, \ldots, 5$.
(a) What is the dimension of the space of input signals producing the zero output signal, in other words, what is the dimension of the space

$$
\left\{z \in l^{2}\left(\mathbf{Z}_{6}\right) ; b * z=0\right\} ?
$$

(b) Determine the dimension of all possible output signals, i.e., the dimension of the space

$$
\left\{b * z ; z \in l^{2}\left(\mathbf{Z}_{6}\right)\right\} .
$$

Tenta 200005 22:3
3.4. Let $u=(2,0,1), v=(0,4,3), z=(2,0,0,4,1,3)$. Compute \hat{u}, \hat{v} and then \hat{z} using the fast Fourier transform.
3.5. Prove that the convolution equation $a * z=\delta$ cannot be solved with $z \in l^{2}(\mathbf{Z})$ if $a(0)=a(1)=1$ and $a(k)=0$ for $k \in \mathbf{Z}, k \neq 0,1$. Here δ is the Dirac δ, the vector with 1 at position zero and 0 at all other slots. Are there solutions in some other space $l^{p}(\mathbf{Z})$?

