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SVD based initialization:A head start for nonnegative matrix factorization
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Abstract

We describe Nonnegative Double Singular Value Decomposition (NNDSVD), a new method designed to enhance the initialization stage of
nonnegative matrix factorization (NMF). NNDSVD can readily be combined with existing NMF algorithms. The basic algorithm contains no
randomization and is based on two SVD processes, one approximating the data matrix, the other approximating positive sections of the resulting
partial SVD factors utilizing an algebraic property of unit rank matrices. Simple practical variants for NMF with dense factors are described.
NNDSVD is also well suited to initialize NMF algorithms with sparse factors. Many numerical examples suggest that NNDSVD leads to rapid
reduction of the approximation error of many NMF algorithms.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Nonnegative matrix factorization (NMF), that is the
approximation1 of a (usually nonnegative) matrix, A ∈ Rm×n,
as a product of nonnegative factors, say W ∈ Rm×k+ and
H ∈ Rk×n+ , for some selected k, has become a useful tool in
a large variety of applications, and the scientific literature and
software tools on the subject and variants thereof are rapidly
expanding; see e.g. Refs. [1–17] and description of specific
software packages in Refs. [18,19]. As usual, we denote by
A�B the componentwise inequality �i,j ��i,j for all elements
of (equisized matrices) A, B. For convenience, following Ref.
[20] we denote by Rm×n+ the set of all m × n nonnegative
matrices. The motivation behind NMF is that besides the
dimensionality reduction sought in many applications, the
underlying data ensemble is nonnegative and can be better
modeled and interpreted by means of nonnegative factors. For
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instance, image collections are frequently stored as matrices of
nonnegative elements, where each column encodes one image
of the collection. The application of NMF, then, would produce
a dictionary of k basis images as columns of factor W, and the
nonnegative coefficients for the linear combination of these im-
ages that reconstructs an approximation of the originals in fac-
tor H. In text mining under the vector space model, document
collections are stored as term-document matrices of nonneg-
ative elements, each matrix column encoding one document.
Each column of W corresponds to a basic document, and the
resulting k documents can be additively combined using coeffi-
cients from H to reconstruct an approximation of the document
collection as well as for other applications profiting from di-
mensional reduction such as clustering [8,15,16]. In the above
cases, NMF provides a framework for learning parts of images
and semantic features of text. Another area of application is
space situational alertness, in which data collections consist of
spectral reflectance data of a space object containing essential
information regarding the materials composing it. Each col-
umn of the matrix represents one such spectral measurement.
After the NMF, factor W contains spectral signatures that aid in
detecting the type of constituent materials for the space object,
and H contains coefficients that help in the computation of the
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proportional amounts in which these materials appear in the
object [21]. In all cases, the additive nature of the factorization
has been proposed as an important aid in interpretation.

Our target NMF problem is as follows:

Given A ∈ Rm×n+ , and natural number k < min(m, n), com-
pute W ∈ Rm×k+ and H ∈ Rk×n+ that solve minW �0,H �0�
(A,WH), where �(A,WH) : Rm×n×Rm×n→ R+ is some
suitable distance metric.

In the NMF algorithms combined with the initialization pro-
posed in this paper, the distance metrics will be the Frobenius
norm ‖A−WH‖F , or modifications thereof, or the generalized
Kullback–Leibler divergence D(A||WH). All are used exten-
sively in the literature, and are directly related to more general
metrics [1].

As defined, the NMF problem is a more general instance of
the case where we demand factors whose product exactly equals
the matrix (ignoring roundoff, as we will do throughout this pa-
per). Such nonnegative decompositions were a central topic al-
ready in early treatments of nonnegative matrices (see e.g. Ref.
[20]). In general, there is no guarantee that an exact nonneg-
ative factorization exists for arbitrary k. It is known, however,
that if A�0, then there exists a natural number (called non-
negative rank) and nonnegative W and H having that number
as rank so that A=WH holds exactly (cf. Ref. [22].) Further-
more, NMF is a nonconvex optimization problem with inequal-
ity constraints and iterative methods become necessary for its
solution (see e.g. Refs. [23,24]). Unfortunately, current NMF
algorithms typically converge slowly and then at local minima.

There exist many algorithms for approximating matrices us-
ing nonnegative factors (Ref. [11] plays pivotal role, cf. the
survey [21]). Popular and used by many researchers as basis
for further developments are two algorithms proposed in Ref.
[25]. These rely on an iterative multiplicative or additive cor-
rection of initial guesses for the pair of factors (W, H). The
algorithms were proven to converge monotonically and can be
interpreted as diagonally rescaled gradient descent methods; cf.
Refs. [2,26]. Another important issue addressed by researchers
is the incorporation of further constraints appropriate for the
problem; see e.g. [6,7,13,15]. One generic constraint is sparsity:
It is frequently important to minimize the number of features
used in reconstruction, e.g. in sparse linear representation, in
the case of signal processing [6,7,27–29]. Ref. [7], for exam-
ple, uses a sparsity metric and describes an algorithm to satisfy
it in the factors.

Due to the iterative nature of all NMF algorithms, the ini-
tialization of the pair of factors (W, H) is cited in the literature
as an important component in the design of successful NMF
methods. In this paper we focus on this issue. With few ex-
ceptions (see Refs. [24,30,31]) most NMF algorithms in the
literature use random nonnegative initialization for (W, H). It-
erates converge to a local minimum, so it becomes necessary
to run several instances of the algorithm using different ran-
dom initializations and then select the best solution. Because
NMF can be viewed as a bound optimization problem, it is
also likely to suffer from slow convergence [24]. Therefore,

the overall process can become quite expensive. As a step to-
ward the development of overall faster algorithms for NMF, we
propose a novel initialization strategy that is based on singular
value decomposition (SVD) and has the following features: (i)
it can be readily combined with all available NMF algorithms;
(ii) in its basic form, contains no randomization and therefore
converges to the same solution for any given algorithm; (iii) it
rapidly provides an approximation with error almost as good
as that obtained via the deployment of alternative initialization
schemes when these run to convergence. We call the proposed
initialization strategy NNDSVD (Nonnegative Double Singular
Value Decomposition) to underline the fact that it is based on
two SVD processes: One to create the rank-k approximation,
followed by a “small” SVD on each of the positive sections of
each of the factors. Because of property (iii) it is expected to be
especially useful whenever the application constrains the max-
imum time interval for result delivery. NNDSVD depends on an
interesting property (Lemma 1 and Theorem 2) concerning the
behavior of unit rank matrices; to the best of our knowledge,
this fact remained unnoticed until now, and could have inter-
esting applications in other domains. We show one family of
nonnegative matrices for which NNDSVD returns an exact NMF
(Proposition 7). The basic algorithm also admits an interesting
modification, we name 2-step NNDSVD, that has the potential
to provide initialization at an even lower cost.

In the sequel, given any vector or matrix variable X, its “pos-
itive section”, X+�0, will be defined to be the vector or matrix
of same size that contains the same values as X there where
X has nonnegative elements and 0 elsewhere. The “negative
section” of X will be the matrix X− = X+ − X, where again
X−�0. It follows immediately that any vector or matrix can be
written as X=X+−X−, and if X�0 then X−=0. MATLAB-
like notation is followed when necessary. The notions “positive”
and “negative”, of course, are slight misnomers, since we are
really referring to nonnegative and absolute value of nonposi-
tive values respectively. We prefer them, however, and let the
handling of zero values be made clear by context. When we
seek sparse factors we will refer to “sparse NMF”. We occa-
sionally refer to “dense NMF” when we need to underline that
we do not seek sparsity. The paper is organized as follows:
Section 2 discusses initialization in the context of related work
and describes the properties of NNDSVD. Section 3 illustrates
the use and performance of the method in a variety of cases.

2. SVD-based initializations

Most research papers to date discussing NMF algorithms
mention the need to investigate good initialization strategies
(see e.g. Ref. [21]) but, in the absence of any additional infor-
mation about the problem, initialize the elements of the pair
(W, H) with nonnegative random values. In some cases, only
one of the factors (e.g. W) is initialized (as random) while
the other is chosen to satisfy certain constraints, possibly ob-
tained after solving an optimization problem using the initial
values for the former. In the sequel, we would be referring to
“initialization of (W, H)” to mean initialization of either or
both factors, but would be more specific whenever necessary.
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Because of the nature of the underlying optimization problem,
repeated runs of any of these algorithms with different initial-
izations will be necessary and will lead to different answers.
Before proceeding, we need to clarify what we mean by “good
initialization strategy”. Two possible answers are: (i) one that
leads to rapid error reduction and faster convergence; (ii) one
that leads to better overall error at convergence. We concentrate
on the former objective while noting that a satisfactory answer
to the latter remains elusive.

Because NMF is a constrained low rank matrix approxima-
tion, we seek the initialization strategy amongst alternative low
rank factorization schemes. Indeed, one of the few published al-
gorithms for nonrandom initialization (see Refs. [30,31]), relies
on a method (see Ref. [32]) that provides low rank approxima-
tion via clustering. Specifically, spherical k-means (Skmeans)
is used to partition the columns of A into k clusters, selecting
the normalized centroid representative vector (named “concept
vector”) for each cluster and using that vector to initialize the
corresponding column of W. Depending on the NMF algorithm
used subsequently, H can either be random or be computed as
arg minH �0 ‖A −WH‖F . It was shown in Refs. [30,31] that
only few iterations of this clustering algorithm are sufficient
and that the scheme, we call CENTROID in the sequel, leads to
faster error reduction than random initialization. Specifically,
numerical experiments in Ref. [31] showed that the method, at
some overhead for the clustering phase, can save several ex-
pensive NMF update steps.

In our quest that eventually led to the framework proposed
in this paper, we first explored initializations inspired by the
aforementioned original ideas of Refs. [30,31] for structured
initialization. Specifically, we deployed an SVD analogue (cf.
Ref. [33]) to the low rank approximation methods used in CEN-

TROID. We first clustered the columns of A into k groups and
then initialized (W, H) using nonnegative left and right sin-
gular vectors corresponding to the maximum singular value of
each group. Their existence is guaranteed by Perron–Frobenius
theory; see also Ref. [34]. Results were mixed: sometimes the
SVD approach would outperform CENTROID, sometimes not.
We were thus motivated to consider alternative approaches.

2.1. NNDSVD initialization

We next present a method for initialization that turns out
to be quite effective. We start from the basic property of the
SVD, by which, every matrix A ∈ Rm×n of rank r � min(m, n)

can be expressed as the sum of r leading singular factors
A =∑r

j=1�j uj v
�
j , where �1 � · · · ��r > 0 are the nonzero

singular values of A and {uj , vj }rj=1 the corresponding left and
right singular vectors. Then, for every k�r , the optimal rank-
k approximation of A with respect to the Frobenius norm, say
A(k), is readily available from the sum of the first k factors (cf.
Ref. [35, Schmidt and Eckart–Young theory]), that is

A(k) :=
k∑

j=1

�jC
(j) = arg min

rank(G)�k
‖A−G‖, (1)

where C(j) = ujv
�
j . We assume, from now on, that A is non-

negative. Our approach uses a modification of expansion (1)
that will produce a nonnegative approximation of A and pro-
vide, in the same time, effective initial values for (W, H). In
particular, every unit rank matrix C(j) is approximated by its
nonnegative section C

(j)
+ ; subsequently, (W, H) are initialized

from selected singular triplets of C
(j)
+ . The factors C

(j)
+ possess

special properties that play a key role in our algorithm. As we
will show:

• Their rank is at most 2 because of the “set to zero with small
rank increment” property (Lemma 1).
• They are the best nonnegative approximations of C(j) in

terms of the Frobenius norm (cf. Lemma 5).
• There exist corresponding singular vectors that are nonneg-

ative and are readily available from the singular triplets
{�j , uj , vj } of A (cf. Theorem 2).

In summary, NNDSVD can be described as follows: (i) Com-
pute k leading singular triplets of A; (ii) form the unit rank
matrices {C(j)}kj=1 obtained from singular vector pairs;
(iii) extract their positive section and respective singular
triplet information; (iv) use them to initialize (W, H). The
two SVD’s, in steps (i) and (iii), motivated the naming of
NNDSVD. On the other hand, we will show that because
of special properties of C

(j)
+ , Steps (ii) and (iii) can be

implemented at very low cost. Using the notation intro-
duced thus far, we show the Lemma that is central in our
discussion.

Lemma 1. Consider any matrix C ∈ Rm×n such that
rank(C) = 1, and write C = C+ − C−. Then rank(C+), rank
(C−)�2.

Proof. From the rank assumption we can write C = xy� =
(x+−x−)(y+−y−)�=(x+y�+ +x−y�−)−(x+y�− +x−y�+). All
factors are nonnegative; moreover, for each x, y, the nonzero
values of the positive section are situated at locations that are
complementary than the nonzeros of the corresponding negative
section. Consequently, each nonzero element of C is obtained
from exactly one term from the terms on the right. Therefore,
C+ = x+y�+ + x−y�− and C− = x+y�− + x−y�+ and the rank of
each is at most 2. It is worth noting, as an alternate algebraic
proof, that we can also write C = XTY, where (in MATLAB
notation) X := [x+, x−], Y =[y�+; y�−] and T =[1,−1;−1, 1].
Note that T is unit rank. The expression C=C+−C− amounts
to decomposing T = I − J , where J = [0, 1; 1, 0] so that C =
XY− XJY and C+ = XY, C− = XJY, each of which has rank at
most 2. �

The result, albeit simple, is quite remarkable: It tells us that
if we zero out all negative values of a unit rank matrix, the
resulting matrix will have rank 2 at most. We thus call the
above “set to zero with small rank increment” property. It is
worth noting and easy to verify that matrices of rank(C) > 1 do
not share a similar property. For example consider the matrix
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C = XY�, where X, Y ∈ R6×2 are

X =

⎛
⎜⎜⎜⎜⎜⎝

1 2
−3 −4

2 3
−4 −5
−5 6

6 −7

⎞
⎟⎟⎟⎟⎟⎠

and Y =

⎛
⎜⎜⎜⎜⎜⎝

2 1
3 −2
4 4
−5 −5

6 6
−6 7

⎞
⎟⎟⎟⎟⎟⎠

.

Although rank(C)= 2, rank(C+)= 5. Also rank(C−)= 5.
Because C+ is nonnegative, its maximum left and right sin-

gular vectors will also be nonnegative from Perron–Frobenius
theory. The next theorem says that the remaining, trailing, sin-
gular vectors are also nonnegative. Furthermore, because of the
special structure of C+, its singular value expansion is readily
available.

Theorem 2. Let C ∈ Rm×n have unit rank, so that C = xy�
for some x ∈ Rm, y ∈ Rn. Let also x̂± := x±/‖x±‖, ŷ± :=
y±/‖y±‖ be the normalized positive and negative sections of
x and y, and �± = ‖x±‖‖y±‖ and �± = ‖x±‖‖y∓‖. Then the
unordered singular value expansions of C+ and C− are

C+ = �+x̂+ŷ�+ + �−x̂−ŷ�− and

C− = �+x̂+ŷ�− + �−x̂−ŷ�+ . (2)

The maximum singular triplet of C+ is (�+, x̂+, ŷ+) if �+ =
max(‖x+‖‖y+‖, ‖x−‖‖y−‖), otherwise it is (�−, x̂−, ŷ−). Sim-
ilarly, the maximum singular triplet of C− is (�+, x̂+, ŷ−) if
�+ =max(‖x+‖‖y−‖, ‖x−‖‖y+‖) else it is (�−, x̂−, ŷ+).

Proof. By construction, each pair of vectors x± and y± have
their nonzero values at complementary locations, therefore
x�−x+=0 and y�−y+=0 and each of the matrices X := [x̂+, x̂−]
and Y := [ŷ+, ŷ−] is orthogonal. Terms �± are nonnegative,
therefore the result follows by the uniqueness of the singular
value expansion. Similarly for the decomposition of C−. �

The above result establishes nonnegativity for all singular
vectors corresponding to nontrivial singular values of C±. There
is an immediate connection of the decompositions introduced
in Theorem 2 with the concept of nonnegative rank, already
mentioned in the Section 1.

Definition 3 (Gregory and Pullman [22]). The nonnegative
rank, rank+(A), of A ∈ Rm×n+ is the smallest number of non-
negative unit rank matrices into which a matrix can be decom-
posed additively.

Nonnegative rank is difficult to compute (see e.g. Ref. [36]).
It generally holds, however, that rank(A)�rank+(A)� min
(m, n) (cf. Ref. [22]). As shown in Ref. [36], when rank(A)�2,

then rank+(A) = rank(A). Combining with our previous re-
sults, we can provide precise estimates regarding the nonnega-
tive ranks of C±.

Corollary 4. (i) rank+(C±)�2. (ii) rank+(C±) = rank(C±).
(iii) If C contains both positive and negative elements, then

Table 1
NNDSVD initialization of nonnegative matrix, in MATLAB notation

Inputs: Matrix A ∈ Rm×n+ , integer k < min(m, n).

Output: Rank-k nonnegative factors W ∈ Rm×k+ , H ∈ Rk×n+ .
1. Compute the largest k singular triplets of A: [U, S, V ] = psvd(A, k)

2. Initialize W(:, 1) = sqrt(S(1, 1)) ∗ U(:, 1) and H(1, :) =
sqrt(S(1, 1)) ∗ V (:, 1)′
for j = 2 : k
3. x = U(:, j); y = V (:, j);
4. xp = pos(x); xn= neg(x); yp = pos(y); yn= neg(y);
5. xpnrm= norm(xp); ypnrm= norm(yp);mp = xpnrm ∗ ypnrm;
6. xnnrm= norm(xn); ynnrm= norm(yn);mn= xnnrm ∗ ynnrm;
7. if mp > mn, u= xp/xpnrm; v = yp/ypnrm; sigma =mp;

else u= xn/xnnrm; v = yn/ynnrm; sigma =mn; end
8. W(:, j)= sqrt(S(j, j) ∗ sigma) ∗ u and H(j, :)= sqrt(S(j, j) ∗
sigma) ∗ v′;
end

The call psvd(A, k) computes the k leading singular triplets of A, e.g.
MATLAB’s svds. Functions pos and neg extract the positive and negative
sections of their argument: [Ap] = pos(A) returns Ap = (A >= 0). ∗A; and
[An] = neg(A) returns (A < 0). ∗ (−A).

rank+(C±)= 2. (iv) If C�0 (resp. C�0) then rank+(C+)= 1
(resp. rank+(C−)= 1).

Parts (i), (iii) and (iv) follow directly from the unit rank as-
sumption for C and Theorem 2. Part (ii) follows from the afore-
mentioned result in Ref. [36]. Theorem 2, however, provides
an explicit construction for the decomposition and suggests a
cheap way to compute it. The next lemma is a straightforward
consequence of the definition of the Frobenius norm.

Lemma 5. Let C ∈ Rm×n. Then C+ = arg minG∈Rm×n+ ‖C −
G‖F .

Therefore, the best (in terms of the Frobenius norm) nonneg-
ative approximation of each unit rank term C(j) = u(j)(v(j))�
would be the corresponding C

(j)
+ .

The preceding results constitute the theoretical foundation
of NNDSVD. Based on these, the method can be implemented
as in Table 1. Note that the method first approximates each of
the first k terms in the unit rank singular factor expansion of
A by means of their positive sections. These new factors have
rank at most 2. Then, each of these factors is approximated by
its maximum singular triplet which is then used to initialize
(W, H). Note that Step 3 is applied from j = 2 onwards since
the leading singular triplet is nonnegative and can be readily
used to initialize the first column (resp. row) of W (resp. H).

2.2. NNDSVD approximation

From the preceding results, it becomes possible bound the
error corresponding to the initial factors (W, H) obtained by
NNDSVD, specifically, the Frobenius norm of the residual, R =
A−WH. Denote by {�j }rj=1 the nonzero singular values of A
in nonincreasing order and by {�j (C+), xj (C+), yj (C+)} the
singular triplets of C+. From Lemma 1, rank(C+)�2, there-
fore there are only two nontrivial triplets that we index, as
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usual by j = 1, 2. We write, A = A(k) + E(k), where E(k) :=∑r
j=k+1�j uj v

�
j , therefore

A(k)=�1C
(1)+

k∑
j=2

�jC
(j)=�1C

(1)+
k∑

j=2

�jC
(j)
+ −

k∑
j=2

�jC
(j)
−

= �1C
(1) +

k∑
j=2

�j�1(C
(j)
+ )x1(C

(j)
+ )(y1(C

(j)
+ ))� + Ê,

where

Ê :=
k∑

j=2

�j�2(C
(j)
+ )x2(C

(j)
+ )(y2(C

(j)
+ ))� −

k∑
j=2

�jC
(j)
− .

The NNDSVD algorithm (Table 1) selects (W, H) so that

WH= �1C
(1) +

k∑
j=2

�j�1(C
(j)
+ )x1(C

(j)
+ )(y1(C

(j)
+ ))�

=A(k) − Ê.

Therefore, A−WH= E(k) + Ê and thus

‖E(k)‖F �‖R‖F �‖E(k)‖F + ‖Ê‖F , (3)

so that ‖Ê‖F measures the deviation from the optimal
unconstrained approximation (Eq. (1)). Now, for each j,
‖x1(C

(j)
+ )(y1(C

(j)
+ ))�‖F = 1 since x1(C

(j)
+ ), y1(C

(j)
+ ) are sin-

gular vectors and have unit length. Furthermore,

‖C(j)
+ ‖2F + ‖C(j)

− ‖2F = ‖C(j)‖2F = 1,

therefore both ‖C(j)
± ‖F �1. These lead to the following result:

Proposition 6. Given A ∈ Rm×n+ , and the pair (W, H) initial-
ized by NNDSVD, then the Frobenius norm of R = A −WH is
bounded as follows:

‖E(k)‖F �‖R‖F �‖E(k)‖F + ‖Ê‖F , (4)

where

‖Ê‖F �
k∑

j=2

(�2(C
(j)
+ )+ 1)�j �2

∑k

j=2
�j . (5)

Even though the upper bound is very loose (e.g. it may be-
come larger than the trivial upper bound ‖A‖F obtained when
(W, H) are initialized as all zero) it establishes that the residual
is bounded. Of far greater interest is that, in practice, only few
iterations are sufficient for NNDSVD to drive the initial residual
down to a magnitude that is very close to the one we would
have obtained had we applied the underlying NMF algorithm
with random initialization but for many more iterations.

The above analysis helps us also bound the error in modi-
fied versions of NNDSVD that will be described in the next sec-
tion. These rely on initializing using the pair (Wf , Hf ), where
Wf := W + EW , Hf := H + EH , (W, H) are as before and
EW, EH are structured perturbations so that their nonzero el-
ements occur at positions that are complementary to those of

W and H, respectively. Also, max(‖EH‖F , ‖EW‖F )��. Then,
because all columns of W and rows of H have unit length,

‖A−Wf Hf ‖F = ‖A−WH−WEH − EWH − EWEH‖F
�‖A−WH‖F + �(‖W‖F + ‖H‖F )

= ‖E‖F + 2�
√

k. (6)

Note that the first term on the right side was bounded in Propo-
sition 6.

We finally show that there are matrices for which NNDSVD is
able to return their exact decomposition into nonnegative unit
rank factors. To do this, we consider matrices that admit the
orthogonal nonnegative factorization described in Refs. [3,37].
In this category belong, for instance, block diagonal matrices
where each diagonal block is unit rank and generated by non-
negative vectors.

Proposition 7. Let A = WADHA ∈ Rm×n+ , where WA ∈
Rm×k+ , HA ∈ Rk×n+ , D ∈ Rk×k are nonnegative and D diago-
nal. Let also WA, HA be orthogonal, so that W�A WA=HAH�A =
I . Then, if NNDSVD is applied to compute rank-k̃ factors, it ini-
tializes: (i) with the exact values, W =WAD1/2, H =D1/2HA

when k̃=k; (ii) with the pair (W, H) that returns the minimum
error in Frobenius norm, when k̃ < k.

Proof. By construction, A =WADHA is the (compact) SVD
of A. If this is written as sum of k, rank-1 terms, each re-
sulting from the product of the corresponding column of WA,
row of HA, and diagonal term of D, then NNDSVD will com-
pute the elements exactly since all terms are nonnegative, so
their positive sections are identical to the terms themselves.
The result for k̃ < k trivially follows by the optimal approxima-
tion property (cf.1) of partial SVD with respect to Frobenius
norm. �

2.3. Dense variants: NNDSVDa and NNDSVDar

As described, one feature of NNDSVD is that it obtains initial
columns and rows for (W, H) from the leading singular vectors
of the positive section of each one of the first k singular fac-
tors of A. All, except the maximum singular vectors are likely
to contain positive as well as negative elements. Therefore, the
initial (W, H) are likely to contain a number of zeros commen-
surate to the latter. In some cases, e.g. when we seek sparse
NMF (cf. Ref. [7], discussion in Section 3 and Fig. 9), this is
desirable, especially in view of the fact that some NMF algo-
rithms retain the same sparsity in the iterates that was present
in the initial (W, H). In the dense case, however, a large num-
ber of zeros may become undesirable, as will be illustrated
when we compare the performance of all methods (Fig. 10). In
particular, it will be seen that in those cases, even though the
basic algorithm initially provides rapid error reductions, even-
tually leads to worse error than RANDOM. It was worth noting
that such a behavior was also observed for some algorithms
described in Ref. [31]. To address this problem, we deploy two
slightly modified variants of the basic algorithm. In these, we
perturb the zero values in the original (W, H); in particular,
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Table 2
Nonnegative unit rank approximation of arbitrary matrix [27]

Input: Matrix C ∈ Rm×n

Output: Nonnegative g ∈ Rm+, h ∈ Rm+ so that C ≈ gh�
1. Compute the largest singular triplet of C: [�, u, v]
2. Set g = u+, h= �v+ where u+, v+ are the nonnegative sections of u, v;
for j = 1, . . . ,

3. Compute g = Ch/h�h and set g = g+;
4. Compute h= g�C/g�g and set h= h+;
end

variant NNDSVDa sets all zeros equal to the average of all ele-
ments of A; we denote this by mean(A).2 Variant NNDSVDar
sets each zero element equal to a random value chosen from a
uniform distribution in [0, mean(A)/100]. Both variants incur
no appreciable overhead on the basic initialization and lead to
error bounds such as in Eq. (6). Moreover, the user has control
over the number of zero elements that are perturbed and can
exercise this judiciously to satisfy �(A,WH) ≈ �(A, Wf Hf ).

2.4. Discussion and extensions

We next discuss and evaluate a seemingly similar initializa-
tion option that comes to mind naturally and is also SVD-based.
This would be to set to zero the positions with negative values in
each {uj , vj } pair of the singular value expansion of A and use
multiples of these vectors to initialize (W, H). This straight-
forward method can be interpreted using our framework: In
particular, each C(j) = ujv

�
j , therefore from Theorem 2, and

dropping for simplicity the index j till the end of this paragraph,
each one of the two addends on the right of C+=u+v�++u−v�−
is a scalar multiple of a singular factor of C+. We remind that
u= (u)+ − (u)− and v = (v)+ − (v)−. Therefore, this initial-

ization is equivalent to approximating each C (actually C
(j)
+ )

by u+v�+ , whereas NNDSVD picks this or u−v�− , depending on
the magnitude of the corresponding �±’s (cf. Theorem 2). We
conclude that NNDSVD is preferable since it leads to equal or
smaller error contribution from each term.

The aforementioned approach is also closely related to
another iterative algorithm, discussed in Ref. [27], for the non-
negative, unit rank approximation of arbitrary matrices. The
algorithm, tabulated in Table 2, initializes two vectors with the
positive sections of the leading left and right singular vectors
of the matrix and then iterates for a certain number of steps.
We now show that when the input matrix is any one of the unit
rank terms C = uv� corresponding to j > 1 (actually C(j) and
j > 1), the algorithm will make no progress, but will return as
approximations the positive sections computed in Step 2. Then
g = u+, h= v+ and in Step 3, g = uv�h/h�h, where h= v+,
since �(C)= 1. It follows that

g = uv�v+/v�+v+ = u(v+ − v−)�v+/v�+v+ = u

because v�−v+ = 0.

2 We deviate slightly from MATLAB notation, where we must use
mean(mean(A)).

Therefore, the final value entered in g will be u+, so there
will be no change between steps. Similarly, the new value of h
will be the original v+. Therefore, the approximations returned
when the above process is applied to an arbitrary unit rank
matrix will be u+ and v+.

We finally sketch an extension of NNDSVD, we call 2-step
NNDSVD, that can be especially useful when it becomes diffi-
cult or expensive to compute all leading k singular triplets of A.
From Theorem 2 we know that not only the maximum but also
the trailing singular triplet, (�2(C

(j)
+ ), x2(C

(j)
+ ), y2(C

(j)
+ )), has

strictly nonnegative components. Therefore, NNDSVD could be
modified as follows: For j=2, . . . until all k columns and rows
of (W, H) are filled, if the rank of C+(j) is 1, initialize column
j of W and row j of H with scalar multiples of the maximum
left and right singular vectors of C

(j)
+ as is done in the original

algorithm. If, however, the rank is 2, then columns and rows
2j, 2j + 1 of W and H are initialized with scalar multiples of
x1(C

(j)
+ ), x2(C

(j)
+ ) and y1(C

(j)
+ )�, y2(C

(j)
+ )�, respectively. If,

for example, k is odd and all C(2), . . . , C(k+1)/2 have rank-2,
then these factors are enough to produce a nonnegative initial-
ization for (W, H). Note that using this approach, all singular
vectors generating C

(j)
+ participate in the initialization hence

the reconstruction is exact. 2-step NNDSVD leads to a different
upper bound for the residual.

Corollary 8. Given A ∈ Rm×n+ , and the pair (W, H) initialized
as in 2-step NNDSVD, then

‖E(k/2)‖F �‖R‖F �‖E(k/2)‖F +
k/2∑
j=2

�j . (7)

2.5. Beyond initialization

NNDSVD can be readily combined with any existing NMF
algorithm. The ones selected for this paper are tabulated in
Table 3. The first two (MM and AD) correspond to the additive
and multiplicative updates proposed in Ref. [25]. MM uses

H ← H. ∗ ((W�A)./(W�WH)),

W ← W. ∗ ((AH�)./(WHH�)), (8)

where .∗ and ./ denote element by element multiplication and
division, respectively. These updates do not increase the Frobe-
nius norm of the residual ‖A−WH‖F . We refer to the literature
for a full description of the design and update formulas for the
remaining methods in Table 3.

We finally mention that when the data matrix is symmetric,
we might be seeking symmetric (e.g. A ≈ HH�) or weighted
symmetric (e.g. A = HZH�) nonnegative factorizations; see
e.g. Ref. [37]. Noting that matrix symmetry is inherited by the
positive section, NNDSVD can be adapted to generate a sym-
metric initialization. Costs become lower because all necessary
values are derived from the eigendecomposition rather than the
SVD of A and only half the factors need be computed.
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Table 3
NMF algorithms used in this paper

Name Comments Ref. Distance metric �(A,WH)

MM Multiplicative [25] �(A,WH)= ‖A−WH‖F
AD Additive [25] �(A,WH)=D(A||WH)

CNMFa Multiplicative [38] �(A,WH)= 0.5(‖A−WH‖2F + �‖W‖2F + �‖H‖2F )

GD-CLS b Multipl./alternating least sq. [28] �(A,WH)= ‖A−WH‖F
nmfsc Sparse NMF from nmfpack [7] �(A,WH)= 0.5‖A−WH‖2F

aStands for constrained NMF.
bStands for gradient descent with constrained least squares.

Table 4
Datasets for experiments

Name Matrix size Comments

CLASSIC3 4299× 3891 As specified in Ref. [32] using TMG [44]
IRISa,e 10 800× 9 9 human eye iris images of size 90× 120
CBCLe 361× 2429 2429 faces of size 19× 19 from Ref. [45]
USGSb 256× 500 (Hyperspectral) 500 spectra measured at 256 wavelengths
NATURAL IMAGESc,e 262 144× 10 10 images of natural scenes of size 512× 512
SHUTTLEd,e 16 384× 16 16 shuttle images of size 128× 128

aIris images from Ref. [46], also displayed in Fig. 4.
bHyperspectral data collected from the U.S. Geological Survey (USGS) Digital Spectral Library. See also Refs. [38,21] regarding the spectral unmixing

application.
cThe dataset was described and used in Ref. [7].
dImages (kindly provided by Prof. R.J. Plemmons and taken at the U.S. Air Force Maui Space Center) are from the space shuttle Columbia on its tragic

final orbit, before disintegration upon re-entry in February 2003. Three sample images are depicted in Fig. 1.
eImage datasets (SHUTTLE, IRIS, CBCL and NATURAL IMAGES) are vectorized so that each column corresponds to one image.

Table 5
Algorithm–dataset combinations and pointers to figures with results

CLASSIC3 USGS SHUTTLE CBCL IRIS NATURAL IMAGES

MM 3 3 3 3
AD 6 6
CNMF 7 7 7 7
GD-CLS 8 8
nmfsc 9

Fig. 1. Sample space shuttle Columbia images.

2.6. Computational costs

The two major computational steps of NNDSVD are (i)
computing k largest singular triplets, and (ii) computing the
maximum singular triplet of the positive section of each sin-
gular factor in the singular expansion of A. When appropriate
(e.g. for large sparse data), we assume that the (partial) SVD is

Fig. 2. Basis images for dataset SHUTTLE using Algorithm MM for k = 4.

computed by means of some iterative algorithm; see e.g. Refs.
[39–42]. Any improvement in algorithms that compute the
above two steps will reduce the runtime of NNDSVD. A rough
estimate of the cost of the first step above is O(kmn) for dense
A. Hidden, in this notation, is a factor that depends on the num-
ber of iterations to convergence and which is unknown a priori.
The other step can be performed very effectively, without ever
computing explicitly the rank-2 matrices C

(j)
+ : specifically,

if rank(C+) = 2, both singular triplets are readily available
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Fig. 3. Algorithm MM for datasets CLASSIC3, USGS, SHUTTLE and IRIS.

Fig. 4. Dataset of nine human eye iris images.

(Theorem 2) at cost O(m+n). Thus the overall cost for NNDSVD

on dense data is O(kmn). The asymptotic cost of structured
CENTROID initialization [31], which relies on Skmeans, is
also O(kmn), though the leading constants in the expressions
are typically smaller. Since any initialization method is even-
tually linked with an NMF algorithm, for fairness we measure
and take into account the initialization cost in terms of “it-

eration equivalents” of the ensuing NMF, that is the number
of iterations, say d, in the factorization algorithm, that could
have been performed at the time it takes to initialize. We thus
set d = 0 for RANDOM. In all NMF algorithms, update formu-
las were written so as to enforce a sequencing of operations
that was appropriate for the problem dimensions. For exam-
ple, since all datasets had k>min(m, n), the update formulas
computed W(H�H) rather than (WH)H�. It is worth noting
that depending on the dimensions and selected sequencing, the
runtime differences can be significant. Therefore, the design
of a MATLAB implementation, must enforce the sequencing
by means of parentheses in the algebraic expression, or else,
the default (left-to-right) will be used.

3. Numerical experiments

We ran several experiments with NMF algorithms
(Fig. 1) and datasets tabulated in Tables 3 and 4. Table 5
shows the figure number corresponding to results for specific
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Fig. 5. Progress of approximation on iris dataset using MM: Random (left); NNDSVDar (center); NNDSVD (right). Rows correspond to 0, 20, 40, 60 and 80
iterations using k = 3.
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Fig. 6. Algorithm AD for datasets CBCL and NATURAL IMAGES.
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Fig. 8. Algorithm GD-CLS with 	= 0.01 for datasets CBCL and NATURAL IMAGES.

0 20 40 60 80 100

2.54

2.55

2.56

2.57

2.58

2.59

2.6

2.61

x 105

iterations

o
b
je

c
ti
v
e
 f
u
n
c
ti
o
n

CLASSIC3, k=10, sW=0.5, sH=0.5

RANDOM, d=0

CENTROID, d=5

NNDSVD, d=5

Fig. 9. Sparse NMF algorithm, nmfsc, for dataset CLASSIC3.

algorithm–dataset combinations. Each plot depicts the value of
the corresponding objective function (see Table 3 for details)
vs. number of iterations. It also displays the value selected for
parameter k and the measured value of d that must be taken
into account when evaluating the results. When comparing the
residual error curves of RANDOM, CENTROID and NNDSVD, we
must shift appropriately: In particular, we must compare the
errors at iteration j of NNDSVD and iteration j + dNNDSVD of
RANDOM (the subscript distinguishes the d’s). Similarly for
CENTROID. Finally, when comparing the errors in CENTROID

and NNDSVD, we must compare iteration j of the latter with
iteration j + (dNNDSVD − dCENTROID) of the former.

The platform used was a 2.0 GHz Pentium IV with 1024 MB
RAM running Windows. Codes were written in MATLAB
7.0.1. We have been using a variety of methods to compute
the partial SVD. In this paper, we used PROPACK [42]; this
MATLAB library is based on Lanczos bidiagonalization with
partial reothogonalization and provides a fast alternative to

MATLAB’s native svds. Care is required when using any of
these functions so that they are forced to return nonnegative
leading singular vectors, since MATLAB can also return en-
tirely nonpositive leading singular vectors. Their product is,
of course, nonnegative. This is not sufficient for NNDSVD, be-
cause it utilizes the positive section of these vectors. In that
case, nonpositive vectors return zero values. Therefore, to be
cautious we use the absolute values of the leading singular vec-
tors. A design choice we need to mention is that in CENTROID,
H was initialized as random. This choice was dictated by the
cost of intrinsic (lsqnonneg) and other off-the-shelf MAT-
LAB functions (nnls and codes from Ref. [43]) for solving
the nonnegative least squares problem necessary to produce H
from W. Specifically, their runtime was too high to make them
viable as components of an initialization method. Furthermore
we used an internally developed implementation of Skmeans
clustering. The initializations used in the experiments are listed
below. We note that the figures were selected after extensive
experimentation with initializations, algorithms and datasets
and selection of representative results.

RANDOM Initialize the pair (W, H ) to random using MAT-
LAB’s rand.

CENTROID Initialize W as in Ref. [31] and H as random.
Skmeans ran for 10 iterations.

NNDSVD As specified in Table 1.
NNDSVDa Perturbed NNDSVD using mean(A) (cf. Section 2.3).

NNDSVDar Perturbed NNDSVD using values in [0, mean(A)/

100] (cf. Section 2.3).

Fig. 3 shows experiments with MM. Fig. 5 shows the progress
of the approximation when using data set IRIS (Fig. 4) after
RANDOM, NNDSVD and NNDSVDar initializations. The figure dis-
plays the basis images resulting from matricizing the columns
of matrix W after the specified number of iterations. A notewor-
thy result is that different initializations lead to different basis
images.
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Fig. 10. NNDSVD, NNDSVDa, NNDSVDar and CENTROID on CNMF (�= �= 0.5) for datasets SHUTTLE and CLASSIC3.

Figs. 6–8 show results for algorithms AD, CNMF and
GD-CLS, respectively. Fig. 9 depicts results with the sparse
algorithm. In this case we used basic NNDSVD and no variants,
as justified in Section 2.3. The plots also show the selected val-
ues of parameters (sW, sH) that determine the desired sparsity
level for (W, H).

As alluded in Section 1, in the image datasets of Table 4,
the data matrix A is constructed by stacking in columns the
vectorized images in the collection, as is common practice in
the NMF literature. The columns of W correspond to “basic
images”. Each image of the collection (column of A) is then
approximated as a linear combination of the basis images using
as reconstruction coefficients the elements in the corresponding
column of H. Figs. 2 and 5, for example, show the resulting ba-
sis images for the SHUTTLE and IRIS datasets. Dataset CLASSIC3

is a term-document matrix used as benchmark in text mining,
hence each column of W encodes a basis document. Finally, in
dataset USGS, each column encodes a “spectral signature” that
becomes useful in spectral unmixing; cf. Refs. [9,21,30] for
more information regarding these and other similar datasets in
the context of NMF.

Overall, even taking into account the aforementioned d-shifts
in iterations, the plots confirm that NNDSVD-type initializations
are very fast. They also outperform RANDOM in all test cases,
and generally appear to be a better choice (except when com-
bined with GD-CLS) than CENTROID. They also need less time
to reduce the NMF objective function, the improvements being
most dramatic after only few iterations of the NMF algorithm
as is evidenced by the pronounced “knee” shape of the corre-
sponding error curves depicted in the figures, as well as in the
visualization for dataset IRIS in Fig. 5. Besides the gains in com-
putational efficiency, sometimes algorithms based on NNDSVD

appear to lead to smaller error than RANDOM and CENTROID,
even at convergence; see e.g. Fig. 9. One more feature that dif-
ferentiates NNDSVD from RANDOM and CENTROID is that the ba-
sic method is deterministic. Finally, NNDSVD appears to be the

first initialization scheme that comes with provable theoretical
guarantees for the approximation error (Proposition 6).

Assuming that the reader proceeds with caution, since our
evidence is entirely experimental and the heuristics are based
solely on the sparsity structure of the dataset, the above experi-
ments provide some guidance toward the selection of the most
suitable NNDSVD variant. Specifically, if we seek some sparsity
constraints, the basic NNDSVD algorithm appears well suited,
since it tends to generate sparse factors. Otherwise, it is prob-
ably better to use one of NNDSVDa and NNDSVDar. In our ex-
periments, NNDSVDar tends to return somewhat superior results
than NNDSVDa. Nevertheless, after very extensive experiments,
no algorithm emerged as an overall winner, so the final decision
rests upon the user’s experience with the variants’ performance
on the data under study.3 .

Fig. 10 illustrates the performance of all initialization meth-
ods used in this paper combined with algorithm CNMF. With
dataset SHUTTLE (left), all methods reach about the same fi-
nal error, though NNDSVDar has better performance and a
pronounced knee behavior. With dataset CLASSIC3 (right), how-
ever, the error in RANDOM eventually catches up. As mentioned
earlier, this behavior was the motivation behind the design of
the NNDSVD variants; indeed, not only NNDSVDar has the most
pronounced knee behavior but also results in the smallest final
error.

We conclude that NNDSVD provides initial values that enable
the followup NMF algorithms significant reduction of the ini-
tial residual after very few iterations and at low overall cost,
at levels that are comparable to the residual obtained after run-
ning the algorithm to convergence with any of the three basic
initializations. We also mention some further issues that have

3 After submission, we became aware of very recent work in Ref. [47],
including extensive experiments with some of the variants of NNDSVD
described herein as well as others. We expect these to be useful to the
potential user of our double SVD approach for initializing NMF.
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arisen in the course of this investigation, such as the study and
generalization of the property in Lemma 1, the application of
clustering with NNDSVD in the spirit of CENTROID and the per-
formance of the method in the context of distance metrics such
as those in Ref. [1], that can be better tailored to prior knowl-
edge about the data. Finally, it is worth reminding that even
though NNDSVD frequently leads to errors that are comparable
or superior to those achieved by random initialization, we did
not provide any guarantees regarding the quality of the local
minimum reached by the subsequent NMF algorithm. If the
computed solution is unsatisfactory, one might conclude that
NNDSVD hinders progress toward a better local minimum be-
cause its basic form is deterministic and does not allow for mul-
tiple runs. To the extent that the effectiveness of such a strategy
to escape from local minima is justified, one could opt to use
multiple runs of NNDSVDar, the randomized variant of NNDSVD,
or simply repeatedly run the NMF algorithm with random ini-
tialization keeping track and finally comparing all results, in-
cluding those obtained with NNDSVD. Clearly, the field is open
for research contributions coupling deterministic initialization
strategies with NMFs leading to even smaller approximation
errors!
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