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Image enhancement and thresholding by 
optimization of fuzzy compactness 
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Abstract: Algorithms based on minimization of compactness and of fuzziness are developed whereby it is possible to obtain 
both fuzzy and nonfuzzy (thresholded) versions of an ill-defined image. The incorporation of fuzziness in the spatial domain, 
i.e., in describing the geometry of regions, makes it possible to provide more meaningful results than by considering fuzziness 
in grey level alone. The effectiveness of the algorithms is demonstrated for different bandwidths of the membership function 
using a blurred chromosome image having a bimodal histogram and a noisy tank image having a unimodal histogram as input. 
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1. Introduction 

The problem of grey level thresholding plays a 
key role in image processing and recognition. For  
example, in enhancing contrast in an image, we 

need to select proper threshold levels so that some 
suitable non-linear transformation can highlight a 
desirable set of pixel intensities compared to others. 
Similarly, in image segmentation one needs proper 
histogram thresholding whose objective is to estab- 
lish boundaries in order to partition the image 
space (crisply) into meaningful regions. 

When the regions in an image are ill-defined (i.e., 
fuzzy), it is natural and also appropriate  to avoid 
committing ourselves to a specific segmentation by 
allowing the segments to be fuzzy subsets of the im- 
age. Fuzzy geometric properties (which are the gen- 
eralization of those for ordinary regions) as defined 

by Rosenfeld [1~6] seem to provide a helpful tool for 
such analysis. 

The present paper is an at tempt to perform the 

above mentioned task automatically with the help 
of a compactness measure [4] which takes into ac- 
count fuzziness in the spatial domain, i.e., in the ge- 
ometry of the image regions. Besides this measure, 
we have also considered the ambiguity in grey level 

through the concepts of index of fuzziness [6], entro- 
py [7] and index of nonfuzziness (crispness) [8]. 

These concepts were found by Pal [9-13] to provide 
objective measures for image enhancement, thresh- 
old selection, feature evaluation and seed point ex- 
traction. 

The algorithms described here extract the fuzzy 
segmented version of an ill-defined image by mini- 
mizing the ambiguity in both the intensity and spa- 

tial domain. For  making a nonfuzzy decision one 
may consider the cross-over point of the cor- 
responding S function [14] as the threshold level. 
The nonfuzzy decisions corresponding to various 
algorithms are compared here when a blurred chro- 

mosome image and a noisy tank image are used as 
input. 

The support of the National Science Foudation under Grant 
DCR-86-03723 is gratefully acknowledged, as is the help of San- 
dra German in preparing this paper. 
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Unit, Indian Statistical Institute, Calcutta 700035, India. 

2. Measures of fuzziness in an image [8-10, 13] 

An image X of size M x N and L levels can be 
considered as an array of fuzzy singletons, each 
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having a value of membership denoting its degree 
of brightness relative to some brightness level l, 
l = 0, 1, 2 . . . . .  L - 1. In the notation of fuzzy sets, 

we may therefore write X =  {lax(X,,,)= lam./Xm.; 
m = 1, 2 . . . . .  M; n = 1, 2 . . . . .  N} where lax(X,,.) or 
lar,,./Xmn (0 < lain. < 1) denotes the grade of possess- 
ing some brightness property la,,. (as defined in the 
next section) by the (m, n)th pixel intensity Xm.. 

The index of fuzziness reflects the average 
amount of ambiguity (fuzziness) present in an im- 
age X by measuring the distance ('linear' and 'qua- 
dratic' corresponding to linear index of fuzziness 
and quadratic index of fuzziness) between its fuzzy 
property lax and the nearest two-level property lax; 
in other words, the distance between the gray tone 
image and its nearest two-tone version. The term 
'entropy',  on the other hand, uses Shannon's func- 
tion but its meaning is quite different from classical 
entropy because no probabilistic concept is needed 
to define it. The index of nonfuzziness, as its name 
implies, measures the amount of nonfuzziness 
(crispness) in lax by computing its distance from its 
complement version. These quantities are defined 
below. 

(a) Linear index of fuzziness 

2 ZmZn[lax(Xran)_ lax(x.)] (la) v l ( X )  = 

2 
- M N  ~m~n lax~,  (Xmn) (lb) 

2 
Z ~  min (lax(X,..), 1 - lax(Xm.)), 

M N  

r e = l , 2  . . . . .  M ; n = l , 2  . . . . .  N, 

(c) Entropy 

1 
H(X) - M N  ln~  ~ .~  Sn(lax(Xran)) (4a) 

with 

S.(lax(Xm,)) = - lax(Xs.)ln lax(X--) 
- ( 1  - lax(X,)) In(1 - laX(Xmn)), 

m = l , 2  . . . . .  M ; n =  1,2 . . . . .  N. (4b) 

(d) Index of nonfuzziness (crispness) 

1 
l~( X) : ~ Zm Zn l l ax(xmn) -- la~(Xmn) ] , 

X is the complement of X, 
m = 1, 2 , . . . , M ,  n = 1, 2 . . . . .  N.  

(5) 

All these measures lie in [0, 1] and have the follow- 
ing properties 

I(X) = 0 (min) for px(X,..) = 0 or 1, V(m,n), (6a) 

I(X) = 1 (max) for lax(X,..) = 0.5, V(m,n), (6b) 

I(X) _> I(X*), (6c) 

I(X) = I(X), (6d) 

where I stands for v(X), H(X) and 1 - q(X). X* is 
the 'sharpened' or 'intensified' version of X such 
that 

lax*(Xmn) ~ lax(Xran) if lax(Xm.)>__ 0.5, (7a) 

< lax(Xm,) if < 0.5. (7b) 

3. F u z z y  g e o m e t r y  o f  i m a g e  subsets  [ ! - 5 ,  13] 

where #x (Xm,) denotes the nearest two-level version 
of X such that 

la__X(Xm.) = 0 iflax(Xm,) < 0.5, (2a) 
= I otherwise. (2b) 

(b) Quadratic index of fuzziness 

v . ( X )  - [ m ( X m . )  - -  ~X(Xm.)] ~ , (3) 

r e = l , 2  . . . . .  M ; n = l , 2  . . . . .  N. 

Rosenfeld [1-5] extended the concepts of digital 
picture geometry to fuzzy subsets and generalized 
some of the standard geometric properties of and 
relationships among regions to fuzzy subsets. 
Among the extensions of the various properties, we 
only discuss here the area, perimeter and compact- 
ness of a fuzzy image subset, characterized by 
#X(Xm,), which will be used in the following section 
for developing threshold selection algorithms. In 
defining the above mentioned parameters we re- 
place #x(Xm.) by la for simplicity. 

The area of # is defined as 
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a(p) A (#  (8) 

where the integral is taken over any region outside 
which/~ = 0. 

If # is piecewise constant (for example, in a digital 
image) a(p) is the weighted sum of the areas of the 
regions on which # has constant values, weighted 
by these values. 

For the piecewise constant case, the perimeter of 
# is defined as 

A YZI , - I I (9 )  
i, j k  

i , j=  1,2 . . . . .  r ; i < j ; k =  1,2 . . . . .  rij. 

This is just the weighted sum of the length of the 
arcs AUk along which the i-th and j-th regions hav- 
ing constant/~ values #i and #j respectively meet, 
weighted by the absolute difference of these values. 

The compactness of # is defined as 

comp(p) _A_ a(p)/p 2(p). (1 O) 

For crisp sets, this is largest for a disk, where it 
is equal to 1/4~. For a fuzzy disk where # depends 
only on the distance from the origin (center), it can 
be shown that 

a(#)/pZ(p) > 1/4n. (11) 

In other words, of all possible fuzzy disks, the 
compactness is smallest for its crisp version. For 
this reason, in this paper we will use minimization 
(rather than maximization) of fuzzy compactness as 
a criterion for image enhancement and threshold se- 
lection. 

4 .  T h r e s h o l d  s e l e c t i o n  

A. Minimizing fuzziness [10, 13] 

Let us consider for example, the minimization of 
v~(X). It is seen from equations (2) that the nearest 
ordinary plane Px (which represents the closest 
two-tone version of the grey tone image X) is depen- 
dent on the position of the cross-over point, i.e., the 
0.5 value of #x. Therefore a proper selection of the 
cross-over point may be made which will result in 

a minimum value of v(X) only when the cross-over 
point corresponds to the appropriate boundary be- 
tween regions (clusters) in X. 

This can be explained further as follows. Suppose 
we consider the standard S-function (Figure 1) [14] 

px(Xm,) = S(xm.; a, b, c) 
= O, xm. < a,  (12a) 

= 2[(xm, - a)/(c - a)] 2, a < xm, < b, (12b) 

= 1 - -  2 [ ( x , . .  - -  c ) / ( c  - a)]  2, b < Xm. < C, (12C) 

= 1, X,.. > C, (12d) 

with cross-over point b = (a + c)/2 and bandwidth 

d b = b - a = c - b  

for obtaining l~x(Xm,) or #.,. (representing the de- 
gree of brightness of each pixel) from the given xm, 
of the image X. Then for a cross-over point selected 
at, say, b = I i we have px(li)= 0.5 and Pro, would 
take on values > 0.5 and < 0.5 corresponding to 
xm, > Ii and < li; which implies allocation of the 
grey levels into two ranges. The term v(X) then 
measures the average ambiguity in X by computing 
Px~r(xm,) in such a way that the contribution of the 
levels towards v(X) comes mostly from those near 
li and decreases as we move away from li. 

Therefore, modification of the cross-over point 
will result in different segmented images with vary- 
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c L-1 

X m n  

Figure 1. S function. 
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ing v(X). When b corresponds to the appropriate 
boundary (threshold) between two regions, there 
will be a minimum number of pixel intensities in X 
having /~m, --~ 0.5 (resulting in v --- 1) and a maxi- 
mum number of pixel intensities having #m, -~ 0 or 
1 (resulting in v---0) thus contributing least to- 
wards v(X). This optimum (minimum) value of fuz- 
ziness would be greater for any other selection of 
the cross-over point. 

For  the purpose of nonfuzzy segmentation, one 
can consider the level l¢ as the threshold between 
background and object, or the boundary of the ob- 
ject region. This can further be verified from equa- 
tion (14) which shows that the minimum value of 
v(X) would always correspond to the valley region 
of the histogram having minimum number of occur- 
rences. 

Method of computation (Algorithm 1) 

Given an M x N image with minimum and maxi- 

mum grey levels Imin and/max: 

Step 1. Construct the 'bright image' membership 

/~x, where 

tzx(l) = S(I; a, li, c), /min <- l, I i <_ I . . . .  (13) 

using equation (12) with cross-over point b = li and 
a particular bandwidth Ab = c - li = 1~ - a. 

Step 2. Compute the amount  of fuzziness in/~x cor- 
responding to b = l~ with 

2 ~min{S(/; a, li, c), v( X) l l~ = ~ , 

I - S(I; a,  li, c ) } h ( l )  

where 

(14a) 

2 
~ T~(l)h(l) (14b) 

M N  T 

Ti(1) = min{S(l; a, Ii, c), 1 - S(l; a, Ii, c)} (14c) 

and h(/) denotes the number of occurrences of the 
level I. 

Step 3. Vary l i from Imin to /max and select li = l~, 
say, for which v(X) is a minimum. 

lc is thus the cross-over point of ]~X(Xmn) having 
minimum ambiguity (i.e., for which #x has mini- 
mum distance from its closest two-tone version). 
/~,,n can be regarded as a f u z z y  segmented version of 
the image, with #mn < 0.5 and > 0.5 corresponding 
to regions [lmin, lc - 1] and [Ic,/max]" 

Variation of bandwidth (Ab) 

Let us call Ti(l ) (equation 14(c)) a Triangular 
Window function centered at li with bandwidth Ab. 
As Ab decreases, #x would have more intensified 
contrast around the cross-over point resulting in 
decrease of ambiguity in #x. As a result, the possi- 
bility of detecting some undesirable thresholds 
(spurious minima in the histogram) increases be- 
cause of the smaller width of the T~(I) function. 

On the other hand, increase of Ab results in a 
higher value of fuzziness and thus leads toward the 
possibility of losing some of the weak minima. 

The application of this technique to both bimo- 
dal and multimodal images with various Ti func- 
tions based on vl(X), vq(X), H(X) and q(X') is dem- 
onstrated in [10, 13]. 

B. Minimiz ing  compactness 

In the previous discussion of threshold selection 
we considered fuzziness in the grey levels of an im- 
age. In this section we take fuzziness in the spatial 
domain into consideration by using the compact- 
ness measure for selecting nonfuzzy thresholds. 

It is seen from Section 3 that both the perimeter 
and area of a fuzzy segmented image depend on the 
membership value, denoting the degree of bright- 
ness, say, of each region. It is further to be noted 
that the compactness of a fuzzy region decreases as 
its # value increases and it is smallest for a crisp 
one. We will now define two algorithms to show 
how the above mentioned concept can be utilized 
for selecting a threshold between two regions (say, 
the background and a single object) in a bimodal 
image X. 

As in the case of the previous algorithm, we con- 
struct #,,n with different S functions having constant 
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Ab value and select the cross-over pointof the Px as 
the boundary of the object for which comp(p) is a 

minimum. 

Method of computation (Algorithm 2) 

Given an M x N image with minimum and maxi- 

mum grey levels l,,i. and/m.~: 

Step 1. Construct 'bright' image Px as in Step 1 
of Algorithm 1. 

Step 2. Compute the area and perimeter of Px 
corresponding to b = l~ with 

a(p)[l, = ~ P m .  = ~S(1; a, l,, c)h(1), (15) 
m n 1 

m =  1,2 . . . . .  M; n = 1,2 . . . . .  N; 

lmi n < l, l i ~ /max 

and 

~,, N 1 Pmn p(p) I l~ = ~ - ~ , .  +, 
m = l n = l  

+ -- Pro+ 
n = l m = l  

(excluding the frame of the image). 

(16) 

For  example, consider the 4 x 4 Pro, array 

0 0 0 0  
O a f l O  
o o f l r  
0 6 0 0  

, 1 _> ~,fl, 7,6 >0 .  

Here, a(p) = ~ + 2fl + ? + 6 
and 

p(p) = Ifl- l + f l + f l +  I v - i l l  +6  +61 
+ [ ~ + ~ + 6 + f l + o + f l + , , , + G  

Step 3. Compute the compactness of Px cor- 
responding to b = li with 

a(p)]/, (17) c°mp(p) I I' pZ(p)]l" 

Step 4. Vary li from /mi, to /max and select that 
li = Ic, say, for which comp(p) is minimum 

The level 1~ therefore denotes the cross-over point 

of the fuzzy image plane Pro. which is least compact 
(or most crisp). The p,.. so obtained can therefore 
be viewed as a f u z z y  segmented version of the image 
X. 

Like the previous algorithm, one can consider lc 
as the threshold for making a nonfuzzy decision on 
classifying/segmenting the image into regions. 

Method of computation (Algorithm 3) 

Here we approximate the definitions of area and 
compactness of Px by considering that Px has only 
two values corresponding to the background and 
object regions. The p value for the background is 
assumed to be zero, whereas the p-value of the ob- 
ject region is monotonically increasing with in- 
crease in threshold level. Therefore, by varying the 
threshold, one can have different segmented ver- 
sions of the object region. Each segmented version 
thresholded at I t has its area and perimeter comput- 
ed as follows: 

a(pt) = a "Pt (18a) 

= p t ~ h ( l ) ,  It _< 1 < /max ,  ( 1 8 b )  
l 

where a denotes the area of the region on which p = 
/h (constant), i.e., the number of pixels having grey 
level greater than or equal to It and 

P(P0 = N " P (18c) 

where p denotes the length of the arcs along which 
the regions having p = ~ and p = 0 meet, or, in 
other words, the perimeter of the region on which 
p = p~ (constant). 

For  the example considered in Algorithm 2, the 
values of a(~) and p(~) for ~ = fl = 7 = 6 = p~ will 
be 5pt and 12p~ respectively. 

The algorithm for selecting the boundary of a sin- 
gle-object region from an M x N dimensional im- 
age may therefore be stated as follows: 

Step 1. Construct the 'bright' image #x using 

#x(1) = S(I; a, b, c) 

with a =/mi., C = lmax and b = (a + c)/2. 

(19) 
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Step 2. Generate a segmented version putting 

f =  0 for f < ft, (20a) 

= ~ fo r#  > #t, (20b) 

where ft is the value of fx ( l t )  obtained in Step 1. 

Step 3. Compute the compactness of the seg- 
mented version thresholded at/t; 

a • ft  a 
- -  - . ( 2 1 )  comp(f,) - p2 . f2  p2 . fit 

Step 4. Vary It in (/mi., /max) and hence ft in (0, 1) 
and select the level as boundary of the object for 
which equation (21) attains its minimum. 

It should be noted here that after approximation 
of the area and perimeter of f,, , ,  the compactness 
measure (equation (21)) reduces to 1/#, times the 
crisp compactness of the object region. Unlike Al- 
gorithms 1 and 2, here f x  is kept fixed throughout 
the process and the output of the algorithm is a 
nonfuzzy segemted version of X determined by lt. 

C. Minimizing the product (Algorithm 4) 

Algorithms 1-3 minimize either the amount of 
fuzziness or the compactness of an image X. We can 
combine these measures and compute the product 
of fuzziness and compactness, and determine the le- 
vel for which the product becomes a minimum. In 
other words, we compute 

0,,  = v ( X )  l ,  ` • c o m p ( f )  ` (22) 
(using equations (14) and (17)) 

or 0z, = v(X) ]z, • comp(ft) (23) 
(using equations (14) and (21)) 

at each value of Ii (or lt), lmi, < li, It < I . . . .  and select 
l~ = I¢, say, as threshold for which equation (22) (or 
(23)) is a minimum. The corresponding #,., repre- 
sents the fuzzy segmented version of the image as far 
as minimization of its fuzziness in grey level and the 
spatial domain is concerned. 

It should be mentioned here that although we 
considered the linear index of fuzziness in Algo- 
rithms 1 and 4, one can also consider the other mea- 
sures, namely vq(X), H(X) and q(X), for computing 
the total amount  of fuzziness in f,... 

100 

80 

60 

40 
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0 20 40 60 

Figure 2. (a) Chromosome image; (b) Histogram. 

5 .  I m p l e m e n t a t i o n  a n d  r e s u l t s  

Figure 2a shows a 64 x 64, 64 level image of a 

blurred chromosome with /min = 12 and /max = 59. 
Figure 2b shows its bimodal histogram. 

The different minima obtained using Algorithms 
1-4 for Ab = 2, 4, 8, 16 are given in Table 1. The 
enhanced version of the chromosome correspond- 
ing to these thresholds (minima) are shown in Fig- 
ures 3 to 8 only for Ab = 4, 8 and 16. In each of Fig- 
ures 3-5, (a), (b) and (c) correspond to Algorithm 
1, Algorithm 2 and equation (22) of Algorithm 4. 
Similarly, in Figures 6-7, (a), (b) and (c) correspond 
to Algorithm 1, Algorithm 3 and equation (23) of 
Algorithm 4. 

It is seen that the compactness measure usually 
results in more minima as compared to index of fuz- 
ziness. The index of fuzziness (Algorithm 1) basi- 
cally sharpens the histogram and it detects a single 
threshold in the valley region of the histogram for 
Ab = 4, 8 and 16. At Ab = 2, the algorithm as ex- 
pected results in some undesirable thresholds cor- 
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Table 1 
Minima for chromosome image 

A b = 2  Ab=4 Ab=8 Ab= 16 

v(X) 
(Algorithm l) 19, 30, 40 40 46 

40*, 46 

comp(u) 
Algorithm 2) 18, 24, 29, 54* 31, 47* 34 

31, 56* 

c o m p S )  
(Algorithm 3) 33, 48* 33, 48* 33, 48* 33, 48* 

Product 
(eqn. (22) of  19, 31, 40 41 41 
Algorithm 4) 40, 42*, 46 

Product 
(eqn. (23) of 40, 42, 42*, 45, 53 42", 45, 48 33, 48* 
Algorithm 4) 44, 46", 53 

* Denotes global minimum. 
Algorithm 3 does not  involve variation of Ab. 

d 

D 
b 

3 

C 

Figure 4. Enhanced/thresholded versions of chromosome for 
Ab = 8. (a) Algorithm 1 (1~ = 40); (b) Algorithm 2 (1¢ = 31, 47); 

(c) Equation (22) (l c = 41). 

responding to weak minima of the histogram. This 
conforms to the earlier investigation [10]. Algo- 
rithms 2 and 3 based on the compactness measure, 
on the other hand, detect a higher-valued threshold 
(global minimum) which results in better segmenta- 
tion (or enhancement) of the chromosome as far as 
its shape is concerned. 

The advantage of the compactness measures over 
the index value is that they take fuzziness in the spa- 

MJ 

m 

1 

b 

1 

Figure 5. Enhanced/thresholded versions of chromosome for 
Ab = 16. (a) Algorithm 1 (l~ = 46); (b) Algorithm 2 (lo = 34); (c) 

Equation (22) (l~ = 41). 

a 

b 

MJ 
C 

Figure 3. Enhanced/thresholded versions of chromosome for 
db  = 4. (a) Algorithm 1 (/¢ = 40); (b) Algorithm 2 (1¢ = 29, 54); 

(e) Equation (22) (lo = 40). 

1 

J 

D 
la 

C 

Figure 6. Enhanced/thresholded versions of chromosome for 
Ab = 4. (a) Algorithm 1 (l~ = 40); (b) Algorithm 3 (/¢ = 33, 48); 

(c) Equation (23) (l c -- 42, 45, 53). 
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D 
a 

tlJ 

1 

c 

Figure 7. Enhanced/thresholded versions of chromosome for 
~b = 8. (a) Algorithm 1 (lc = 40); (b) Algorithm 3 (Ic = 33, 48); 

(c) Equation (23) (l c = 42, 45, 48). 

11 

m 

a 

l lJ 

tlJ 

creases until it reaches a maximum, and then de- 
creases until a minimum (threshold) is attained. 
After this it follows the same pattern for the other 
mode of the histogram. The compactness measure, 
on the other hand, first starts decreasing until it rea- 

ches a minimum, then increases for a while, and 
then starts decreasing again. 

It is further seen from our results that the varia- 

tion of compactness in Algorithm 3 plays a more 
dominant role than the variation of index value in 
Algorithm 1 in detecting minima. The case is re- 
versed for the combination of Algorithm 1 and Al- 
gorithm 2, where the product is influenced more by 
the index value. As a result, the threshold obtained 
by equation (22) is found to be within the range of 

threshold values obtained by the individual measu- 
res. Equation (23), on the other hand, is able to cre- 
ate a higher-valued (or at least equal) threshold 
which results in better object enhancement than 
those of the individual measures. 

Figures (9(a) and 9(b) show a noisy image of a 

tank and its unimodal histogram, having Imin = 14, 

b 

¢ 

Figure 8. Enhanced/thresholded versions of chromosome for 
Lib = 16. (a) Algorithm 1 (l c = 46); (b) Algorithm 3 (1¢ = 33, 48); 

(c) Equation (23) (Ic = 33, 48). 

tial domain (i.e., the geometry of the object) into 
consideration in extracting thresholds. The index 
value, on the other hand, incorporates fuzziness 
only in grey level. It should further be noted for Al- 
gorithm 2 that as Ab increases, the number  of and 
the separation between minima also decrease. 

It is interesting to note that multiplying v(X) by 

comp0h), i.e., equation (23), produces at least as 
many thresholds as are generated by the individual 
measures. But this is not the case for equation (22) 
where the number  of thresholds is (except for Lib = 
2) equal to or less than the numbers for the individ- 
ual measures. 

The above observations can be explained as fol- 
lows. As mentioned before, v(X) basically sharpens 
the histogram. Therefore as Ii increases, it first in- 

1 0 0  

8 0  

6 0  

4 0  

2 0  

0 20 40 60 

Figure 9. (a) Tank image; (b) Histogram. 
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~ -  
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la 
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C 

Figure 12. Enhanced/thresholded versions of tank for Ab = 16. 
(a) Algorithm 2 (l¢ = 36); (b) Algorithm 3 (l¢ = 22, 33, 36); (c) 

Equation (23) (l¢ = 22, 38, 40, 42). 

d 

Figure 10. Enhanced/thresholded versions of tank for A b  = 4. 

(a) Algorithm 2 (l¢ = 23, 34); (b) Algorithm 3 (It = 22, 33, 36); 
(c) Equation (22) (l~ = 40, 49); (d) Equation (23) (l¢ = 22, 40, 42, 

44, 46). 

are generated by the compactness measure. Similar- 
ly (except for Ab = 2) equation (22) yields at most 
as many thresholds as the compactness measure. 

lm~ ~ = 50. The minima obtained by the different al- 
gorithms for Ab = 2, 4, 8 and 16 are given in Table 
2. The corresponding enhanced versions for Ab = 4, 

8 and 16 are shown in Figures 10-12 for various 
combinations of algorithms. 

As expected, the index of fuzziness alone was not 
able to detect a threshold for the tank image be- 
cause of its unimodal histogram. The compactness 
measure, on the other hand, does give good thresh- 
olds. As in the case of the chromosome image, 
equation (23) yields at least as many thresholds as 

6. Conclusions 

Algorithms based on compactness measures of 
fuzzy sets are developed and used to determine 
thresholds (both fuzzy and nonfuzzy) of an ill-de- 
fined image (or the enhanced version of a fuzzy ob- 

Table 2 
Minima for tank image 

z lb=2  Ab = 4  A b = 8  Lib= 16 

fl 

b 

, S  
Figure 1 I. Enhanced/thresholded versions of tank for Ab = 8. 
(a) Algorithm 2 (Ic = 31); (b) Algorithm 3 (lc = 22, 33, 36); (c) 

Equation (23) (l c = 22, 42, 44). 

v(X) 

(Algorithm 1) 

comp(p) 
(Algorithm 2) 21", 33 23*, 34 

comp(p) 
(Algorithm 3) 22, 33*, 36 22, 33", 36 

Product 
(eqn. (22) of 24,39*, 40,49* 
Algor i thm4) 43,46,49 

Product 
(eqn. (23) of 24,40, 22,40, 
Algorithm4) 42,46* 42" ,44 ,46  

31 36 

22,33*,36 

22,42*,44 

* Denotes global minimum. 
Algorithm 3 does not involve variation of Ab.  

22, 
33*,36 

22, 38, 
40, 42* 
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ject region) without referring to its histogram. The 
enhanced chromosome images obtained from the 
global minima of the measures are found to be bet- 
ter than those obtained on the basis of minimizing 
fuzziness in grey level, as far as the shape of the 
chromosome is concerned. Consideration of fuzzi- 
ness in the spatial domain, i.e., in the geometry of 
the object region, provides more information by 
making it possible to extract more than a single 
thresholded version of an object. Similarly in the 
case of the unimodal (noisy) tank image, the com- 
pactness measure is able to determine some suitable 
thresholds but the index parameter is not. Further- 
more, optimization of both compactness and fuzzi- 
ness usually allows better selection of thresholded/ 
enhanced versions. 
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