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Abstract. Morphological operations are simple mathematical constructs,
which have led to effective solution for many problems in image process-
ing and computer vision. These solutions employ discrete operators and
are applied to digitized images. The mathematics behind the morpho-
logical operators also exists in the continuous domain, the domain where
the images came from. We observed that the discrete operators cannot
reproduce the results obtained by the continuous operators. The reason
for this is that neither the operator (the structuring element) nor the re-
sult of the operation are band-limited, and thus cannot be represented by
equidistant samples without loss of information. The differences between
continuous-domain and discrete-domain morphology are best shown by
the dependency of the discrete morphology on sub-pixel translations and
rotations of the images before digitization.
This article describes an algorithm that applies continuous-domain mor-
phology to properly sampled images. We implemented the dilation for
one-dimensional images (signals), and with it constructed the erosion,
the closing and the opening. We provide a discussion on a possible ex-
tension to higher-dimensional images.

1 Introduction

1.1 Band-limited signals and uniform sampling

A large class of signals can be represented by an infinite set of equidistant samples
without loss of information; that is, we can reconstruct the original signal from
these samples. This class is composed of all band-limited signals in which the
highest frequency that is needed to construct the signal (the cut-off frequency)
is less than half the sampling frequency. This condition is called after Nyquist
and/or Shannon [1, 2].

A linear filter applied to a band-limited signal produces another band-limited
signal with an equal or lower cut-off frequency. This implies that such an oper-
ation can be performed on the set of uniform samples, producing the sampled
version of the continuous result [3]. However, almost all non-linear filters produce
non-band-limited outputs, which cannot be represented correctly by equidistant
samples. Therefore, the discrete implementations of these operators do not rep-
resent their continuous counterparts. This is certainly the case for morphological
operations.



1.2 Sampling morphological operations

The basic morphological operations, dilation and erosion with a flat structuring
element (SE), are equivalent to, respectively, a local maximum and local min-
imum filter (assuming the SE is a closed set, and the function it is applied to
is continuous) [4, 5]. The output at each point is defined by the maximum (or
minimum) over the neighborhood defined by the SE. When applied to a band-
limited image, this produces an image that is not band-limited, and therefore
cannot be represented correctly by equidistant samples. This can be seen by the
fact that discontinuities in the first derivative are introduced.

For certain analysis operations, e.g. a granulometry, this is not important
because the output of the morphological operation must be integrated to obtain
a single value. That is, we are not interested in sampling the (continuous) re-
sult. When the result of a discrete operation that produces a non-band-limited
result is integrated, an error is made. To reduce this error certain tricks can be
used (see [6]). For example, it is possible to interpolate the input image. This
causes the result of a discrete morphological operation to produce a better ap-
proximation to the sampled version of the corresponding continuous operation.
Therefore a smaller error is made when integrating the result.

Because the morphological operations are local maximum or minimum fil-
ters, the result is heavily influenced by resampling the discrete image (either for
interpolation, translation or rotation). This is because it is not expected that
a sample exactly hits a local maximum or minimum of a function. Resampling
will cause different values of the image to be sampled, thus changing the result
of the local maximum or minimum filters. This dependency on the sampling
grid can also be shown by translating it with respect to the original, continuous
image; see Figure 1. We will call any difference between the continuous-domain
and discrete-domain results sampling error.

In this article we propose an algorithm that implements continuous-domain
morphological operators. It works for dilations as well as erosions with flat struc-
turing elements. Openings and closings can be constructed using these two basic
operations. This method is explicitly defined for 1D images (signals). It is the-
oretically possible to extend this method to higher dimensions, albeit with a
constraint (Section 4). Some other operations, such as the watershed transform
or the morphological reconstruction, might be implemented in this framework
as well, but are beyond the scope of this paper.

2 Sampling-free dilations

To reduce the sampling error of morphological operations, we need a continuous
representation of the signal, a function f : R → R defined on an interval [x0, xN ].
We must be able to

– represent band-limited signals accurately,
– represent signals with discontinuities in the first and higher derivatives, and
– obtain such a representation from a set of given samples.
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Fig. 1. The discrete dilation is not translation-invariant, as this example shows. In
the middle of the top row is a continuous signal. We sample this signal twice, using
uniform sampling, but with a different offset of the sampling grid. We are still able to
recreate the original signal from both these instances, but the results of the dilation are
different. Neither result is the same as a sampled version of the result of the continuous
dilation.

We propose to use a piece-wise polynomial function, which is easy to work with.
We limit ourselves to third-order polynomials, for which zero-crossings, maxima
and minima can be found analytically. Also, it is possible to construct a good
approximation of a band-limited function with third-order polynomials [7].

2.1 Representing a 1D signal as a piece-wise polynomial

To represent a continuous one-dimensional function as a set of third-order poly-
nomial segments, the following information is required:

– Starting point of each polynomial (xi)
– Polynomial coefficients (ai, bi, ci, di)
– Length of each polynomial (li)

Since the function we are representing is defined everywhere in the signal
domain, the end point of a polynomial is equal to the starting point of the next
one. Thus the length is redundant, and we only need to store the starting points
of each polynomial and the end point of the last polynomial. The function is
then written as a collection of segments Si(x)

Si(x) = ai + bi(x − xi) + ci(x − xi)2 + di(x − xi)3 , (1)

i ∈ [0, 1, 2, ...N − 1], plus a right bound xN .



Certain operations on such a representation are trivial. For example, shifting
the whole function just requires incrementing or decrementing the starting points
xi, and inverting the function is accomplished by negating all the polynomial
coefficients. Other operations we apply to the polynomial function are sampling
(evaluating the function at chosen locations) and integration. The integral over
the function is the sum of the integral over each segment, determined by

∫ xN

x0

f(x) =
N−1∑
i=0

1
4dix

4
i+1 + 1

3cix
3
i+1 + 1

2bix
2
i+1 + aixi+1 . (2)

2.2 Converting the sequence of samples into a piece-wise polynomial

To create the piece-wise polynomial representation f(x) from the given samples
f [n], we require an interpolation function that has certain characteristics:

– The resulting function must have as many continuous derivatives as possible
(since the original band-limited signal is infinitely differentiable). We use
third-order polynomials, thus we require that the second-order derivative be
continuous.

– It must be a local representation. That is, the zone of influence of a single
pixel must be limited, because only a limited number of samples is available.

– It must be capable of producing a polynomial representation.

An interpolator that satisfies these constraints is the cubic spline interpola-
tor [8–10]. It produces polynomial segments in between each two sample points.
Although its impulse response decays quite quickly, it requires a filter with an
infinite impulse response to determine polynomial coefficients. This filter can be
implemented recursively [11]. Note that a spline of infinite order equals the ideal
interpolator (the sinc function) [7]. Thus, a cubic spline is an approximation of
the ideal interpolator.

In the case of noisy input samples, it might be better to use a least squares
spline [8]. In this case, the reconstructed function does not need to be equal to
the samples at the sample locations, and thus can be smoother. Furthermore, by
computing the piece-wise polynomial in this way the number of pieces is reduced,
which makes further processing faster as well.

2.3 Dilations

Examining the 1D dilation operation with a flat, compact SE B, one can readily
see that the result is composed of plateaus (constant sections) as well as slopes
with the exact same shape as can be found in the input signal (see Fig. 2). Let
us define the set B as

B = {x|x ∈ [−r, r]} . (3)

The plateaus are formed when, at a point x, the maximum value over the
neighborhood B comes from a local maximum (see Fig. 2a). At points near x, the
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Fig. 2. Construction of the dilated function. a: maxima create plateaus in the output.
b: slopes are shifted by a fixed distance, dictated by the size of the structuring element.
In these graphs, the thin black line is the input signal, the dotted black line is the output
signal, the thick black line shows how the output signal is constructed, and the thick
grey lines give the size of the structuring element (2r).

maximum over the neighborhood will also come from the same local maximum,
and will therefore receive the same value. These plateaus will have a width of at
most 2r, centered on the local maximum.

The sloped regions are produced when the maximum over B does not come
from a local maximum. In this case, it must come from the border of the struc-
turing element (see Fig. 2b). At nearby points, the resulting value also comes
from the same edge of the neighborhood. Therefore, a slope is created that is the
exact copy of a slope from the input signal, shifted by r or −r. This is known as
the slope transform [12, 13].

Thus, for a one-dimensional signal, the output of the dilation with a flat,
compact SE is the point-wise (or, in our case, the segment-wise) maximum of
three functions:

– the input signal translated by r: f(x − r),
– the input signal translated by −r: f(x + r), and
– a signal composed of plateaus centered around each of the local maxima.

The above analysis is valid for flat, compact and symmetric structuring ele-
ments. Any non-symmetric flat, compact SE C, defined by

C = {x|x ∈ [−r − d, r − d]} = {x|x + d ∈ [−r, r]} , (4)

can be converted into a symmetric SE B by translating the input or the output
signal (δ denotes the dilation operator):

δCf(x) = δBf(x − d) = [δBf ](x − d) . (5)



A non-compact structuring element can be constructed with the union of com-
pact structuring elements:

δ[
⋃

i Bi]f(x) =
∨
i

δBif(x) . (6)

Thus, the above analysis suffices for any flat SE.

2.4 Implementation

The Plateau Function Creating the function composed of the plateaus is
not very complicated. First, all local maxima must be found. This is easily
accomplished by examining the first and second order derivatives of each of the
polynomials:

S′
i(x) = 0 ∧ S′′

i (x) < 0 ⇔ x is a local maximum. (7)

Note that finding these derivatives is trivial, and finding the zero crossings of the
first derivative is accomplished by solving a quadratic equation. Additionally, in
the result of a previous morphological operation there can be maxima in the
form of cusps and plateaus. These will be found only on knots (boundary points
between polynomial segments), and are identified by comparing the derivatives
of both polynomials at those points:

S′
i(xi+1) ≥ 0 ∧ S′

i+1(xi+1) ≤ 0 ⇔ x is a local maximum. (8)

These maxima must be sorted according to their value, largest first. Then
the plateau image is created by adding a 0th order polynomial segment, ranging
from x−r to x+r, and with value f(x), for each maximum at x (see Fig. 3). Each
segment added must not overlap with any of the polynomials already present
in the function, so it must be cropped to the available space (actually, we are
taking the maximum over these segments implicitly). At the end of this process,
eventual ‘holes’ must be filled with segments of value −∞, so that the generated
function is defined everywhere in the signal domain, and can be stored in the
same manner as the input signal.

Maximum over the Segment Functions The last step is to find the function
that is the maximum of the three functions. This is a two-step process in which
first two functions are compared, and then the result is compared to the third.
To avoid complicated exceptions in the algorithm, we pad the three functions
with zero-order polynomials so that they span the same interval (from x0 − r to
xN + r). The translated versions of the input signal are extended with the edge
value (so as to keep them continuous). The function containing the plateaus is
extended with −∞.

This comparison is very simple, but potentially generates quite a lot of seg-
ments. For each (portion of a) segment S1

i (x) in one function that spans the
same region as another (portion of a) segment S2

i (x) in the other function, the
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Fig. 3. Construction of the plateau function. At each local maximum a plateau (0th

order polynomial) with the size of the structuring element is set. In the case of over-
lapping plateaus, the one with the highest value is kept intact; the other one must be
cropped. Empty regions are filled with segments of value −∞ so that the function is
defined everywhere in the signal domain.

intersection points S1
i (x) = S2

i (x) must be found (this is a cubic equation, the
solution can be found in Bronstein [9]). There are up to three intersection points,
and thus up to four sub-segments. For each of these, the polynomial with the
larger value is used to construct the output signal.

2.5 Erosions, Closings and Openings

Since the erosion ε is the dual operation of the dilation [14], it is implemented
by inverting the signal, applying the dilation, and inverting the result again:

εBf(x) = −δB[−f(x)] . (9)

As stated above, inverting the piecewise polynomial function is easily accom-
plished by negating all the polynomial coefficients.

The closing φ is created by applying an erosion to the result of the dilation,

φBf(x) = εB̌[δBf(x)] , (10)

and the opening γ is constructed the other way around,

γBf(x) = δB̌[εBf(x)] . (11)

The algorithm as described above can be applied on its own result, so that
implementing closings and openings becomes trivial.1

1 The source code for the sampling-free morphology is available through the author’s
web site at http://www.ph.tn.tudelft.nl/~cris/sfm.html.
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Fig. 4. Two interesting portions of a 1D signal, together with its sampling-free dilation.
The open dots give the values of the discrete dilation for comparison. The SE has a
length of 5 pixels.
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Fig. 5. Two interesting portions of a 1D signal, together with its sampling-free closing.
The open dots give the values of the discrete closing for comparison. The SE has a
length of 5 pixels.

3 Results

3.1 A first examination of the algorithm

We extracted a line out of an image to apply our methods to. Figure 4 shows
two portions of this line, along with the reconstructed continuous function, the
result of a discrete dilation (i.e. one applied to the samples directly) and that
of the sampling-free dilation proposed here. Figure 5 shows the results of the
discrete and sampling-free closings on the same signal.

In these figures we can see that the sampling-free dilation reaches higher
values than the discrete variant at some points, especially on plateaus. The value
of this signal at these points is equal to the value of the true local maximum
of the input signal (or rather of the cubic spline approximation). Likewise, the
closing has higher values at the plateaus (the continuous version is equal only in
exceptional cases).



3.2 Granulometry

A granulometry is a multi-scale closing (or opening) [14]. The result of the op-
eration at each scale is integrated to obtain a graph comparable to a cumulative
size distribution. See Soille [5] for more information on granulometries. We nor-
malize the measured granulometric curve so that the first value is 0 and the last
value is 1.

We created a signal of which we know the function that represents the gran-
ulometric curve. To the samples of this signal we applied a granulometry with
both the sampling-free and discrete closings, and compared the results to the
theoretical granulometric curve.

The signal we used is a sine,

f(x) = sin

(
2πx

T

)
, (12)

with T the period. The sampling distance is 1, meaning that T must be larger
than 2 for error-free sampling. The theoretical granulometric curve is described
by

h(r) =

{
1
π sin

(
rπ
T

) − r
T cos

(
rπ
T

)
for r < T ,

1 for r ≥ T ,
(13)

with r the size of the structuring element. We used two periods: T1 = 200
9 and

T2 = π. We chose these values because each period of the sine starts at a different
offset with respect to the sampling grid. Both signals can be correctly sampled
at a rate of 1. The first one can be interpolated very accurately using cubic
splines, whereas the second will produce larger errors due to the inability of the
spline to correctly reconstruct high-frequency signals (see Fig. 6). The frequency
characteristic of the cardinal cubic spline can be found in Fig. 2 of [8]. The spline
interpolation on the second signal produces a result that is obviously not an
exact reproduction of the input signal. Therefore, the result of the granulometry
is inaccurate as well. However, it lies much closer to the theoretical curve than
the result of the discrete granulometry. Another obvious drawback of the discrete
granulometry is the discreteness of the structuring element, which can only be
constructed with integer lengths. Because of this, the granulometry with the
sampling-free closing could be sampled much more densely.

We repeated the above experiments after adding noise to the input samples
(see Fig. 7). The results show more or less the same characteristics, except that
the granulometric curves deviate a bit more from the theoretical (noiseless) val-
ues. These results might improve when using regularized splines as mentioned
above.

4 Extension to multi-dimensional images

Morphological operations can be defined for images of any dimensionality. There-
fore, we would like to extend our algorithm to multi-dimensional images as well.
This is, however, not an easy task.
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Fig. 6. Granulometry of a sine function sampled at different rates. On the left are
the samples and the continuous function created with cubic splines. On the right is
the result of the granulometry, computed with both discrete and continuous-domain
morphology, compared to the theoretical granulometric function.
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Fig. 7. Granulometry of a sine function sampled at different rates. Noise was added
to the samples prior to the analysis. On the left are the samples and the continuous
function created with cubic splines. On the right is the result of the granulometry,
computed with both discrete and continuous-domain morphology, compared to the
theoretical granulometric function of the noiseless signal.



Obviously, extension to multi-dimensional images by processing each dimen-
sion separately will not work. In this case, maxima lying in between raster lines
will be missed. This shows that it is necessary to create a patch representation
of the image (using multi-dimensional cubic splines), and work on that.

However, using multi-dimensional structuring elements with this representa-
tion also introduces a problem: we would need to create a translated version of
the input image for each point along the boundary of this structuring element.
Since there are an infinite number of these points, this is an impossible task. If
we would simplify the structuring element by taking only a limited number of
points along the contour, we would again miss some of the local maxima.

Thus, we should limit ourselves to one-dimensional structuring elements
working on a patch representation of a multi-dimensional image. Now we can
implement the same operations we suggested above: create two translated ver-
sions of the input image (one for each end of the structuring element), and an
image consisting of plateaus centered around each of the local maxima in the
image; then take the maximum over these three images. In this case, however,
local maxima are all points for which there is a maximum in the direction of
the structuring element. These points form lines (in a two dimensional image;
in an N -D image this is a (N − 1)-D plane). The plateaus we create are there-
fore patches with a zero-order polynomial in one direction, and some third-order
polynomial in all the orthogonal directions. These polynomials are taken from
the input patches along the local maxima line.

The only problem with this approach is that the patches produced by a
dilation have very complex boundaries (given by third-order polynomials). This
makes an implementation difficult, although the theoretical formulation is trivial.

Using linear structuring elements it is possible to create more complex multi-
dimensional structuring elements such as the rectangle, the hexagon, the oc-
tagon, etc. [14, 5]. These shapes are increasingly better approximations of a
disk. Thus, it is possible to create an arbitrarily accurate approximation to the
isotropic SE.

5 Conclusion

In this paper we have shown that it is possible to apply continuous-domain
morphology to one-dimensional images (signals). On a sampled signal, discrete
morphology produces results that are not the same as the results produced by
continuous morphology on the signal before sampling. By representing the con-
tinuous signal as a piece-wise polynomial function, we were able to compute di-
lations and erosions with flat structuring elements that produce the exact same
results as their continuous-domain counterparts would produce. Some error is
introduced when converting the sampled signal into a piece-wise polynomial
function, but the morphological operations themselves do not introduce any fur-
ther errors. It is possible to cascade dilations and erosions to obtain openings
and closings and other, more complex morphological filters.



We applied a granulometry (multi-scale closings) to some sampled test signals
using the sampling-free closings constructed with our algorithms. The resulting
granulometric curve is compared to the theoretical result. The differences found
were due to the difficulty in converting the samples of a high-frequency signal
into a piece-wise polynomial function. This process is further complicated by the
addition of noise to the input samples. These results should improve when using
regularized splines instead of interpolating splines.

To apply these methods to higher-dimensional images, the decomposition
principle must be used. Some structuring elements can be decomposed into one-
dimensional operations. These can be applied to the polynomial patch represen-
tation of the multi-dimensional image. Even though it is trivial to state theoret-
ically, the cubic boundary between these polynomial patches is complicated to
use in an actual implementation.

References

1. Nyquist, H.: Certain topics in telegraph transmission theory. Transactions of the
AIEE (1928) 617–644 [reprinted in: Proceedings of the IEEE 90 (2002) 280–305].

2. Shannon, C.: Communication in the presence of noise. Proceedings of the IRE 37
(1949) 10–21 [reprinted in: Proceedings of the IEEE 86 (1998) 447–457].

3. van Vliet, L.J.: Grey-Scale Measurements in Multi-Dimensional Digitized Images.
PhD thesis, Pattern Recognition Group, Faculty of Applied Physics, Delft Univer-
sity of Technology, Delft (1993)

4. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, London
(1982)

5. Soille, P.: Morphological Image Analysis. Springer-Verlag, Berlin (1999)
6. Luengo Hendriks, C.L., van Vliet, L.J., van Kempen, G.M.P., Bouwens, E.C.M.:

(Using morphological sieves to detect minute differences in pore sizes) Submitted
to Journal of Microscopy.

7. Unser, M., Aldroubi, A., Eden, M.: Polynomial spline signal approximations: Fil-
ter design and asymptotic equivalence with shannon’s sampling theorem. IEEE
Transactions on Information Theory 38 (1992) 95–103

8. Unser, M., Aldroubi, A., Eden, M.: B-spline signal processing: Part I - theory.
IEEE Transactions on Signal Processing 41 (1993) 821–833

9. Bronstein, I.N., Semendjaev, K.A., Musiol, G., Mühlig, H.: Taschenbuch der Math-
ematik. 4th edn. Verlag Harri Deutsch, Thun, Frankfurt am Main (1999)

10. de Boor, C.: A Practical Guide to Splines. Springer, New York (2001)
11. Unser, M., Aldroubi, A., Eden, M.: Fast B-spline transforms for continuous image

representation and interpolation. IEEE Transactions on Pattern Analysis and
Machine Intelligence 13 (1991) 277–285

12. van den Boomgaard, R., Smeulders, A.: The morphological structure of images:
The differential equations of morphological scale-space. IEEE Transactions on
Pattern Analysis and Machine Intelligence 16 (1994) 1101–1113

13. Dorst, L., van den Boomgaard, R.: Morphological signal processing and the slope
transform. Signal Processing 38 (1994) 79–98

14. Matheron, G.: Random Sets and Integral Geometry. Wiley, New York (1975)


