Prov i matematik Teknisk fysik, B Transformer för beräkningar 2001 06 07

Skrivtid: 08:00–13:00. Tillåtna hjälpmedel: Skrivdon. Ordlista 2001 04 05. Formelsamling 2001 05 06. Räknare. Ej mobiltelefon. Svara på svenska eller annat språk.

- **1.** Let a and b be two vectors in $l^2(\mathbf{Z}_5)$, a being given by its Fourier transform $\hat{a} = (3, 2, 1, 0, -1)$, and $b = (1, \omega^2, \omega^4, \omega, \omega^3)$, where $\omega = e^{-2\pi i/5}$.
 - (a) Calculate the Fourier transform \hat{b} . (3)
 - (b) Calculate the convolution product a * b. (2)
- 2. We consider two black boxes B and C, defined by vectors $b, c \in l^1(\mathbf{Z})$ and the relations u = b * z and v = c * z between the common input signal $z \in l^2(\mathbf{Z})$ and the output signals $u, v \in l^2(\mathbf{Z})$.
 - (a) Prove that the output signals satisfy the relation $\hat{c}(\tau)\hat{u}(\tau) = \hat{b}(\tau)\hat{v}(\tau)$ for all frequencies $\tau \in \mathbf{R}$. (3)
 - (b) Suppose now that the black boxes satisfy $|\hat{b}(\tau)| + |\hat{c}(\tau)| \ge \varepsilon > 0$ for all τ . Prove that it is possible to reconstruct z from knowledge of u and v. More precisely, prove that there is a formula $\hat{z}(\tau) = \varphi(\tau)\hat{u}(\tau) + \psi(\tau)\hat{v}(\tau)$ with functions φ and ψ such that z becomes a continuous function of u and v in the sense that there is an estimate $||z||_2 \le C(||u||_2 + ||v||_2)$. (3)
- **3.** Let u = (8, 0, 0), v = (7, 7, 8), and z = (8, 7, 0, 7, 0, 8). Compute \hat{u}, \hat{v} and then \hat{z} using the fast Fourier transformation. (5)
- 4. Let $u \in l^2(\mathbf{Z}_N)$ and define $v \in l^2(\mathbf{Z}_{N/2})$ by the formula v(n) = u(n) + u(n + N/2), assuming N to be even. Prove that $\hat{v}(n) = \hat{u}(2n)$. (Note that \hat{u} and \hat{v} are actually defined on different groups, \mathbf{Z}_N and $\mathbf{Z}_{N/2}$, respectively, but that we may consider them as periodic functions defined on \mathbf{Z} , albeit with different periods, just to allow for a brief notation.) (6)

- 5. We consider a convolution equation of the fourth degree, $z * z * z * z = \delta$, on (a) the finite cyclic group \mathbf{Z}_5 and (b) the infinite cyclic group \mathbf{Z} .
 - (a) Prove that the equation has more than a thousand solutions $z \in l^2(\mathbf{Z}_5)$. Give an explicit formula for $\hat{z}(k)$, k = 0, 1, 2, 3, 4. (3)
 - (b) Prove that the equation has only four solutions $z \in l^1(\mathbf{Z})$. Give all solutions explicitly. (3)
- **6.** Show that the discrete sine transform of z = (z(1), ..., z(N-1)),

DST(z)(j) =
$$\sum_{k=1}^{N-1} z(k) \sin \frac{jk\pi}{N}$$
, $j = 1, ..., N-1$,

can be written on the form

DST(z)(j) =
$$\frac{i}{2} \sum_{k=0}^{2N-1} z(k) e^{-2\pi i j k/(2N)}$$

where

$$z(0) = z(N) = 0,$$

and

$$z(k) = -z(2N - k), \quad k = N + 1, ..., 2N - 1$$

thus as a Fourier transform of a vector with period 2N. (This means that the discrete sine transform can be computed using the FFT-algorithm.) (6)

7. It is known that we can define the angle α formed by two nonzero vectors x, y in a real inner-product space by the formula

$$\langle x, y \rangle = \|x\| \|y\| \cos \alpha$$

Here $0 \leq \alpha \leq \pi$. Calculate the angle between the functions $f(x) = 1 + \sqrt{2/3} x$ and $g(x) = 1, x \in \mathbf{R}$, in the space of real-valued Hermite polynomials. (The fact that $||1||^2 = \langle 1, 1 \rangle = \sqrt{\pi}$ in that space may be used without proof.) (6)

Svar till tentamen i Transformer för beräkningar 2001 06 07

- **1.** (a) We find that $\hat{b} = (0, 0, 0, 5, 0)$, so that $\hat{a}\hat{b} = 0$.
 - (b) The convolution product is a * b = 0, since its Fourier transform is $\hat{a}\hat{b} = 0$.

2. (a) We get $\hat{u} = \hat{b}\hat{z}$ and $\hat{v} = \hat{c}\hat{z}$ so that $\hat{c}\hat{u} = \hat{c}\hat{b}\hat{z} = \hat{b}\hat{v}$.

(b) The reconstruction formula follows with $C = 2/\varepsilon$ if we choose for example $\varphi(\tau) = 1/\hat{b}(\tau)$ and $\psi(\tau) = 0$ when $|\hat{b}(\tau)| \ge \varepsilon/2$; and $\varphi(\tau) = 0$ and $\psi(\tau) = 1/\hat{c}(\tau)$ when $|\hat{b}(\tau)| < \varepsilon/2$. Then $\|\varphi\|_{\infty}, \|\psi\|_{\infty} \le 2/\varepsilon$.

A little more symmetry is possible: we can take

$$\varphi = \frac{|\hat{b}|}{(|\hat{b}| + |\hat{c}|)\hat{b}}, \qquad \psi = \frac{|\hat{c}|}{(|\hat{b}| + |\hat{c}|)\hat{c}}$$

where φ is defined as zero when \hat{b} is zero, and similarly ψ is defined as zero when \hat{c} vanishes. We have $|\varphi|, |\psi| \leq 2/\varepsilon$ everywhere.

3. We find $\hat{u} = (8, 8, 8)$ and $\hat{v} = (22, 7 + 7\omega + 8\omega^2, 7 + 7\omega^2 + 8\omega) = (22, -1 - \omega, \omega)$, where $\omega = e^{-2\pi i/3} = -\frac{1}{2} - \frac{i}{2}\sqrt{3}$. With the fast Fourier transformation we the obtain

$$\begin{split} \hat{z}(0) &= \hat{u}(0) + \hat{v}(0) = 30, \\ \hat{z}(1) &= \hat{u}(1) + \theta \hat{v}(1) = 8 - \omega = \frac{17}{2} + \frac{1}{2}\sqrt{3}i, \\ \hat{z}(2) &= \hat{u}(2) + \theta^2 \hat{v}(2) = 7 - \omega = \frac{15}{2} + \frac{1}{2}\sqrt{3}i, \\ \hat{z}(3) &= \hat{u}(0) - \hat{v}(0) = -14, \\ \hat{z}(4) &= \hat{u}(1) - \theta \hat{v}(1) = 8 + \omega = \frac{15}{2} - \frac{1}{2}\sqrt{3}i, \\ \hat{z}(5) &= \hat{u}(2) - \theta^2 \hat{v}(2) = 9 + \omega = \frac{17}{2} - \frac{1}{2}\sqrt{3}i, \end{split}$$

where $\theta = e^{-\pi i/3} = -\omega^2 = 1 + \omega$, $\theta^2 = \omega$, $\theta^3 = -1$, $\theta^4 = \omega^2 = -1 - \omega$, $\theta^5 = -\omega$. So $\hat{z} = (30, 8 - \omega, 7 - \omega, -14, 8 + \omega, 9 + \omega) = (30, \frac{17}{2} + \frac{1}{2}\sqrt{3}i, \frac{15}{2} + \frac{1}{2}\sqrt{3}i, -14, \frac{15}{2} - \frac{1}{2}\sqrt{3}i, \frac{17}{2} - \frac{1}{2}\sqrt{3}i)$.

4. Let $\omega = e^{-2\pi i/N}$, $\theta = e^{-2\pi i/M}$, where M = N/2. Then $\omega^2 = \theta$, and we get

$$\hat{v}(n) = \sum_{k=0}^{M-1} \theta^{nk} u(k) + \sum_{k=0}^{M-1} \theta^{nk} u(k+M).$$

Substituting ω^2 for θ and introducing j = k + M as a new summation index going from M to 2M - 1 in the second sum, we see that the two sums together form the sum defining $\hat{u}(2n)$. Indeed, the factor θ^{nk} there is equal to $\theta^{nk} = \omega^{2n(j-M)} = \omega^{2nj} \omega^{-nN} = \omega^{2nj}$.

5. (a) Taking the Fourier transform we see that $\hat{z}(t)^4 = 1$ so that $\hat{z}(k) = i^{m_k}$ for some numbers $m_k \in \{0, 1, 2, 3\}, k = 0, 1, 2, 3, 4$. This gives $4^5 = 2^{10} = 1024$ solutions. And 1024 > 1000.

(b) We get $\hat{z}(\tau) = i^{m(\tau)}$ for every τ , but since $\hat{z}(\tau)$ is a continuous function of the real variable τ , the number m must be the same for all τ ; hence $\hat{z}(\tau) = 1, i, -1, -i$ are the only possibilities, corresponding to $z = i^m \delta$, m = 0, 1, 2, 3.

6. We start by writing the sine function as a sum of two exponential functions

DST(z)(j) =
$$\frac{1}{2i} \left(\sum_{k=1}^{N-1} z(k) e^{ijk\pi/N} - \sum_{k=1}^{N-1} z(k) e^{-ijk\pi/N} \right).$$

Replacing k by 2N - k and using the periodicity of the exponential function, we can write the first sum above as

$$\sum_{k=1}^{N-1} z(k) e^{ijk\pi/N} = \sum_{k=N+1}^{2N-1} z(2N-k) e^{-ijk\pi/N}.$$

Extending z as suggested we obtain the result.

7. We need to calculate also ||x||. This can be done using partial integration:

$$||x||^2 = \langle x^2, 1 \rangle = \langle x, x \rangle = \frac{1}{2}\sqrt{\pi}.$$

Thus for affine functions f(x) = a + bx, g(x) = c + dx,

$$\langle f,g\rangle = \langle a+bx,c+dx\rangle = ac\langle 1,1\rangle + bd\langle x,x\rangle = \sqrt{\pi}(ac+\frac{1}{2}bd),$$

so that

$$\cos \alpha = \frac{ac + \frac{1}{2}bd}{\sqrt{a^2 + \frac{1}{2}b^2}\sqrt{c^2 + \frac{1}{2}d^2}}.$$

In particular, taking a = 1, $b = \sqrt{2/3}$, c = 1, d = 0, we get $\cos \alpha = \frac{1}{2}\sqrt{3}$, so that the angle is $\pi/6$ radians or 30 degrees.