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1. Let a and b be two vectors in l2(Z3), a being given by its Fourier transform â =
(7, 0, 8), and b = (ω2, ω, 1), where ω = e−2πi/3 = −1

2
− i

2

√
3.

(a) Calculate the Fourier transform b̂. (3)

(b) Calculate the convolution product a ∗ b. (3)

2. We consider two black boxes B and C, defined by vectors b, c ∈ l2(Z4) and the
relations u = b ∗ z and v = c ∗ z between the input signal z and the output signals u
and v. We take b = (1, 0, 1, 0) and c = (1, 2, 2, 1).

(a) Prove that knowledge of u alone is not sufficient to recover z; prove also that
knowledge of v alone is not sufficient to recover z. (3)

(b) Prove that knowledge of both u and v is indeed enough to reconstruct the input
signal z. Give an explicit formula for ẑ in terms of û and v̂. (3)

3. Let u = (7, 0, 8), v = (0, 1, 2), and z = (7, 0, 0, 1, 8, 2). Compute û, v̂ and then ẑ
using the fast Fourier transformation. (5)

4. Let u, v ∈ l2(Z8) be the vectors

u = (1/
√

2, 1/
√

2, 0, 0, 0, 0, 0, 0), v = (1/
√

2,−1/
√

2, 0, 0, 0, 0, 0, 0).

(The first-stage Haar basis.)

(a) Prove that the vectors R2ku, R2kv, k = 0, 1, 2, 3, form an orthonormal system in
l2(Z8). (2)



(b) Define

P (z) =
3∑

k=0

〈z, R2ku〉R2ku, Q(z) =
3∑

k=0

〈z, R2kv〉R2kv.

Calculate P (z) and Q(z) when z = (1, 3, 5, 3, 3, 7, 9, 1). (3)

5. We consider a convolution equation of the second degree, z ∗ z = z for vectors
z = (z(j))j∈Z.

(a) Find all solutions of this equation in l1(Z). (3)

(b) Prove that the equation has infinitely many solutions in l2(Z). (It would be nice
if you could define infinitely many solutions explicitly.) (3)

6. Consider the Poisson equation with boundary conditions zero

u′′ = f, 0 < x < 1,
u(0) = u(1) = 0,

and the following finite difference approximation

uk+1 − 2uk + uk−1 = h2fk, k = 1, ..., N − 1,
u0 = uN = 0.

Here fk = f(xk), xk = kh, and h = 1/N for some positive integer N .

(a) Use the familiar relation

sin(α + β) = sin α cos β + cos α sin β

to prove that

DST
[
(uk+1 − 2uk + uk−1)k

]
(j) = 2

(
cos

jπ

N
− 1

)
DST[u](j),

where DST denotes the discrete sine transform, viz.

DST[z](j) =
N−1∑
k=1

z(k) sin
jkπ

N
, j = 1, ..., N − 1.

The inverse transform is given by

z(k) =
2

N

N−1∑
j=1

DST[z](j) sin
jkπ

N
, k = 0, ..., N.

(3)

(b) Explain how this relation can be used to implement a fast Poisson solver. (3)

7. Define f : R2 → R by f(x) = 1 when |x1| < 1 and |x2| < 1; f(x) = 0 otherwise.
Calculate the Radon transform ϕ(ω, p) = Rf(ω, p) of f for arbitrary p ∈ R and a
particular choice of ω, viz. ω = (1/

√
2, 1/

√
2) ∈ S1. (6)
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Svar till tentamen i Transformer för beräkningar 2001 05 21

1. We find that b̂ = (0, 3ω2, 0) = (0,−3 − 3ω, 0) = (0,−3
2

+ 3
2

√
3 i, 0), so that âb̂ = 0.

Therefore also a ∗ b = 0, since its Fourier transform is âb̂.

2. We find b̂ = (2, 0, 2, 0) and ĉ = (6,−1 − i, 0,−1 + i), so that u = b ∗ z = 0 as
soon as ẑ(0) = ẑ(2) = 0 (ẑ(1) and ẑ(3) being arbitrary), while v = c ∗ z = 0 as soon
as ẑ(0) = ẑ(1) = ẑ(3) = 0 (ẑ(2) being arbitrary). The reconstruction of z follows
from the formulas ẑ(0) = 1

2
û(0), ẑ(1) = v̂(1)/(−1 − i) = 1

2
(−1 + i)v̂(1), ẑ(2) = 1

2
û(2),

ẑ(3) = v̂(3)/(−1 + i) = 1
2
(−1− i)v̂(3).

3. We find û = (15, 7+8ω2, 7+8ω) = (15,−1−8ω, 7+8ω) and v̂ = (3, ω+2ω2, 2ω+ω2) =
(3,−2−ω,−1+ω), where ω = e−2πi/3 = −1

2
− i

2

√
3. With the fast Fourier transformation

we the obtain
ẑ(0) = û(0) + v̂(0) = 18,

ẑ(1) = û(1) + θv̂(1) = −2− 10ω = 3 + 5
√

3 i,

ẑ(2) = û(2) + θ2v̂(2) = 6 + 6ω = 3−
√

3 i,
ẑ(3) = û(0)− v̂(0) = 12,

ẑ(4) = û(1)− θv̂(1) = −6ω = 3 + 3
√

3 i,

ẑ(5) = û(2)− θ2v̂(2) = 8 + 10ω = 3− 5
√

3 i,

where θ = e−πi/3 = −ω2 = 1 + ω, θ2 = ω, θ3 = −1, θ4 = ω2 = −1 − ω, θ5 = −ω. So
ẑ = (18,−2−10ω, 6+6ω, 12,−6ω, 8+10ω) = (18, 3+5

√
3 i, 3−

√
3 i, 12, 3+3

√
3 i, 3−5

√
3 i).

(Of course it is also possible to calculate ẑ directly.)

4. To prove (a) is routine. To prove (b): we know that (or just calculate) that P (z) is given
by the mean values of the numbers taken two and two, so that P (z) = (2, 2, 4, 4, 5, 5, 5, 5),
while Q(z) is the information needed to pass from P (z) to z, i.e., Q(z) = z − P (z) =
(−1, 1, 1,−1,−2, 2, 4,−4).

5. (a) Taking the Fourier transform we see that ẑ(t)2 = ẑ(t) so that ẑ(t) = 0 or ẑ(t) = 1
for each t ∈ [0, 2π[. Since ẑ is continuous, the only solutions are ẑ(t) = 0 for all t and
ẑ(t) = 1 for all t, corresponding to z = 0 and z = δ.

(b) When z is allowed to lie in the larger space l2(Z), we can for instance take f as
the characteristic function of an interval I, f = χI . Then z = f̌ should satisfy z ∗ z = z.
Since ẑ ∗ z is problematic, we can argue as follows. Take fj ∈ C2 of period 2π such that
fj = 1 wherever f = 1 and such that fj → f in L2. Then fjf = f so that zj = f̌j

satisfies zj ∗ z = z. Now zj ∈ l1(Z) and zj → z in l2(Z), so the convolution zj ∗ z
is well-defined in l2 and zj ∗ z → z ∗ z in l∞(Z). So z = zj ∗ z tends to z ∗ z, which
proves that z = z ∗ z. Since different intervals give rise to different z, there are infinitely
many solutions z. Explicitly, we may take f(t) = 1 for −a < t < a and f(t) = 0 for
−π 6 t 6 −a and a 6 t < π, where a is any number in [0, π]. These functions are all
in L2([−π, π[) and define infinitely many solutions z = f̌ ∈ l2(Z). The inverse Fourier
transform of f is f̌(n) = z(n) = sin(na)/(πn), n 6= 0; z(0) = a/π. For a = 0 we get z = 0;
for a = π we get z = δ. Any a between 0 and π gives a solution in lp(Z), p > 1.
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[The following was not required.
(c) Slightly more generally, we may take z ∈ l2(Z) such that ẑ takes only the values

0 and 1. Then z is a solution. To prove this, take zj ∈ l1(Z) such that zj → z in l2(Z).
Then zj ∗ z → z ∗ z in l∞(Z). Moreover ẑj ∗ z = ẑj ẑ → ẑ2 = ẑ in L1(]−π, π]), which
implies that zj ∗ z → z in l∞(Z). Thus we get even more solutions than those found in
(b).

(d) Are there other solutions than those found in (c)? No. Suppose that z ∈ l2(Z) is
such that z ∗ z = z as sequences in l∞(Z). We can then show that ẑ takes the values 0
and 1 only. Take again zj ∈ l1(Z) such that zj → z in l2(Z). Then zj ∗ z → z ∗ z = z
in l∞(Z), which implies that ẑj ẑ → ẑ in D′(R) (the space of distributions). Moreover
ẑj → ẑ in L2(]−π, π]), which implies that ẑj ẑ → ẑ2 in L1, hence also in D′. So ẑ2 = ẑ
as distributions. Since they are functions in L1, they must be equal as elements of that
space, which means that they are equal at almost every point. Hence ẑ2 = ẑ almost
everywhere: the solutions we found in (c) are all solutions.]

6. (a) The derivation of the symbol is straightforward.

(b) The sine transform of the solution is

DST[u](j) =
h2DST[f ](j)

2(cos(jπ/N)− 1)
, j = 1..., N − 1.

Thus the solution can be computed by transforming the right hand side h2f , dividing
it by 2(cos(jπ/N)−1), and computing the inverse sine transform of the result. Each
transform can be computed in O(N log N) a.o.

7. We see that ϕ(ω, p) = 0 when |p| >
√

2, for then the line ω · x = p does not cut
the square |xj| < 1. Moreover, it is clear that ϕ(ω, 0) = 2

√
2, that ϕ(ω,±

√
2) = 0, and

that ϕ(ω, p) is affine in the intervals [−
√

2, 0], [0,
√

2]. Thus ϕ(ω, p) = 2(
√

2 − |p|) when
|p| <

√
2, and Rf(ω, p) = max(0, 2(

√
2 − |p|)) for this particular ω. (For any ω ∈ S1,

p 7→ Rf(ω, p) is piecewise affine and with a little more work we can determine it exactly.)
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