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ABSTRACT

A comparison of the accuracy and robustness of differ-
ent data driven methods for intensity nonuniformity field
estimation (background shading estimation) on simulated
and real images of fluorescence stained cells is presented.
A novel attempt to reduce the parameter space of a B-
spline based algorithm for shading estimation using auto-
matic thresholding with a kernel density estimator is tested
and compared with exhaustive testing to find the optimal
parameter value.

1. INTRODUCTION

Intensity nonuniformity (INU), also commonly referred to
as shading artifact, refers to smooth local changes in the im-
age intensity introduced by the data acquisition technique.
The impact of INU on visual interpretation of images is lim-
ited. It does however affect image segmentation methods
because most of them rely, at least partly, on absolute inten-
sity values. Moreover INU strongly affects the possibility to
use intensity values of the segmented images as quantitative
measures in further data processing.

Correction of intensity nonuniformity is typically based
on either a multiplicative model of the artifact:

o(z) = s(z)t(z) D
or an additive model:
o(z) = t(x) + s(x) )

where o and t is the observed respectively the true inten-
sity at the spatial location «, and s is the distortion caused
by the INU. If the model and the INU field is known, the
true image is easily obtained from the observed. One can
smoothly move from one model to the other. By taking the
logarithm of the image intensities: 6(x) = log[o(x)] Eq. 1
becomes 6(x) = 3(x) + (), i.e. equivalent to the additive
model. By taking the exponent of the additive model we can
similarly move back to the multiplicative model.
Estimation of the INU field (often called bias field) can
either be based on specialized acquisition protocols such as
imaging of homogeneous phantoms or black-level images in

relation to the ordinary imaging step, or be based on anal-
ysis of the image data itself. Whether it is feasible to ac-
quire a good background image directly in conjunction with
the imaging procedure or not is very much dependent on
the imaging environment. For example in MRI, most of the
INU is caused by properties of the subject in the scanner [7],
which implies that finding a good correction image may be
very hard.

Data-driven approaches are usually simpler from a prac-
tical viewpoint, but may however introduce artifacts if the
algorithm used cannot reliably solve the estimation prob-
lem.

Intensity nonuniformity is typically present in MRI data
and this seems to be the area of imaging and image analy-
sis with the richest plethora of methods for estimating the
INU field. Intensity nonuniformity is however present also
in relation to other areas of imaging. This paper aims ex-
plicitly at the applicability of algorithms on microscope im-
ages of fluorescence stained cells. Most methods described
in relation to MRI data use the assumption that the intensity
inside the different object classes (tissue classes) are fairly
constant (i.e. when the INU has been removed) [1]. In fluo-
rescence images of cells, this is clearly not the case, as the
intensity varies a lot inside the cells. It is therefore not clear
that a well functioning INU estimator taken from the MR
field will also produce good results on fluorescence images
of cells.

The aim of this paper is to look closer at a set of data-
driven methods for INU estimation, trying to estimate their
robustness and accuracy in relation to microscope images of
fluorescence stained cells.

3D is emerging more and more in the field of medical
image analysis, so also in fluorescence microscopy imaging,
primary using confocal techniques. All algorithms in this
paper are easily (and have also been) extended to three or
more dimensions but most examples will be relating to 2D
data. 2D images are easier to visualize, and require less
computing power for the validation testings.



2. THEIMAGES OF INTEREST

A source of information about the cell which is gaining
more and more in importance is the detection and analy-
sis of fluorescence emitted when the cell has been exposed
to fluorescence dyes attached to some biologically active
molecule and is exposed to excitation light. The applica-
tions are ranging from pure research of the cell functional-
ity, to cancer research and to drug discovery. In all cases
it is desirable to acquire a pure and noise free image, to be
able to segment and analyze the cell features correctly. One
important step in this process is the correction for intensity
nonuniformity caused by the image acquisition process.

3. THEMETHODS

A number of authors have proposed spatial filtering (often
homomorphic filtering [4]) as a means to estimate the INU
field [2]. These techniques include the straightforward use
of a large mean filtering of the image, or using some per-
centile filtering (including the 0% percentile to get a mini-
mum filter). The disadvantage of the spatial filtering meth-
ods is that they in general rely on the assumption that the
frequency spectrum of the INU field s(x) and that of the
true image ¢(x) are separable, which is typically not the
case, neither in MR nor in fluorescence images. As such,
spatial filtering tend to introduce severe, undesirable filter-
ing artifacts.

Rolling ball algorithms may perform better than just a
flat minimum filter but they have the same inherent proper-
ties and corresponding problems as a minimum filter (dark
background case). If the filter is too small, it will include
the foreground objects. If the filter is too large, it will
smooth the background. Also, using the extreme values as
the rolling ball and minimum filter approach does is noise
sensitive. A better approach is to use a small percentile, e.g.
the 5% percentile. Unfortunately the choice of an optimal
percentile is dependent on the amount of noise present in
the image.

Another approach is to try to estimate the background
field as a smoothly varying function [1]. Many different
functions have been proposed in the literature, but the most
popular is probably the class of uniform cubic B-spline
functions (see e.g. [5]). Cubic B-spline functions have many
nice properties, they guarantee C2 continuity, i.e. they are
always smooth, and different levels of flexibility can be al-
lowed by varying the number of control points used for the
function. The task of fitting a B-spline function to data may
be formulated as an ordinary least squares solution, and is
thus analytically solvable in an efficient way, which is of
course also a very nice property.

When discussing this approach of approximating the
INU field with a function we will typically refer to the back-
ground as a surface, even though all concepts in this article
are easily (and have also been) extended to 3D, where the

surface becomes a volume. Alternatively one can think of
the volume case as fitting a hyper-surface in a 4D space, this
way the similarity with the 2D case will be very direct.

When fitting a surface to the background field, the big
problem is to decide what is the background. We need to
find the set of pixels @ which belongs to the background, so
that we have something to fit the surface to. l.e. some sort
of foreground / background segmentation is needed. This
segmentation is not trivial, as the INU field we wish to esti-
mate is present and will sabotage thresholding attempts. It
is also very difficult to apply some edge detection scheme
when regarding the images at hand, as no distinct edges are
present. On the other hand, if the INU field was not there, a
simple thresholding would suffice. This inevitably leads to
the following iterative algorithm for the INU field estima-
tion

0. k=0. Make a poor first estimate of the true image;
to(x) = o(x).

1. Estimate the background by thresholding the esti-
mated image data 5 (x) to get the set ®;. See below
for discussions about the threshold.

2. Make a least squares fit of a uniform B-spline sur-
face (or volume) to the segmented background pixels
(voxels) @y, in the observed image o(x) to get ().

3. Correct the image according to the fitted background
(we have used the additive model) 41 (x) = o(z) —
k()

4. 1frms(8y — ,—1) < 6 we are finished, otherwise set
k < k + 1 and repeat from step one.

which closely resembles the one designed by Gilles et al.
[3].

The convergence criterium that has been used in this
study is that the estimated background does not change
more than that the root mean square (rms) of the differ-
ence between two consecutive background estimates § is
less than § = 1/1000 of the original image variation.

Figure 1 shows an images cross section at various stages
of the algorithm.

3.1. How to do the background segmentation

As mentioned before, a single threshold is supposed to be
sufficient for the background segmentation, as the corrected
image will more and more approach the case of a flat back-
ground.

Gilles et al. [3] suggest the use of a fixed threshold €
(two actually) decided experimentally. Unfortunately, if we
wish to have optimal performance, this threshold must vary
with the noise level of the image, as we can see in figure 2.

By assuming that the internal variation in the back-
ground roughly approximates a normal distribution, we can
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Fig. 1. The intensity profile across one image with fitted
background (dashed) after the first, second and fourth (fi-
nal) iteration of the background approximation algorithm.
At the bottom of each graph is indicated which pixels from
the original image that have been used for the background
fitting in the current step, i.e. the set .

get a fairly noise independent threshold by cutting this back-
ground distribution at some fixed percentile to get the back-
ground set ®. The question of which percentile (or equiv-
alent; how many standard deviations, o) one should set the
threshold to, still remains to be solved. This is extensively
tested in section 4.

A way to get rid of the problem of subjectively choosing
an appropriate threshold is to use some histogram thresh-
olding scheme to objectively find a suitable segmentation
threshold. The most popular histogram thresholding tech-
nique is to look for a minimum in the distribution. In
general, no local minimum in the histograms of the im-
ages studied does however exist and this method can there-
fore not be used as a threshold selector. Another choice
of thresholds is local maxima in the second derivative of
the intensity distribution of the image. This seems to be a
manageable approach to the problem, and is therefore tested
in this paper. The intensity distribution is estimated with a
kernel density estimator (KDE) with the so called ’rule of
thumb’ value for the kernel bandwidth. This is supposed
to be a fairly good choice of bandwidth, as the distribution
rarely deviates much from the normal distribution which the
’rule of thumb’ value is based on. [6].

Fig. 2: Empirically determined optimal threshold for differ-
ent noise levels. The optimal threshold is dependent on the
overall noise level of the image.

3.2. B-spline approximation

The INU field is assumed to be C2-differentiable (i.e. it is
smooth and without sharp edges), which leads us to the use
of cubic splines. The control points of the B-spline are dis-
tributed on a regular mesh. In this paper mesh sizes of 4x4
and 5x5 have been used for the 2D case, and 4x4x4 for the
3D case. The B-spline surface (here in two dimensions) is
written as:

ng—1ny—1

8(z,y) = D D pi B (x)BY(y) )

i=0 j=0

where n, and n, is the number of control points in the
and y directions and p;; are the control points. The control
points are chosen to minimize the least-squares equation:

Err = Z(é(w) — s(x))? (4)

zEP

where @ is the set of background pixels (voxels) selected by
the thresholding.

4. TESTING THE METHODS

To validate the methods, a dataset with known INU field
must exist. The dataset used in this study consists of com-
puter generated synthetic test images. The synthetic images
have been designed to imitate the looks of the real images
that we are aiming to correct, but with some simplifications
which should not affect the estimation results with anything
remotely near the inter image variations. Finally, the meth-
ods have also been applied to real test images.

4.1. Syntheticimages

4.1.1. Thetrueimaget(x)

The true image ¢() is supposed to mimic more or less ran-
domly distributed fluorescence labelled cells on a flat back-
ground. The cells are simulated as local cosine functions of
varying sizes.



In one dimension the generating equation becomes

tiy1(z) = ti(z) + c((& — m)/w) (5)

(cos(z)+1)/2 —m<z<m
c(z) = (6)

0 otherwise

to add one cell of width w centered at the position m. The
2D and 3D versions are simply tensor products of the 1D
case.

Note that there does not exist any sharp edge where the
cell ends and the background starts. This is true in both the
real situation as well as in the synthetic images.

4.1.2. The shading image s(x)

The shading image, representing the INU to be estimated,
may be of varying nature. Assuming that the shading orig-
inates from illumination artifacts in the microscope, using
a cosine function similar to the one used to generate the
cells but of larger scale, seems to be a good model. Addi-
tionally, various sloped fields may make the shading image
more complex.

4.1.3. Noiseimagen(x)

To produce at least fairly realistic images, noise has to be
added in some sense. Random Gaussian noise of varying
amplitude has been the source used in this study.

4.2. Putting the image sour cestogether

How are the three sources ¢(z), s(x) and n(z) mixed to
create the observed image o(x)? This surely depends on the
imaging device and the data acquisition technique. Which
of the additive or the multiplicative models that applies best
on the fluorescence images studied may be debated. One
can argue that there is a shading effect arising from leak
through in the filters from the excitation light source. This is
clearly an additive contribution, which is present also when
there is no specimen to observe. But if the excitation light is
uneven, this will also show up as a multiplicative effect, as
the fluorescence is proportional to the excitation illumina-
tion. So the answer is that neither of the multiplicative nor
the additive model applies.

As no perfect solution to this problem is in sight, we
have simply resigned to use the additive model, equation 2.
Knowing that this is not the correct model, we must think
of what implications this has for our study. If we design
the testing so that the main goal is to estimate the back-
ground field s(x) and not to apply the correction to get the
true image t(x), the choice of model will not be crucial.
Yes, it does affect the estimation of s(x) as well, but to a
lesser extent. The real correction is dependent on the spe-
cific imaging setup to such extent that it is very difficult to

draw general conclusion about it. Therefore we will not go
further than to the estimation and evaluation of the INU field
in this paper.

Noise is of course also neither additive nor multiplica-
tive, but rather a strange unknown function. A function
which we here insult gravely by modeling it with a simple
mixture of additive and multiplicative Gaussian noise.

Summarizing this gives the final image model

o(w) = (1 +any(z))(t(x) + s(z)) + fna(z) (7)

where the constants « and 3 are varied to create different
noise situations.

5. TESTING THE ALGORITHMS

5.1. Error measure

To validate the different methods, and to relate them to each
other, an error measure is needed. We have chosen to both
look at the root mean square value of the difference between
the estimated shading §(x) and the true s(x) as well as the
maximum difference between the two.

rms = |3 (5(x) — s(@))? ®)
z€EQ
mazerr = max |5(x) — s(x)| 9)

Q is the whole image.

5.2. Thedifferent test cases

The different methods tested are

1. Homomorphic filtering using mean, 5% percentile,
10% percentile, and median filters of sizes 15,31,63
and 127 pixels.

2. lterative cubic B-spline fitting with 4x4 resp. 5x5 con-
trol points. The threshold is setto 1.0, 1.2, 1.4, ... 4.0
times the standard deviation of the estimated back-
ground in each step

3. Iterative cubic B-spline fitting with 4x4 resp. 5x5 con-
trol points. The threshold is set to the first local max-
imum in the second derivative of the kernel density
estimate of the corrected image £, in each step.

The images used to create the test images can be seen
in figures 3 and 4. In all the synthetic test cases, Gaussian
additive noise of standard deviations 0, 1, 2, 4, 8, 16, 32 and
64 have been applied. Two examples of synthetic images
can be seen in figure 5.

The iterative B-spline fitting algorithms has also been
tested on real image data of two types. These are the type of



Fig. 3: The three different 256x256 pixels synthetic "true’
images (t(x)) tested are 60 small cosine objects of intensity
100 (top), 200 small cosine objects of intensity 100 (middle)
and 60 larger cosine objects of intensity 100 (bottom).

images that we aim to mimic with the synthetic test images.
As they are from real situations, no known ground truth ex-
ists for them and therefore no objective results can be plot-
ted in relation to them. Subjective analysis is of course al-
ways possible.

The first real data set consists of 2D fluorescence images
of cells cultivated on microscope slides. The background is
very controlled in this situation and the iterative B-spline
fitting method performs excellent, both when using KDE
estimation of the background, and when using a preset fac-
tor of the standard deviation as a threshold. An example
image from this data set can be seen in figure 10.

The second real data set consists of a volume image cre-
ated by optical sectioning through a fluorescence stained
slice of a cervix tumor. Autofluorescence, i.e. natural tissue
fluorescence, gives rise to background variation. Thus, there
are two kinds of background variation present in the image;
the background variation caused by the imaging system and
the background caused by the autofluorescence. This gives
the algorithms a more problematic situation, and using a
two step approximation is probably a good solution. Work
on this case is in progress. A slice through one example
image from this data set can be seen in fig. 6.

Fig. 4: The different shading images (s(x)) added are
strong additive cosine background of intensity 100 (top),
less prominent cosine background of intensity 30 added to
a bright corner image of intensity 30 (bottom).

Fig. 5: Two examples of observed (o(x)) images. 60 small
objects on strong cosine background with N(0,8) noise (top)
and 60 large objects on mixed background with N(0,32)
noise (bottom).

Fig. 6: One slice of a 3D image volume of which the algo-
rithms have been tested on.



5.3. Resaults

Figure 7 plots the performance for homomorphic filtering
using the optimal filter size for each of the three test images
with the strong cosine background. The optimal filter size
has in each case been selected as the best performing fil-
ter size when we perform exhaustive testing and comparing
the result with the here known true solution. The mean and
median filters are not well suited for the asymmetric prob-
lem and performs very poorly in the low noise case. They
are fairly insensitive to noise though, as opposed to the 5%
and the 10% percentile filters, which fails severely when the
noise level increases. The optimal filter size varies with the
size of objects, and the small percentile filters usually have
the peak in their optimum at a smaller size. Table 1 sum-
marizes the optimal filter sizes. A small tendency towards
larger filter sizes for higher noise levels is also present.
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Fig. 7. The rms error values for the homomorphic filter-
ing at the optimal filter size for different noise situations on
image with; 60 small objects (top), 200 small objects (mid-
dle) and 60 larger objects (bottom) on a strong cosine back-
ground for; mean filter (solid line), 5% percentile (dashed),
10% percentile (crossed) and median filter (dash-dotted).

Figure 8 plots the performance at different threshold lev-
els for the three test images with the strong cosine back-
ground, using the iterative B-spline fitting algorithm with a

Table 1. Optimal filter sizes selected from the set 3, 7, 15,
31, 63, 127 and 255 pixels.

Image mean | 5% | 10% | median
60 small objects 63 15 | 15 31
(diam. ca 20 pixels)
200 small objects 63 15 | 31 63
60 larger objects 63 63 | 63 31
(diam. ca 80 pixels)

4x4 control point mesh.

The method works well in the case of the smaller ob-
jects, but not at all so well on the much more difficult large
object image. The optimal value for the threshold varies be-
tween 1.2/0 and 1.8/0. The number of iterations required
for convergence of the estimation varies between 2 and 40,
but usually stays below 15.

Comparing the kernel density estimate thresholding
with the optimal threshold value (figure 9) reveals the esti-
mate to be quite close to the optimum, and even performing
better than any possible choice of a fixed threshold in the
200 object case. In the large object case it does not really
find a good solution in the moderately noisy situations, and
is there outperformed by the optimal threshold settings.

Similar results are acquired for the mixed background
situation (not shown). Using a spline mesh of 5x5 con-
trol points instead of 4x4 changes the estimations with very
small numbers. Using even finer meshes is not recom-
mended as they will tend to model the foreground variations
also.

We have chosen only to plot rms values in the evaluation
graphs. It is of course also interesting to look at the maxi-
mum error values of the estimations. As paper space is lim-
ited, and the maximum errors are well correlated with the
rms values and do not show any significant additional infor-
mation, no graphs of these values are shown. The maximum
error values are usually about twice as large as the corre-
sponding rms values for the B-spline approach and some-
where between two and four times the corresponding rms
values for the filtering approach.
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Fig. 8: The rms error values for the iterative B-spline fitting
algorithm, plotted against different thresholds and noise sit-
uations for; 60 small objects (top), 200 small objects (mid-
dle) and 60 larger objects (bottom) on a strong cosine back-
ground.

6. CONCLUSIONS

In comparing homomorphic filtering with iterative B-spline
fitting for estimation of shading artifacts in fluorescence im-
ages, the B-spline estimate outperformed the spatial filtering
in all but one case (noise level 32 in the large object im-
age). This can most easily be seen when comparing figures
7 and 9. Using a kernel density estimate technique to find
the threshold needed in the B-spline estimation algorithm
seems to be a fairly good choice. It is not always optimal,
but in general not far behind the optimal threshold choice
and sometimes even outperforming it. Note that the opti-
mal choice of threshold is found by exhaustive search of all
thresholds, and the best solution is selected via comparison
with the ground truth image. This is of course not possi-
ble to do in a real situation, as it requires the solution to be
known.

Fig. 9: The rms error values for the best performing thresh-
old values (solid lines) together with the result using the
kernel density estimate thresholding scheme (dashed) for;
60 small objects (top), 200 small objects (middle) and 60
larger objects (bottom) on a strong cosine background. Note
the super optimal behavior for the KDE estimate in the 200
object image, i.e. the KDE thresholding scheme performs
better than any fixed threshold value. This is possible as
the KDE version may select different thresholds in different
iterations of the INU estimation algorithm.
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Fig. 10: Real image example with fitted background. Orig-
inal image before background correction (top), the fitted
spline surface of the background (middle) and the image
after background subtraction (bottom).
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