UPPSALA UNIVERSITET
Matematiska institutionen
Christer Kiselman, 0708-870708

Prov i matematik

Teknisk fysik, B
Transformer för beräkningar 20010521

Skrivtid: 9:00-14:00.
Tillåtna hjälpmedel: Skrivdon. Ordlista 200104 05. Formelsamling 200105 06. Räknare. Ej mobiltelefon.
Svara på svenska eller annat språk.

1. Let a and b be two vectors in $l^{2}\left(\mathbf{Z}_{3}\right), a$ being given by its Fourier transform $\hat{a}=$ $(7,0,8)$, and $b=\left(\omega^{2}, \omega, 1\right)$, where $\omega=e^{-2 \pi i / 3}=-\frac{1}{2}-\frac{i}{2} \sqrt{3}$.
(a) Calculate the Fourier transform \hat{b}.
(b) Calculate the convolution product $a * b$.
2. We consider two black boxes B and C, defined by vectors $b, c \in l^{2}\left(\mathbf{Z}_{4}\right)$ and the relations $u=b * z$ and $v=c * z$ between the input signal z and the output signals u and v. We take $b=(1,0,1,0)$ and $c=(1,2,2,1)$.
(a) Prove that knowledge of u alone is not sufficient to recover z; prove also that knowledge of v alone is not sufficient to recover z.
(b) Prove that knowledge of both u and v is indeed enough to reconstruct the input signal z. Give an explicit formula for \hat{z} in terms of \hat{u} and \hat{v}.
3. Let $u=(7,0,8), v=(0,1,2)$, and $z=(7,0,0,1,8,2)$. Compute \hat{u}, \hat{v} and then \hat{z} using the fast Fourier transformation.
4. Let $u, v \in l^{2}\left(\mathbf{Z}_{8}\right)$ be the vectors

$$
u=(1 / \sqrt{2}, 1 / \sqrt{2}, 0,0,0,0,0,0), \quad v=(1 / \sqrt{2},-1 / \sqrt{2}, 0,0,0,0,0,0)
$$

(The first-stage Haar basis.)
(a) Prove that the vectors $R_{2 k} u, R_{2 k} v, k=0,1,2,3$, form an orthonormal system in $l^{2}\left(\mathbf{Z}_{8}\right)$.
(b) Define

$$
\begin{equation*}
P(z)=\sum_{k=0}^{3}\left\langle z, R_{2 k} u\right\rangle R_{2 k} u, \quad Q(z)=\sum_{k=0}^{3}\left\langle z, R_{2 k} v\right\rangle R_{2 k} v . \tag{3}
\end{equation*}
$$

Calculate $P(z)$ and $Q(z)$ when $z=(1,3,5,3,3,7,9,1)$.
5. We consider a convolution equation of the second degree, $z * z=z$ for vectors $z=(z(j))_{j \in \mathbf{Z}}$.
(a) Find all solutions of this equation in $l^{1}(\mathbf{Z})$.
(b) Prove that the equation has infinitely many solutions in $l^{2}(\mathbf{Z})$. (It would be nice if you could define infinitely many solutions explicitly.)
6. Consider the Poisson equation with boundary conditions zero

$$
\begin{aligned}
& u^{\prime \prime}=f, \quad 0<x<1, \\
& u(0)=u(1)=0,
\end{aligned}
$$

and the following finite difference approximation

$$
\begin{aligned}
& u_{k+1}-2 u_{k}+u_{k-1}=h^{2} f_{k}, \quad k=1, \ldots, N-1 \\
& u_{0}=u_{N}=0
\end{aligned}
$$

Here $f_{k}=f\left(x_{k}\right), x_{k}=k h$, and $h=1 / N$ for some positive integer N.
(a) Use the familiar relation

$$
\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta
$$

to prove that

$$
\operatorname{DST}\left[\left(u_{k+1}-2 u_{k}+u_{k-1}\right)_{k}\right](j)=2\left(\cos \frac{j \pi}{N}-1\right) \operatorname{DST}[u](j)
$$

where DST denotes the discrete sine transform, viz.

$$
\operatorname{DST}[z](j)=\sum_{k=1}^{N-1} z(k) \sin \frac{j k \pi}{N}, \quad j=1, \ldots, N-1
$$

The inverse transform is given by

$$
\begin{equation*}
z(k)=\frac{2}{N} \sum_{j=1}^{N-1} \operatorname{DST}[z](j) \sin \frac{j k \pi}{N}, \quad k=0, \ldots, N \tag{3}
\end{equation*}
$$

(b) Explain how this relation can be used to implement a fast Poisson solver.
7. Define $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ by $f(x)=1$ when $\left|x_{1}\right|<1$ and $\left|x_{2}\right|<1 ; f(x)=0$ otherwise. Calculate the Radon transform $\varphi(\omega, p)=\mathcal{R} f(\omega, p)$ of f for arbitrary $p \in \mathbf{R}$ and a particular choice of ω, viz. $\omega=(1 / \sqrt{2}, 1 / \sqrt{2}) \in S^{1}$.

Svar till tentamen i Transformer för beräkningar 20010521

1. We find that $\hat{b}=\left(0,3 \omega^{2}, 0\right)=(0,-3-3 \omega, 0)=\left(0,-\frac{3}{2}+\frac{3}{2} \sqrt{3} i, 0\right)$, so that $\hat{a} \hat{b}=0$. Therefore also $a * b=0$, since its Fourier transform is $\hat{a} \hat{b}$.
2. We find $\hat{b}=(2,0,2,0)$ and $\hat{c}=(6,-1-i, 0,-1+i)$, so that $u=b * z=0$ as soon as $\hat{z}(0)=\hat{z}(2)=0(\hat{z}(1)$ and $\hat{z}(3)$ being arbitrary), while $v=c * z=0$ as soon as $\hat{z}(0)=\hat{z}(1)=\hat{z}(3)=0(\hat{z}(2)$ being arbitrary). The reconstruction of z follows from the formulas $\hat{z}(0)=\frac{1}{2} \hat{u}(0), \hat{z}(1)=\hat{v}(1) /(-1-i)=\frac{1}{2}(-1+i) \hat{v}(1), \hat{z}(2)=\frac{1}{2} \hat{u}(2)$, $\hat{z}(3)=\hat{v}(3) /(-1+i)=\frac{1}{2}(-1-i) \hat{v}(3)$.
3. We find $\hat{u}=\left(15,7+8 \omega^{2}, 7+8 \omega\right)=(15,-1-8 \omega, 7+8 \omega)$ and $\hat{v}=\left(3, \omega+2 \omega^{2}, 2 \omega+\omega^{2}\right)=$ $(3,-2-\omega,-1+\omega)$, where $\omega=e^{-2 \pi i / 3}=-\frac{1}{2}-\frac{i}{2} \sqrt{3}$. With the fast Fourier transformation we the obtain

$$
\begin{aligned}
& \hat{z}(0)=\hat{u}(0)+\hat{v}(0)=18, \\
& \hat{z}(1)=\hat{u}(1)+\theta \hat{v}(1)=-2-10 \omega=3+5 \sqrt{3} i, \\
& \hat{z}(2)=\hat{u}(2)+\theta^{2} \hat{v}(2)=6+6 \omega=3-\sqrt{3} i, \\
& \hat{z}(3)=\hat{u}(0)-\hat{v}(0)=12, \\
& \hat{z}(4)=\hat{u}(1)-\theta \hat{v}(1)=-6 \omega=3+3 \sqrt{3} i, \\
& \hat{z}(5)=\hat{u}(2)-\theta^{2} \hat{v}(2)=8+10 \omega=3-5 \sqrt{3} i,
\end{aligned}
$$

where $\theta=e^{-\pi i / 3}=-\omega^{2}=1+\omega, \theta^{2}=\omega, \theta^{3}=-1, \theta^{4}=\omega^{2}=-1-\omega, \theta^{5}=-\omega$. So $\hat{z}=(18,-2-10 \omega, 6+6 \omega, 12,-6 \omega, 8+10 \omega)=(18,3+5 \sqrt{3} i, 3-\sqrt{3} i, 12,3+3 \sqrt{3} i, 3-5 \sqrt{3} i)$. (Of course it is also possible to calculate \hat{z} directly.)
4. To prove (a) is routine. To prove (b): we know that (or just calculate) that $P(z)$ is given by the mean values of the numbers taken two and two, so that $P(z)=(2,2,4,4,5,5,5,5)$, while $Q(z)$ is the information needed to pass from $P(z)$ to z, i.e., $Q(z)=z-P(z)=$ $(-1,1,1,-1,-2,2,4,-4)$.
5. (a) Taking the Fourier transform we see that $\hat{z}(t)^{2}=\hat{z}(t)$ so that $\hat{z}(t)=0$ or $\hat{z}(t)=1$ for each $t \in[0,2 \pi[$. Since \hat{z} is continuous, the only solutions are $\hat{z}(t)=0$ for all t and $\hat{z}(t)=1$ for all t, corresponding to $z=0$ and $z=\delta$.
(b) When z is allowed to lie in the larger space $l^{2}(\mathbf{Z})$, we can for instance take f as the characteristic function of an interval $I, f=\chi_{I}$. Then $z=f$ should satisfy $z * z=z$. Since $\widehat{z * z}$ is problematic, we can argue as follows. Take $f_{j} \in C^{2}$ of period 2π such that $f_{j}=1$ wherever $f=1$ and such that $f_{j} \rightarrow f$ in L^{2}. Then $f_{j} f=f$ so that $z_{j}=\check{f}_{j}$ satisfies $z_{j} * z=z$. Now $z_{j} \in l^{1}(\mathbf{Z})$ and $z_{j} \rightarrow z$ in $l^{2}(\mathbf{Z})$, so the convolution $z_{j} * z$ is well-defined in l^{2} and $z_{j} * z \rightarrow z * z$ in $l^{\infty}(\mathbf{Z})$. So $z=z_{j} * z$ tends to $z * z$, which proves that $z=z * z$. Since different intervals give rise to different z, there are infinitely many solutions z. Explicitly, we may take $f(t)=1$ for $-a<t<a$ and $f(t)=0$ for $-\pi \leqslant t \leqslant-a$ and $a \leqslant t<\pi$, where a is any number in $[0, \pi]$. These functions are all in $L^{2}\left(\left[-\pi, \pi[)\right.\right.$ and define infinitely many solutions $z=\check{f} \in l^{2}(\mathbf{Z})$. The inverse Fourier transform of f is $\check{f}(n)=z(n)=\sin (n a) /(\pi n), n \neq 0 ; z(0)=a / \pi$. For $a=0$ we get $z=0$; for $a=\pi$ we get $z=\delta$. Any a between 0 and π gives a solution in $l^{p}(\mathbf{Z}), p>1$.
[The following was not required.
(c) Slightly more generally, we may take $z \in l^{2}(\mathbf{Z})$ such that \hat{z} takes only the values 0 and 1. Then z is a solution. To prove this, take $z_{j} \in l^{1}(\mathbf{Z})$ such that $z_{j} \rightarrow z$ in $l^{2}(\mathbf{Z})$. Then $z_{j} * z \rightarrow z * z$ in $l^{\infty}(\mathbf{Z})$. Moreover $\widehat{z_{j} * z}=\hat{z}_{j} \hat{z} \rightarrow \hat{z}^{2}=\hat{z}$ in $\left.\left.L^{1}(]-\pi, \pi\right]\right)$, which implies that $z_{j} * z \rightarrow z$ in $l^{\infty}(\mathbf{Z})$. Thus we get even more solutions than those found in (b).
(d) Are there other solutions than those found in (c)? No. Suppose that $z \in l^{2}(\mathbf{Z})$ is such that $z * z=z$ as sequences in $l^{\infty}(\mathbf{Z})$. We can then show that \hat{z} takes the values 0 and 1 only. Take again $z_{j} \in l^{1}(\mathbf{Z})$ such that $z_{j} \rightarrow z$ in $l^{2}(\mathbf{Z})$. Then $z_{j} * z \rightarrow z * z=z$ in $l^{\infty}(\mathbf{Z})$, which implies that $\hat{z}_{j} \hat{z} \rightarrow \hat{z}$ in $\mathcal{D}^{\prime}(\mathbf{R})$ (the space of distributions). Moreover $\hat{z}_{j} \rightarrow \hat{z}$ in $\left.\left.L^{2}(]-\pi, \pi\right]\right)$, which implies that $\hat{z}_{j} \hat{z} \rightarrow \hat{z}^{2}$ in L^{1}, hence also in \mathcal{D}^{\prime}. So $\hat{z}^{2}=\hat{z}$ as distributions. Since they are functions in L^{1}, they must be equal as elements of that space, which means that they are equal at almost every point. Hence $\hat{z}^{2}=\hat{z}$ almost everywhere: the solutions we found in (c) are all solutions.]
6. (a) The derivation of the symbol is straightforward.
(b) The sine transform of the solution is

$$
\operatorname{DST}[u](j)=\frac{h^{2} \operatorname{DST}[f](j)}{2(\cos (j \pi / N)-1)}, \quad j=1 \ldots, N-1
$$

Thus the solution can be computed by transforming the right hand side $h^{2} f$, dividing it by $2(\cos (j \pi / N)-1)$, and computing the inverse sine transform of the result. Each transform can be computed in $O(N \log N)$ a.o.
7. We see that $\varphi(\omega, p)=0$ when $|p| \geqslant \sqrt{2}$, for then the line $\omega \cdot x=p$ does not cut the square $\left|x_{j}\right|<1$. Moreover, it is clear that $\varphi(\omega, 0)=2 \sqrt{2}$, that $\varphi(\omega, \pm \sqrt{2})=0$, and that $\varphi(\omega, p)$ is affine in the intervals $[-\sqrt{2}, 0],[0, \sqrt{2}]$. Thus $\varphi(\omega, p)=2(\sqrt{2}-|p|)$ when $|p|<\sqrt{2}$, and $\mathcal{R} f(\omega, p)=\max (0,2(\sqrt{2}-|p|))$ for this particular ω. (For any $\omega \in S^{1}$, $p \mapsto \mathcal{R} f(\omega, p)$ is piecewise affine and with a little more work we can determine it exactly.)

