UPPSALA UNIVERSITET
Prov i matematik
Matematiska institutionen
Christer Kiselman, 0708-870708
Teknisk fysik, B
Transformer för beräkningar 20010607

Skrivtid: 08:00-13:00.
Tillåtna hjälpmedel: Skrivdon. Ordlista 200104 05. Formelsamling 200105 06. Räknare. Ej mobiltelefon.
Svara på svenska eller annat språk.

1. Let a and b be two vectors in $l^{2}\left(\mathbf{Z}_{5}\right), a$ being given by its Fourier transform $\hat{a}=$ $(3,2,1,0,-1)$, and $b=\left(1, \omega^{2}, \omega^{4}, \omega, \omega^{3}\right)$, where $\omega=e^{-2 \pi i / 5}$.
(a) Calculate the Fourier transform \hat{b}.
(b) Calculate the convolution product $a * b$.
2. We consider two black boxes B and C, defined by vectors $b, c \in l^{1}(\mathbf{Z})$ and the relations $u=b * z$ and $v=c * z$ between the common input signal $z \in l^{2}(\mathbf{Z})$ and the output signals $u, v \in l^{2}(\mathbf{Z})$.
(a) Prove that the output signals satisfy the relation $\hat{c}(\tau) \hat{u}(\tau)=\hat{b}(\tau) \hat{v}(\tau)$ for all frequencies $\tau \in \mathbf{R}$.
(b) Suppose now that the black boxes satisfy $|\hat{b}(\tau)|+|\hat{c}(\tau)| \geqslant \varepsilon>0$ for all τ. Prove that it is possible to reconstruct z from knowledge of u and v. More precisely, prove that there is a formula $\hat{z}(\tau)=\varphi(\tau) \hat{u}(\tau)+\psi(\tau) \hat{v}(\tau)$ with functions φ and ψ such that z becomes a continuous function of u and v in the sense that there is an estimate $\|z\|_{2} \leqslant C\left(\|u\|_{2}+\|v\|_{2}\right)$.
3. Let $u=(8,0,0), v=(7,7,8)$, and $z=(8,7,0,7,0,8)$. Compute \hat{u}, \hat{v} and then \hat{z} using the fast Fourier transformation.
4. Let $u \in l^{2}\left(\mathbf{Z}_{N}\right)$ and define $v \in l^{2}\left(\mathbf{Z}_{N / 2}\right)$ by the formula $v(n)=u(n)+u(n+N / 2)$, assuming N to be even. Prove that $\hat{v}(n)=\hat{u}(2 n)$. (Note that \hat{u} and \hat{v} are actually defined on different groups, \mathbf{Z}_{N} and $\mathbf{Z}_{N / 2}$, respectively, but that we may consider them as periodic functions defined on \mathbf{Z}, albeit with different periods, just to allow for a brief notation.)
5. We consider a convolution equation of the fourth degree, $z * z * z * z=\delta$, on (a) the finite cyclic group \mathbf{Z}_{5} and (b) the infinite cyclic group \mathbf{Z}.
(a) Prove that the equation has more than a thousand solutions $z \in l^{2}\left(\mathbf{Z}_{5}\right)$. Give an explicit formula for $\hat{z}(k), k=0,1,2,3,4$.
(b) Prove that the equation has only four solutions $z \in l^{1}(\mathbf{Z})$. Give all solutions explicitly.
6. Show that the discrete sine transform of $z=(z(1), \ldots, z(N-1))$,

$$
\operatorname{DST}(z)(j)=\sum_{k=1}^{N-1} z(k) \sin \frac{j k \pi}{N}, \quad j=1, \ldots, N-1,
$$

can be written on the form

$$
\operatorname{DST}(z)(j)=\frac{i}{2} \sum_{k=0}^{2 N-1} z(k) e^{-2 \pi i j k /(2 N)}
$$

where

$$
z(0)=z(N)=0,
$$

and

$$
z(k)=-z(2 N-k), \quad k=N+1, \ldots, 2 N-1,
$$

thus as a Fourier transform of a vector with period $2 N$. (This means that the discrete sine transform can be computed using the FFT-algorithm.)
7. It is known that we can define the angle α formed by two nonzero vectors x, y in a real inner-product space by the formula

$$
\langle x, y\rangle=\|x\|\|y\| \cos \alpha .
$$

Here $0 \leqslant \alpha \leqslant \pi$. Calculate the angle between the functions $f(x)=1+\sqrt{2 / 3} x$ and $g(x)=1, x \in \mathbf{R}$, in the space of real-valued Hermite polynomials. (The fact that $\|1\|^{2}=\langle 1,1\rangle=\sqrt{\pi}$ in that space may be used without proof.)

Svar till tentamen i Transformer för beräkningar 20010607

1. (a) We find that $\hat{b}=(0,0,0,5,0)$, so that $\hat{a} \hat{b}=0$.
(b) The convolution product is $a * b=0$, since its Fourier transform is $\hat{a} \hat{b}=0$.
2. (a) We get $\hat{u}=\hat{b} \hat{z}$ and $\hat{v}=\hat{c} \hat{z}$ so that $\hat{c} \hat{u}=\hat{c} \hat{b} \hat{z}=\hat{b} \hat{v}$.
(b) The reconstruction formula follows with $C=2 / \varepsilon$ if we choose for example $\varphi(\tau)=$ $1 / \hat{b}(\tau)$ and $\psi(\tau)=0$ when $|\hat{b}(\tau)| \geqslant \varepsilon / 2$; and $\varphi(\tau)=0$ and $\psi(\tau)=1 / \hat{c}(\tau)$ when $|\hat{b}(\tau)|<$ $\varepsilon / 2$. Then $\|\varphi\|_{\infty},\|\psi\|_{\infty} \leqslant 2 / \varepsilon$.

A little more symmetry is possible: we can take

$$
\varphi=\frac{|\hat{b}|}{(|\hat{b}|+|\hat{c}|) \hat{b}}, \quad \psi=\frac{|\hat{c}|}{(|\hat{b}|+|\hat{c}|) \hat{c}},
$$

where φ is defined as zero when \hat{b} is zero, and similarly ψ is defined as zero when \hat{c} vanishes. We have $|\varphi|,|\psi| \leqslant 2 / \varepsilon$ everywhere.
3. We find $\hat{u}=(8,8,8)$ and $\hat{v}=\left(22,7+7 \omega+8 \omega^{2}, 7+7 \omega^{2}+8 \omega\right)=(22,-1-\omega, \omega)$, where $\omega=e^{-2 \pi i / 3}=-\frac{1}{2}-\frac{i}{2} \sqrt{3}$. With the fast Fourier transformation we the obtain

$$
\begin{aligned}
& \hat{z}(0)=\hat{u}(0)+\hat{v}(0)=30, \\
& \hat{z}(1)=\hat{u}(1)+\theta \hat{v}(1)=8-\omega=\frac{17}{2}+\frac{1}{2} \sqrt{3} i, \\
& \hat{z}(2)=\hat{u}(2)+\theta^{2} \hat{v}(2)=7-\omega=\frac{15}{2}+\frac{1}{2} \sqrt{3} i, \\
& \hat{z}(3)=\hat{u}(0)-\hat{v}(0)=-14, \\
& \hat{z}(4)=\hat{u}(1)-\theta \hat{v}(1)=8+\omega=\frac{15}{2}-\frac{1}{2} \sqrt{3} i, \\
& \hat{z}(5)=\hat{u}(2)-\theta^{2} \hat{v}(2)=9+\omega=\frac{17}{2}-\frac{1}{2} \sqrt{3} i,
\end{aligned}
$$

where $\theta=e^{-\pi i / 3}=-\omega^{2}=1+\omega, \theta^{2}=\omega, \theta^{3}=-1, \theta^{4}=\omega^{2}=-1-\omega, \theta^{5}=-\omega$. So $\hat{z}=$ $(30,8-\omega, 7-\omega,-14,8+\omega, 9+\omega)=\left(30, \frac{17}{2}+\frac{1}{2} \sqrt{3} i, \frac{15}{2}+\frac{1}{2} \sqrt{3} i,-14, \frac{15}{2}-\frac{1}{2} \sqrt{3} i, \frac{17}{2}-\frac{1}{2} \sqrt{3} i\right)$.
4. Let $\omega=e^{-2 \pi i / N}, \theta=e^{-2 \pi i / M}$, where $M=N / 2$. Then $\omega^{2}=\theta$, and we get

$$
\hat{v}(n)=\sum_{k=0}^{M-1} \theta^{n k} u(k)+\sum_{k=0}^{M-1} \theta^{n k} u(k+M) .
$$

Substituting ω^{2} for θ and introducing $j=k+M$ as a new summation index going from M to $2 M-1$ in the second sum, we see that the two sums together form the sum defining $\hat{u}(2 n)$. Indeed, the factor $\theta^{n k}$ there is equal to $\theta^{n k}=\omega^{2 n(j-M)}=\omega^{2 n j} \omega^{-n N}=\omega^{2 n j}$.
5. (a) Taking the Fourier transform we see that $\hat{z}(t)^{4}=1$ so that $\hat{z}(k)=i^{m_{k}}$ for some numbers $m_{k} \in\{0,1,2,3\}, k=0,1,2,3,4$. This gives $4^{5}=2^{10}=1024$ solutions. And $1024>1000$.
(b) We get $\hat{z}(\tau)=i^{m(\tau)}$ for every τ, but since $\hat{z}(\tau)$ is a continuous function of the real variable τ, the number m must be the same for all τ; hence $\hat{z}(\tau)=1, i,-1,-i$ are the only possibilities, corresponding to $z=i^{m} \delta, m=0,1,2,3$.
6. We start by writing the sine function as a sum of two exponential functions

$$
\operatorname{DST}(z)(j)=\frac{1}{2 i}\left(\sum_{k=1}^{N-1} z(k) e^{i j k \pi / N}-\sum_{k=1}^{N-1} z(k) e^{-i j k \pi / N}\right)
$$

Replacing k by $2 N-k$ and using the periodicity of the exponential function, we can write the first sum above as

$$
\sum_{k=1}^{N-1} z(k) e^{i j k \pi / N}=\sum_{k=N+1}^{2 N-1} z(2 N-k) e^{-i j k \pi / N}
$$

Extending z as suggested we obtain the result.
7. We need to calculate also $\|x\|$. This can be done using partial integration:

$$
\|x\|^{2}=\left\langle x^{2}, 1\right\rangle=\langle x, x\rangle=\frac{1}{2} \sqrt{\pi}
$$

Thus for affine functions $f(x)=a+b x, g(x)=c+d x$,

$$
\langle f, g\rangle=\langle a+b x, c+d x\rangle=a c\langle 1,1\rangle+b d\langle x, x\rangle=\sqrt{\pi}\left(a c+\frac{1}{2} b d\right),
$$

so that

$$
\cos \alpha=\frac{a c+\frac{1}{2} b d}{\sqrt{a^{2}+\frac{1}{2} b^{2}} \sqrt{c^{2}+\frac{1}{2} d^{2}}}
$$

In particular, taking $a=1, b=\sqrt{2 / 3}, c=1, d=0$, we get $\cos \alpha=\frac{1}{2} \sqrt{3}$, so that the angle is $\pi / 6$ radians or 30 degrees.

