UPPSALA UNIVERSITET
Matematiska institutionen
Christer Kiselman

ÖVNINGAR, Blad 1
Transformer för beräkningar 20010321
1.1. Calculate $(1+i \sqrt{3})^{6}$ (a) using polar representation; (b) using the binomial formula... if you do not get too tired, that is.
1.2. Solve completely the equation $z^{7}=7, z \in \mathbf{C}$.
1.3. Find the dimension of the space of all polynomials of one complex variable which are of degree at most 17 and vanish at the points $z=0, z=1, z=2$.
1.4. Is the matrix $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ diagonizable?
1.5. Let V be the space of all polynomials of one real variable of degree at most m. Is the mapping $T: V \ni f \mapsto f^{\prime} \in V$ injective? Is it surjective? Determine the dimensions of $\operatorname{im} T$ and $\operatorname{ker} T$. Determine the eigenvalues of T as well as all eigenvectors. Is T diagonizable?
1.6. We compare convolution on \mathbf{Z} and on $\mathbf{Z}_{N}=\mathbf{Z} / N \mathbf{Z}, N \geqslant 2$. Let $a=\delta_{-1}-\delta_{0}$, where we define $\delta_{k}(j)$ to be zero for $j \neq k$ and to be one for $j=k$. Prove that on \mathbf{Z} the equation $a * z=b$ has a solution for any given b, and that the space of solutions to $a * z=0$ has dimension 1. By way of contrast, show that on \mathbf{Z}_{N}, the equation $a * z=b$ can be solved only if b satisfies a certain condition-and find this condition. For the homogeneous equation, the situation for \mathbf{Z}_{N} is the same as for \mathbf{Z}. (The lesson is that, on \mathbf{Z}, the equation $a * z=b$ with periodic b can have nonperiodic solutions z.)
1.7. Define a mapping $T: l^{2}\left(\mathbf{Z}_{4}\right) \rightarrow l^{2}\left(\mathbf{Z}_{4}\right)$ by

$$
T(z)=(2 z(0)-z(1), i z(1)+2 z(2), z(1), 0) .
$$

Is T linear? Is T translation invariant? Calculate $T\left(R_{1} z\right)$ and $R_{1}(T z)$ for $z=$ $(1,0,-2, i)^{\mathrm{T}}$.
1.8. Let S, T be two translation-invariant linear mappings of $l^{2}\left(\mathbf{Z}_{N}\right)$ into itself. Prove that they commute, i.e., that $T \circ S=S \circ T$. Deduce that circulant matrices always commute - try also to prove this fact by a direct calculation using the definition of circulant matrices.
1.9. Prove that $T(z * w)=T(z) * w=z * T(w)$ if T is a translation-invariant linear mapping of $l^{2}\left(\mathbf{Z}_{N}\right)$ into itself.
1.10. Prove that a linear mapping T of $l^{2}\left(\mathbf{Z}_{N}\right)$ into itself is translation invariant if and only if it is a polynomial in the translation operator R_{1}.

