UPPSALA UNIVERSITET
Matematiska institutionen
Christer Kiselman

ÖVNINGAR, Blad 2
Transformer för beräkningar 20010330

01 trp2
2.1. Suppose we know that $a \in l^{2}\left(\mathbf{Z}_{N}\right)$ satisfies $\hat{a}(0)=0, \hat{a}(k) \neq 0, k=1, \ldots, N-1$. Can you determine the dimension of

$$
\left\{z \in l^{2}\left(\mathbf{Z}_{N}\right) ; a * z=0\right\} ?
$$

Can you determine the dimension of

$$
\left\{a * z ; z \in l^{2}\left(\mathbf{Z}_{N}\right)\right\} ?
$$

Generalize to an arbitrary convolution equation $a * z=b$, where a, b are given vectors, z an unknown vector. What is the rule connecting the two dimensions?
2.2. Calculate \hat{z} when $z=(1,2,3,4)^{\mathrm{T}} \in l^{2}\left(\mathbf{Z}_{4}\right)$. Calculate \widehat{w} when

$$
w=(1,2,3,4,5,6)^{\mathrm{T}} \in l^{2}\left(\mathbf{Z}_{6}\right)
$$

2.3. Let $u=(1,3)^{\mathrm{T}}, v=(0,4)^{\mathrm{T}}, z=(1,0,3,4)^{\mathrm{T}}$. Compute \hat{u}, \hat{v} and then \hat{z} using the fast Fourier transform. Compute the Fourier transform of $w=(0,1,4,3)^{\mathrm{T}}$.
2.4. Compute the Fourier transform of $w=(1,0,1,0,1,0,1,0)^{\mathrm{T}}$ - maybe using $z=$ $(1,1,1,1)^{\mathrm{T}}$.
2.5. Let U, V and W be subspaces of an inner product space X, and suppose that $U \perp V, U \perp W$, and that $U+V=U+W$. Prove that $V=W$.
2.6. Prove that for any $z \in l^{2}\left(\mathbf{Z}_{N}\right)$, we have $\widehat{U(z)}(n)=\hat{z}(n)$ for all n, and that, if N is even, $\widehat{D(z)}(n)=\frac{1}{2}\left(\hat{z}(n)+\hat{z}\left(n+\frac{1}{2} N\right)\right)$ for all n. Here U and D denote upsampling and downsampling, respectively.
2.7. Let $u \in l^{2}\left(\mathbf{Z}_{N}\right)$ and define $v \in l^{2}\left(\mathbf{Z}_{N / 2}\right)$ by $v(n)=u(n)+u\left(n+\frac{1}{2} N\right)$, assuming N even. Prove that $\hat{v}(n)=\hat{u}(2 n)$ for all n.
2.8. Define $z=(1,2,3,4,5,6,7,8) \in l^{2}\left(\mathbf{Z}_{8}\right)$. Calculate $P_{-j}(z)$ and $Q_{-j}(z), j=$ $1,2,3$, in the Haar wavelet system. Notation as in Frazier.

