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Resumo

Plursubharmonaj funkcioj kaj iliaj malregulejoj

La temo de tiuj ĉi lekcioj estas lokaj kaj mallokaj ecoj de plursubharmonaj funkcioj.

Unue diferencialaj neegalâoj difinantaj konveksajn, subharmonajn kaj plursubharmon-

ajn funkciojn estas pritraktitaj. Estas pruvite ke la marĝena funkcio de plursubharmona

funkcio estas plursubharmona sub certaj supozoj. Ni studas la malregulejojn de plur-

subharmonaj funkcioj per metodoj de la teorio pri konvekseco. En la lasta ĉapitro ni

pliĝeneraligas la klasikajn nociojn de ordo kaj tipo de entjera funkcio de finia ordo al kiom

ajn rapide kreskantaj funkcioj.

Abstract

The theme of these lectures is local and global properties of plurisubharmonic functions.

First differential inequalities defining convex, subharmonic and plurisubharmonic functions

are discussed. It is proved that the marginal function of a plurisubharmonic function is

plurisubharmonic under certain hypotheses. We study the singularities of plurisubharmonic

functions using methods from convexity theory. Then in the final chapter we generalize

the classical notions of order and type of an entire function of finite order to functions of

arbitrarily fast growth.

This work was partially supported by the Swedish Natural Science Research Council.
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Introduction

The plurisubharmonic functions appear in complex analysis as logarithms of moduli of holo-

morphic functions and as analogues of potentials. Their usefulness for many constructions is

due to the fact that they are easier to manipulate than holomorphic functions—this is why

Lelong [1985] includes them among “les objets souples de l’analyse complexe.”

In these lectures we shall first consider analogies between the convex, subharmonic, and

plurisubharmonic functions: these three classes can be defined using differential inequalities.

We shall also study marginal functions of plurisubharmonic functions, i.e., functions of the

form

g(x1, ..., xn) = inf
y1,...,ym

f(x1, ..., xn, y1, ..., ym).

It is a known fact that marginal functions of convex functions are convex, but the corre-

sponding result is not true for plurisubharmonic functions. However, it is true under some

extra hypotheses, and we shall establish one such result, called the minimum principle, in

Chapter 1.

In Chapter 2, we use the minimum principle to prove that sets related to plurisubhar-

monic functions are analytic varieties. The model result here is Siu’s theorem, which says

that the set of points where the Lelong number is larger than or equal to a certain number

is an analytic variety. We shall see that the minimum principle provides us with a family of

plurisubharmonic functions related to a given one, and that there are analyticity theorems

for families of plurisubharmonic functions which are easy to deduce from the Hörmander–

Bombieri theorem.

In the third chapter we shall take a look at the classical notions of order and type for

entire functions. To every entire function F we can in a natural way associate a convex



Plurisubharmonic functions and their singularities 3

function f which describes its growth:

f(t) = sup
|z|=et

log |F (z)|, t ∈ R.

We call f the growth function of F . That f is convex is the content of Hadamard’s three-

circle theorem. These classical definitions can quite naturally be extended to plurisubhar-

monic functions; just replace log |F | by an arbitrary plurisubharmonic function. What we do

in classical complex analysis is to compare the growth of two convex functions, the growth

function f and the growth function g(t) = et of the exponential function G(z) = ez. The

notion of relative order, the order of f relative to g, arises from such a comparison of two

convex functions. The notion of relative type of one function with respect to another is the

result of a slightly different comparison.

All classical results on order and type can now be considered in this more general setting,

and many of them have very precise counterparts. It should be stressed that the functions

we consider may grow arbitrarily fast, whereas classically one considers functions of finite

order. We have adjusted the definitions so that order and type become dual in the sense of

convexity theory. This fact is very useful, for we can often choose to do calculations either

on the functions themselves or on their conjugate functions, their Fenchel transforms.

The relative order determines the maximal domain in which a solution to a natural

extension problem exists. This extension problem can be formulated for convex, plurisubhar-

monic or entire functions—the resulting domain of existence is the same in all three cases.

—

Acknowledgments. I am grateful to the Séminaire de Mathématiques Supérieures for the

invitation to participate in this summer school. It was a great experience! It is also a pleasure

to acknowledge the good help provided by Stefan Halvarsson, who have typed Chapter 1 into

TEX, made many useful suggestions, and proofread all the chapters. My thanks go also to

Maciej Klimek for checking the manuscript and for valuable comments on the presentation.

Chapter 3 is essentially taken from my paper [1993] (which contains four additional sections).

The London Mathematical Society has kindly given its permission to include this material

here.
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Chapter 1. Convexity and plurisubharmonicity

1.1. Introduction

Let us first recall that the real-valued convex functions on the real line are those that satisfy

the inequality

f((1− t)x + ty) 6 (1− t)f(x) + tf(y), 0 6 t 6 1, x, y ∈ R. (1.1.1)

In particular, for t = 1/2 they satisfy

f(c) 6
1
2f(c− r) + 1

2f(c+ r), c, r ∈ R, (1.1.2)

which can be written as

f(c) 6 M∂If,

denoting by M the mean value over a set, in this case ∂I = {c − r, c + r}, which is the

boundary of the one-dimensional ball c+ rB.

Some regularity has to be imposed if we use (1.1.2) though, for while (1.1.1) implies that

f is continuous (where it is real-valued), (1.1.2) does not:

Example. Take a Hamel basis for the vector space of all real numbers over the rational

numbers with 1 and
√

2 as basis elements. Define f to be a Q-linear form f : R → Q such

that f(1) = 1, f(
√

2) = 0. Then obviously f satisfies (1.1.1) for rational t (with equality), in

particular (1.1.2), but it is not continuous (and we would not like to call it convex). Indeed,

f(s+ t
√

2) = s for rational s, t, which shows that f is unbounded near any point.

However, (1.1.2) plus some mild regularity assumption (like semicontinuity or even mea-

surability) is equivalent to (1.1.1) for real-valued functions.

The definition of a subharmonic function is a generalization of this: a function f is

called subharmonic in an open subset Ω of Rn if it takes its values in [−∞,+∞[, is upper

semicontinuous, and satisfies the mean-value inequality

f(c) 6 M∂Af

whenever A is a closed ball of center c contained in Ω ⊂ Rn. We shall write f ∈ SH(Ω). The

constant −∞ is allowed.

However, we can generalize the notion of a convex function of one variable in a different

direction: we consider a function in Rn and look at its restrictions to real lines, in other words

at its pull-backs ϕ∗f = f ◦ ϕ for an arbitrary affine function ϕ: R → Rn. If this pull-back

is always convex, then f is called convex in Rn. (Actually such a function should be called

“pluriconvex” if we were to follow the idea that has led to the word plurisubharmonic!) We

shall write f ∈ CVX(Ω) if f is real-valued and convex in a convex open set Ω.
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Remark. In convexity theory one usually allows values in [−∞,+∞]. A function f : Rn →
[−∞,+∞] is defined to be convex if its epigraph

epi f = {(x, t) ∈ Rn ×R; f(x) 6 t} (1.1.3)

is convex as a subset of Rn×R. It is sometimes more convenient to use the strict epigraph

epis f = {(x, t) ∈ Rn ×R; f(x) < t}. (1.1.4)

It is easy to see that the epigraph and the strict epigraph are convex simultaneously. For

real-valued functions, the definition using the epigraph is equivalent to (1.1.1).

We can now generalize the subharmonic functions of one complex variable in the same

way as we did when we defined convex functions in Rn. If ϕ∗f = f ◦ϕ is subharmonic for all

complex affine mappings ϕ: C → Cn and has in addition some kind of regularity, then f is

called plurisubharmonic. The additional regularity assumption is usually taken to be upper

semicontinuity, which means the the strict epigraph epis f (cf. (1.1.4)) is assumed to be open.

Definition 1.1.1. We say that f is plurisubharmonic in an open set Ω in Cn if

f : Ω → [−∞,+∞[ is upper semicontinuous in Ω and, for all a, b ∈ Cn, z 7→ f(a + zb)

is subharmonic as a function of the complex variable z in the open set where it is defined.

Notation: f ∈ PSH(Ω).

The scheme of generalizations can be illustrated as follows:

n = 1
subharmonic = convex

−→ n > 1
convex

↓ ↓

n = 2k = 2
subharmonic = plurisubharmonic

−→ k > 1
plurisubharmonic

In all cases, the mean-value inequality f(c) 6 M∂Af is imposed, but with different balls

A: they can be real one-dimensional or complex one-dimensional or full-dimensional. This

will lead to important analogies between the different cones of functions: the cone PSH is

sometimes analogous with SH, sometimes with CVX.

A very natural question is this: if the pull-back ϕ∗f is subharmonic for all affine func-

tions ϕ mapping the complex plane into Cn, is f plurisubharmonic? In other words, is the

assumption of upper semicontinuity superfluous? The answer seems to be unknown. There

is a similar question whether separately subharmonic1 functions are subharmonic: this is not

true as shown by Wiegerinck [1988]. However, if we add some, even very weak, integrability

condition, separately subharmonic functions are indeed subharmonic; see Riihentaus [1989].

It is not difficult to prove the following inclusions:

CVXloc(Ω) ⊂ SH(Ω), Ω ⊂ Rn, (1.1.5)

1This means that the function is subharmonic in each variable when the others are kept fixed.
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and

CVXloc(Ω) ⊂ PSH(Ω) ⊂ SH(Ω), Ω ⊂ Cn, (1.1.6)

where CVXloc(Ω) is the cone of functions which are locally convex, i.e., convex in some ball

around an arbitrary point. They can be proved using the mean-value inequalities, but they

will also follow from the differential inequalities to be presented in the next section.

For general information about plurisubharmonic functions see Hörmander [1990; forthc.],

Klimek [1991], and Lelong [1969].

1.2. Conditions on the derivatives of convex and plurisubharmonic functions

We shall now take a look at various differential inequalities which are related to convexity,

subharmonicity and plurisubharmonicity. The simplest is this:

Proposition 1.2.1. Let f ∈ C2(I), where I ⊂ R is an interval. Then f is convex if and

only if f ′′ > 0.

This can of course be proved directly, but since it is a special case of Proposition 1.2.3 below,

we omit the proof.

We shall write D(Ω) for the set of all test functions in an open set Ω and D′(Ω) for the

set of all distributions in Ω, the space dual to D(Ω).

Proposition 1.2.2. Let f ∈ L1
loc

(I), I being an interval. Then f is equal to a convex function

almost everywhere if and only if f ′′ > 0 in the sense of distributions, i.e.,
∫
I
ϕ′′fdλ > 0 for

all ϕ ∈ D(I) satisfying ϕ > 0. Moreover, if u is a distribution in I, u ∈ D′(I), then there

exists a convex function f such that
∫
I
fϕdλ = u(ϕ) for every test function ϕ ∈ D(I) if and

only if u′′ > 0.

This result is a special case of Proposition 1.2.4 below.

Proposition 1.2.3. Let f ∈ C2(Ω), Ω ⊂ Rn. Then f ∈ SH(Ω) if and only if ∆f > 0, where

∆ = ∂2/∂x2
1 + · · ·+ ∂2/∂x2

n is the Laplacian.

Proof. We shall write B for the closed unit ball and S for its boundary, the unit sphere, so

that c+ rB is the closed ball of radius r and center at c, and c+ rS its boundary. Let E be

the fundamental solution of the Laplacian such that ∆E = δc and E vanishes on the sphere

c+ rS. Then Green’s formula yields

f(c)−
∫
!

c+rS

f =

∫

c+rB

E∆fdλ, (1.2.1)

where dλ denotes Lebesgue measure. We use a barred integral sign to denote mean value,

thus

MA(f) =

∫
!

A

fdλ =

∫

A

fdλ
/∫

A

dλ provided 0 <

∫

A

dλ < +∞. (1.2.2)

Since E 6 0 in the ball x+ rB, ∆f > 0 implies

f(c)−
∫
!

c+rS

f 6 0.
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This holds for all c ∈ Ω and all r such that c + rB ⊂ Ω. This is the mean-value inequality

for f .

For the other direction, assume ∆f(c) < 0 at some point c. Take r so small that ∆f < 0

in c+ rB. Then (1.2.1) shows that

f(c)−
∫
!

c+rS

f > 0

for these r, so f does not satisfy the mean-value inequality.

Proposition 1.2.4. Let u ∈ D′(Ω), Ω ⊂ Rn. Then there exists f ∈ SH(Ω) such that∫
fϕdλ = u(ϕ) for all ϕ ∈ D(Ω) if and only if ∆u > 0 in the sense of distributions, i.e.,

u(∆ϕ) > 0 for all ϕ ∈ D(Ω) satisfying ϕ > 0.

Proof. First let f ∈ SH(Ω). Form fε ∈ C∞(Ωε) by convolution:

fε(x) = (f ∗ ψε)(x) =

∫
f(y)ψε(x− y)dλ(y) =

∫
f(x− εy)ψ(y)dλ(y), x ∈ Rn,

where ψ is a radial2 C∞ function with support in the unit ball and of integral one satisfying

ψ > 0, and ψε(x) = ε−nψ(x/ε). Then fε is subharmonic in Ωε = {x ∈ Ω; x + εB ⊂ Ω}.
Indeed, the integral

∫
f(x−εy)ψ(y)dλ(y) is a limit of finite sums

∑
f(x−εyj)cj with positive

cj . Since fε is smooth, Proposition 1.2.3 implies that ∆fε > 0. When ε → 0, fε tends to f

in L1
loc

(Ω) and the positivity in the sense of distributions is preserved: ∆f > 0.

Conversely, if u ∈ D′(Ω) with ∆u > 0, form uε = u ∗ ψε. Then uε ∈ C∞(Ωε) and

∆uε > 0. Hence by Proposition 1.2.3, uε ∈ SH(Ωε). I claim that uε is an increasing function

of ε. To see this, note that the solution χε of ∆χε = ψε in Rn
r {0} which is zero for |x| > ε

can be written

χε(x) =

∫ ε

|x|

s−n+1ds

∫ 1

s/ε

tn−1Ψ(t)dt, 0 < |x| 6 ε,

where Ψ(|x|) = ψ(x). This formula shows that χε is increasing in ε > 0, because the

integrand is non-negative and the domain of integration increases with ε. Now if ε > δ > 0,

then χε−χδ ∈ D(Rn) and ψε−ψδ = ∆(χε−χδ) in all of Rn, not only in Rn
r{0}. Moreover

χε−χδ > 0, so that by the positivity of ∆u, (u∗ (ψε−ψδ))(0) = u(ψε−ψδ) > 0. Translating

this we get (uε − uδ)(x) = (u ∗ (ψε − ψδ))(x) > 0 for all x such that this has a sense, i.e., for

all x ∈ Ωε. This proves the claim that uε is an increasing function of ε.

By known properties of subharmonic functions, the limit f = limuε is subharmonic in

Ω, and since the convergence holds in L1
loc

(Ω), f defines the distribution u. This proves the

proposition.

If f ∈ C2(Ω), Ω ⊂ Rn, then by definition f is convex if and only if the function

t 7→ f(a + tb) = fa,b(t) is convex for all a ∈ Ω and b ∈ Rn where it is defined. Hence by the

chain rule

f ′′a,b(t) =
∑ ∂2f

∂xj∂xk
(a + tb)bjbk > 0, a, b ∈ Rn, t ∈ R, a+ tb ∈ Ω.

It suffices to take t = 0. We state the result as a proposition:

2A function is called radial if it is a function of the distance to the origin.
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Proposition 1.2.5. Let Ω ⊂ Rn be convex and f ∈ C2(Ω). Then f is convex if and only if

∑ ∂2f

∂xj∂xk
(a)bjbk > 0, a ∈ Ω, b ∈ Rn. (1.2.3)

Proposition 1.2.6. Let u ∈ D′(Ω), where Ω ⊂ Rn is convex. Then there exists f ∈ CVX(Ω)

such that

u(ϕ) =

∫

Ω

fϕdλ, ϕ ∈ D(Ω),

if and only if
∑ ∂2u

∂xj∂xk
bjbk > 0, b ∈ Rn, (1.2.4)

in the sense of distributions.

Proof. If f ∈ CVX(Ω), form fε = f ∗ ψε ∈ CVX(Ωε) with ψ as in the proof of Proposition

1.2.4. Then fε → f in D′(Ω), which implies

∑ ∂2fε
∂xj∂xk

bjbk →
∑ ∂2f

∂xj∂xk
bjbk

in D′(Ω), since convergence there is stable under differentiation. (We use here the weak

topology σ(D′(Ω),D(Ω)), meaning that uj → u if uj(ϕ) → u(ϕ) for every test function ϕ.)

Positivity is preserved under passage to the limit, which means that (1.2.4) holds.

Conversely, if u satisfies the positivity condition (1.2.4), form uε = u ∗ ψε ∈ C∞(Ωε).

Then also uε satisfies the positivity condition (1.2.4), which is the same as (1.2.3) since uε is a

smooth function. Therefore uε is convex by Proposition 1.2.5. Moreover uε tends decreasingly

(cf. the proof of Proposition 1.2.4) to some function f , which is then necessarily convex as a

pointwise limit of convex functions. Since convergence holds in L1
loc

(Ω), f defines the given

distribution u.

Proposition 1.2.7. Let f ∈ C2(Ω), Ω ⊂ Cn. Then f is plurisubharmonic if and only if

∑ ∂2f

∂zj∂zk
(a)bjbk > 0, a ∈ Ω, b ∈ Cn. (1.2.5)

Proof. This follows from the chain rule and Proposition 1.2.3.

Proposition 1.2.8. Let u ∈ D′(Ω), Ω ⊂ Cn. Then there exists f ∈ PSH(Ω) such that

u(ϕ) =
∫
Ω
fϕdλ for every test function ϕ ∈ D(Ω) if and only if

∑ ∂2u

∂zj∂zk
bjbk > 0, b ∈ Cn, (1.2.6)

in the sense of distributions.

Proof. The proof is analogous to the convex case, Proposition 1.2.6.

It is now easy to prove the inclusions (1.1.5) and (1.1.6). The first follows from taking

bj = δkj in (1.2.4) and then summing over k. In (1.1.6) the first inclusion follows from (1.1.5)

and the second from (1.2.6): again take bj = δkj and sum over k.
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Proposition 1.2.9. Let u ∈ PSH(Ω) be locally independent of the imaginary part of z, i.e.,

for any z ∈ Ω, f(z′) = f(z) if z′ is sufficiently close to z and Re z ′ = Re z. Then f is locally

convex in Ω (thus convex if Ω is convex).

Proof. If u is a plurisubharmonic function it satisfies (1.2.6), but if it is locally independent

of the imaginary part of the variables zj , that condition reduces to (1.2.4) for u regarded as

a function of the xj = Re zj . Thus by Proposition 1.2.6 there is a locally convex function f

which defines the same distribution as u. The regularizations uε and fε are therefore equal,

which implies that also their limits limε→0 uε = u and limε→0 fε = f are equal at every point.

Corollary 1.2.10. If Ω is a pseudoconvex open set in Cn which is independent of the

imaginary parts of the variables in the sense that z ∈ Ω and Re z ′ = Re z implies z ∈ Ω, then

every component of Ω is convex.

Proof. Consider the function u = − log d, where d is the distance to the complement of Ω.

Thus u is plurisubharmonic if Ω is pseudoconvex—this is indeed one of the possible definitions

of pseudoconvexity; see Hörmander [1990:Theorem 2.6.7]. By the proposition, u is locally

convex. Therefore the restriction of u to any segment contained in Ω is convex. Now if a0 and

a1 are two points which belong to the same component of Ω, there is a curve from one to the

other, say [0, 1] 3 t 7→ at ∈ Ω. We claim that the segment from a0 to at must be contained

in Ω for all t. Indeed the set T of all such t is open in [0, 1] by the openness of Ω, and it is

closed by the definition of u, for the smallest distance from any point on the segment [a0, at]

to the complement of Ω is never smaller than the distance from {a0, at} to Cn
r Ω by the

convexity of u on [a0, at]. Moreover T is not empty, for 0 ∈ T . This proves that T is equal

to all of [0, 1]. Thus the segment [a0, a1] is contained in Ω.

These results illustrate some of the many analogies between the three cones CVX, SH

and PSH. Let us mention one aspect where this analogy is not clear. Given any cone K in a

vector space we may form the space δK = K−K of all differences of elements of K. Thus we

form three subspaces δCVX(Ω), δSH(Ω) and δPSH(Ω) of L1
loc

(Ω) (or D′(Ω)) consisting of

all differences of functions that are, respectively, convex and finite-valued, subharmonic and

finite almost everywhere, and plurisubharmonic and finite almost everywhere in Ω (Ω being

convex and open in Rn in the first case, just open in the second, and open in Cn in the last

case). Each of these spaces has a local variant consisting of those locally integrable functions

that admit a representation f = f1−f2 with fj ∈ K in a neighborhood of an arbitrary point.

It is now easy to prove that δSHloc(Ω) = δSH(Ω) for all open sets (it is the space of all

locally integrable functions f such that ∆f is a measure). Also δCVXloc(Ω) = δCVX(Ω) if

Ω is convex. But it seems not to be known whether δPSHloc(Ω) = δPSH(Ω) (for example in

a pseudoconvex open set). See Kiselman [1977] for details.

1.3. The minimum principle

For any given function f defined in Rn ×Rm, we call

g(x) = inf
y∈Rm

f(x, y), x ∈ Rn, (1.3.1)

the marginal function of f . (It defines a kind of margin of the epigraph of f .)
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Theorem 1.3.1. Let f : Rn × Rm → [−∞,+∞] be convex. Then its marginal function

(1.3.1) is convex.

Proof. The strict epigraph of f (cf. 1.1.4) is

epis f = {(x, y, t) ∈ Rn ×Rm ×R; f(x, y) < t}.

We now observe that epis g = π(epis f), where π is the projection (x, y, t) 7→ (x, t). If f is

convex, then epis f is convex, and any linear image of a convex set is convex, so epis g =

π(epis f) is also convex. This means that the function g is convex.

Calculus proof. (Not that it is necessary now—we shall do it only as a warm-up for the

plurisubharmonic case.) Let us assume that the function is of class C 2 and that the infimum

is attained at a point y = w(x) for each x which depends in a C 1 fashion on x:

y = (w1(x), ..., wm(x))
T

,

where the exponent means transpose, so that y is regarded as a column vector. Assume also

x ∈ R, i.e., n = 1. This is enough; in general we consider g(x0 + tx1), t ∈ R.

Thus g(x) = f(x,w(x)); the chain rule yields

∂g

∂x
=
∂f

∂x
+

∑ ∂f

∂yk

∂wk
∂x

.

At a minimum point we have ∂f/∂yk = 0, so that ∂g/∂x = ∂f/∂x when y = w(x). By the

chain rule again
∂2g

∂x2
=
∂2f

∂x2
+

∑ ∂2f

∂x∂yk

∂wk
∂x

= fxx +Aα,

where A is the row matrix

A = (A1, ..., Am) with Ak =
∂2f

∂x∂yk

and α the column matrix

α =

(
∂w1

∂x
, ...,

∂wm
∂x

)
T

.

We now apply the chain rule to the equation ∂f/∂yk(x,w(x)) = 0, which gives

∂2f

∂x∂yk
+

∂2f

∂yj∂yk

∂wj
∂x

= 0, in other words A+ αTH = 0,

where

H =
( ∂2f

∂yj∂yk

)

is the Hessian matrix of f with respect to y. Summing up:

gxx = fxx +Aα = fxx − αTHα.
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Now what do we know about H? The convexity of f in all variables (x, y1, ..., ym) implies

that

fxx +
∑ ∂2f

∂x∂yk
bk +

∑ ∂2f

∂yj∂x
bj +

∑ ∂2f

∂yj∂yk
bjbk > 0,

for all b (column vectors) or

fxx +Ab+ bTAT + bTHb > 0.

Since Ab is a scalar, Ab = bTAT and we have fxx + 2Ab + bTHb > 0, and since A = −αTH

this can be written as

fxx − 2αTHb+ bTHb > 0

for any column vector b. Now choose b = α. Then we finally obtain

gxx = fxx − αTHα > 0

and we are done.

During this calculation we needed that w(x) is a C1 function of x. It is the solution of

the system ∂f/∂yj = 0, and it follows from the implicit function theorem that w is C 1 if the

Hessian H is positive definite, for the Hessian is precisely the Jacobian matrix of this system

and we need the Jacobian (determinant) to be non-zero. Hence w ∈ C 1 and the chain rule

can be applied as above. Note as a matter of curiosity that g(x) = f(x,w(x)) is C 1 since

w ∈ C1, but since gx = fx when y = w(x) we see that gx is also C1, hence g ∈ C2. This

concludes our calculations on convex functions.

The condition that f ∈ C2 and that the infimum is attained can be removed. Regular-

ization and addition of a coercive function will help! We shall not show this now, since we

shall do it soon in the plurisubharmonic case in detail.

We shall now investigate similarily the Levi form of a minimum of a plurisubharmonic

function f . Thus as before g(x) = f(x,w(x)), where y = w(x) defines a stationary point of

y 7→ f(x, y). We let x ∈ Cn = C and y ∈ Cm. It is enough to consider n = 1, because for

plurisubharmonicity in x we consider complex lines in Cn.

We shall use the notation

Ak =
∂2f

∂x∂yk
, Bk =

∂2f

∂x∂yk
, Hjk =

∂2f

∂yj∂yk
, Ljk =

∂2f

∂yj∂yk
, (1.3.2)

and put A = (A1, ..., Am), B = (B1, ..., Bm). Here H = (Hjk) is the complex Hessian matrix

and L = (Ljk) is the Levi matrix with respect to the y variables. We write

H(b) =
∑

Hjkbjbk = bTHb (1.3.3)

for the Hessian form, which is a symmetric quadratic form (thus HT = H, H∗ = H), and

L(b) =
∑

Ljkbjbk = bTLb (1.3.4)

for the Levi form, which is an Hermitian form if f is real-valued; thus LT = L and L∗ = L in

that case. We write αj = ∂wj/∂x, α = (α1, ..., αm)T and βj = ∂wj/∂x, β = (β1, ..., βm)T.

The result is this:
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Proposition 1.3.2. Let f be a real-valued C2 function in some open set Ω in the space of

1 + m complex variables, (x, y) ∈ C×Cm. If y = w(x) is a stationary point of y 7→ f(x, y)

which depends in a C1 fashion on x, then the Laplacian of g(x) = f(x,w(x)) satisfies

1
4∆g = gxx = fxx − 2 Re H(α, β) − L(α) −L(β), (1.3.5)

where H and L are given by (1.3.2–4) and H(α, β) = αTHβ is obtained by polarization.

Proof. If we differentiate g(x) = f(x,w(x)) once we get

gx(x) =
∂g

∂x
(x) = fx(x,w(x)) +

∑ ∂f

∂yj
αj +

∑ ∂f

∂yj
βj = fx(x,w(x)),

since ∂f/∂yj and ∂f/∂yj both vanish at a stationary point. This shows that gx is of class

C1. We can therefore apply ∂/∂x to the equation gx = fx and get

gxx =
∂2g

∂x∂x
=

∂2f

∂x∂x
+

∑ ∂2f

∂x∂yk

∂wk
∂x

+
∑ ∂2f

∂x∂yk

∂wk
∂x

.

Since f is real-valued it follows that ∂2f/∂x∂yk = Bk, thus

gxx = fxx +
∑

Akβk +
∑

Bkαk = fxx +Aβ +Bα. (1.3.6)

To determine A and B we differentiate the equation ∂f/∂yk = 0 with respect to x to get

∂2f

∂x∂yk
+

∑ ∂2f

∂yj∂yk

∂wj
∂x

+
∑ ∂2f

∂yj∂yk

∂wj
∂x

= 0,

or Ak +
∑
αjHjk +

∑
βjL

T

jk = 0, which in matrix notation becomes

A = −αTH − β∗LT. (1.3.7)

Next we differentiate ∂f/∂yk = 0 with respect to x and get

∂2f

∂x∂yk
+

∑ ∂2f

∂yj∂yk

∂wj
∂x

+
∑ ∂2f

∂yj∂yk

∂wj
∂x

= 0,

or Bk +
∑
βjHjk +

∑
αjLkj = 0, which in matrix notation gives

B = −βTH − α∗LT. (1.3.8)

Now insert the values A = −αTH − β∗LT and B = −βTH −α∗LT into (1.3.6). Then we

get

gxx = fxx − αTHβ − β∗LTβ − βTHα− α∗LTα = fxx − 2 Re(αTHβ)− αTLα− βTLβ,

which in terms of H and L is just (1.3.5). This proves Proposition 1.3.2.

So far we have not assumed any plurisubharmonicity! We have just used the identity

g(x) = f(x,w(x)), where ∂f/∂yk(x,w(x)) = 0 and ∂f/∂yk(x,w(x)) = 0, equations which

hold since y = w(x) is a stationary point of y 7→ f(x, y). Note, by the way, that these two

equations are equivalent if f is real-valued. We shall now assume that f is plurisubharmonic,

and deduce a lower bound for its partial Laplacian with respect to x:
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Proposition 1.3.3. If f is plurisubharmonic and of class C 2 in an open set in C × Cm,

then

fxx =
∂2f

∂x∂x
> BMBT, (1.3.9)

where

B = (B1, ..., Bm), Bk =
∂2f

∂x∂yk
,

and M is an Hermitian quasi-inverse of the Levi matrix

L =

(
∂2f

∂yj∂yk

)
,

i.e., M∗ = M and LML = L.

Remark. In a nice coordinate system L = L1⊕0, where L1 is positive definite. Any Hermitian

quasi-inverse then has the form M = M1⊕M2 = L−1
1 ⊕M2, where M2 is Hermitian. We get

LM = ML = I ⊕ 0, so LML = L. Moreover MLM = L−1
1 ⊕ 0 (= M if M2 = 0).

Proof of Proposition 1.3.3. What does it mean that f is plurisubharmonic? By Proposition

1.2.7 it means that

∂2f

∂x∂x
ss+

∑ ∂2f

∂x∂yk
szk +

∑ ∂2f

∂yj∂x
zjs+

∑ ∂2f

∂yj∂yk
zjzk > 0,

for all s ∈ C, z ∈ Cm. It suffices to take s = 1:

fxx +Bz +Bz + zTLz > 0, z ∈ Cn,

or equivalently

fxx > − inf
z

(zTLz +Bz +Bz). (1.3.10)

To find the best possible use of the plurisubharmonicity we need to determine the infimum

in terms of B. The result is this:

Lemma 1.3.4. Suppose F (z) = zTLz+ 2 ReBz is bounded from below. Then its infimum is

inf
z∈Cm

(zTLz + 2 ReBz) = −BMBT,

and is attained at z = −MB∗, where M is any Hermitian quasi-inverse of L. (Then LMBT =

BT, and this property is sufficient for the formula above to hold.)

Proof of Lemma 1.3.4. If the infimum is attained at a point a, we must have

F (z) = (z − a)TL(z − a)− aTLa,

for the linear terms must vanish in an expansion around a. Hence inf F (z) = −aTLa. Now

assume M is such that LMBT = BT and M∗ = M . Then we just calculate:

F (z) = zTLz + 2 ReBz = (z +MB∗)TL(z +MB∗)−BMLMBT.
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Thus inf F = −BMLMBT = −BMBT and it is attained at the point z = −MB∗ (not

necessarily unique, since it depends on the choice of quasi-inverse). Here we only used the

fact that M satisfies LMBT = BT and M∗ = M .

For completeness we shall also show that if LML = L, M ∗ = M , then necessarily

LMBT = BT. If this is not true there is a row-vector c such that cBT 6= 0 but cL = 0. (We

have LMx = x for all columns of L, hence for x in the linear span of those columns, so if

BT does not belong to this span, there is a linear form which annihilates the columns of L

without annihilating BT). Now consider

F (scT) = (scT)TL(scT) +BscT +BscT = 2 Re(sBcT).

This real-linear form is not identically zero by hypothesis, and hence not bounded from below.

But we assumed F to be bounded from below. The set of all column vectors x such that

LMx = x includes all columns of L and therefore also BT.

Thus Lemma 1.3.4 and hence Proposition 1.3.3 are proved.

Theorem 1.3.5. Let f be plurisubharmonic and of class C 2 in an open set in C×Cm and

y = w(x) a stationary point of y 7→ f(x, y) with w of class C 1. We write

β =
(∂w1

∂x
, ...,

∂wm
∂x

)
T

, H =
( ∂2f

∂yj∂yk

)
, L =

( ∂2f

∂yj∂yk

)
,

and let M be an arbitrary Hermitian quasi-inverse of L, i.e., M = M ∗, LML = L. Define

N = HMTH − L. (1.3.11)

Then g(x) = f(x,w(x)) satisfies

gxx > βT(HMTH − L)β = M
(
Hβ

)
− L(β) = βTNβ = N(β), (1.3.12)

where M(b) = bTMb and N(b) = bTNb denote the Hermitian forms defined by M and N (cf.

(1.3.4)). In particular, g is subharmonic if N(β) > 0.

Thus for every plurisubharmonic function f of class C 2 we have defined an Hermitian matrix

N = HMTH − L which is of interest. It is highly non-linear in f .

Proof. The criterion (1.3.9) of Proposition 1.3.3, fxx > BMBT, takes the form fxx >

M(Hβ) + 2 Re H(α, β) + L(α) if we are at a critical point. Indeed, B = −βTH − α∗LT (see

(1.3.8)), so

BMBT = β∗HMHβ + β∗HMLα + αTLMHβ + αTLMLα.

To simplify this expression we use the equations LML = L and LMBT = BT, which give

LMHβ = Hβ and β∗HML = β∗H. Therefore

fxx > BMBT = β∗HMHβ + β∗Hα+ αTHβ + αTLα = M
(
Hβ

)
+ 2 Re H(α, β) + L(α).

On the other hand we calculated gxx in Proposition 1.3.2:

gxx = fxx − 2 Re H(α, β) − L(α) − L(β).
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Using the estimate for fxx we get gxx > M
(
Hβ

)
− L(β) = N(β), which concludes the proof

of the theorem.

Let us look at a few special cases of the theorem.

1. If w is a holomorphic function, then β = 0 so g is subharmonic. This is no surprise, g(x) =

f(x,w(x)) being the composition of a plurisubharmonic function and a holomorphic

mapping.

2. If N = HMTH − L > 0 (positive semi-definite), then g is subharmonic.

3. The term βTHMTHβ is equal to xTMTx with x = Hβ, so it is always greater than or

equal to zero if L > 0. Therefore gxx > −L(β). Suppose we know that L 6 aI, |β| 6 b.

Then −βLβ∗ > −a|β|2 > −ab2, so that g(x) + ab2|x|2 is subharmonic. This means that

we have some control of the lack of subharmonicity.

4. If L is invertible, the condition HMTH > L means that P = L−1H satisfies PP > I. Is

there a nice interpretation of this inequality?

5. For m = 1 it is easy to analyze the condition. It becomes

gxx > (HMH − L)|β|2.

Hence g is subharmonic if either β = 0 or |H| > L. At a minimum we must have

|H| 6 L, so the case |H| > L is then equivalent to |H| = L, which means that there

exists a direction where the second derivative is zero. (If m > 1 and L and H can be

diagonalized simultaneously then we have more or less this case.)

6. Again for m = 1, the expression N = HMH − L is equal to

N =
f2
y′y′′ − fy′y′fy′′y′′

fy′y′ + fy′′y′′
= − real Monge–Ampère(f)

Laplacian(f)
,

where y = y′ + iy′′, y′, y′′ ∈ R. Same conclusion as in 5.

7. Consider the special case L = 0. Then f is plurisubharmonic if B = 0 and fxx > 0.

Taking M = 0 in the theorem we see that gxx > 0, which is true, since in Proposition

1.3.2 we have gxx = fxx. Indeed, 0 = B = −βTH, so H(α, β) = αTHβ = 0. The

conclusion cannot be improved.

8. Consider now the special case H = 0. Then f is plurisubharmonic if and only if

fxx > L(α). In fact, the necessary and sufficient condition for plurisubharmonicity

(see (1.3.10)) is

fxx > − inf
z

(L(z)+2 ReBz) = − inf
z

(L(z)−2 Re α∗LTz) = − inf
z

(L(α−z)−L(α)) = L(α).

In Proposition 1.3.2 we have gxx = fxx − L(α) − L(β). The theorem says that gxx >

−L(β), which is true and cannot be improved.

We have thus seen in 7. and 8. that if either H or L vanishes, the conclusion of the

theorem cannot be improved.

9. If f is independent of Im y, then H = L, so

N = HMTH − L = LMTL− L = (LML)T − LT = 0T = 0,

for L∗ = L, HT = H. So then the matrix N vanishes identically! Thus we have proved:
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Corollary 1.3.6. If f ∈ C2(Ω) ∩ PSH(Ω) is locally independent of Im y, then g(x) =

f(x,w(x)) is plurisubharmonic if y = w(x) is a stationary point (local minimum) of the

function y 7→ f(x, y) which depends in a C1 manner of x.

It is now a matter of routine to eliminate the smoothness assumptions in Corollary 1.3.6. We

then obtain the following theorem:

Theorem 1.3.7 (The Minimum Principle, Kiselman [1978]). Let Ω ⊂ Cn ×Cm be pseudo-

convex and f ∈ PSH(Ω). Assume that Ω and f are both independent of the imaginary part

of y ∈ Cm, i.e., if (x, y) ∈ Ω and y′ is a point in Cm with Re y′j = Re yj, then (x, y′) ∈ Ω

and f(x, y′) = f(x, y). Assume also (now only for simplicity) that the fiber π−1(x) ∩ Ω is

connected (thus a convex set according to Corollary 1.2.10) for each x ∈ Cn, where π is the

projection Cn ×Cm → Cn defined by π(x, y) = x. Define

g(x) = inf
y
f(x, y).

Then π(Ω) is pseudoconvex and g ∈ PSH(π(Ω)).

Remarks. If the fiber π−1(x) is not connected, it consists of several convex components, and

the theorem makes sense in this case also; however, the function g will not be defined in

a subset of Cn but on a Riemann domain over Cn. See Kiselman [1978] for details. — If

m = 1, then each component of a fiber π−1(x) ∩ Ω is a strip or a half-plane or the whole

plane. In most of the applications that we are going to present we do have m = 1, and the

fiber is a half-plane, in particular connected.

A special case of the theorem is when f = 0 in Ω and g = 0 in π(Ω). Then the theorem

just says that the projection π(Ω) is pseudoconvex. This special case is equivalent to the

whole theorem. Indeed, let

Ωf = {(x, y, t) ∈ Ω×C; f(x, y) < Re t}.

Then

π(Ωf ) = {(x, t) ∈ π(Ω)×C; g(x) < Re t}.
It is known that Ωf is pseudoconvex if and only if Ω is pseudoconvex and f ∈ PSH(Ω).

Therefore, if we have proved the theorem in the special case of zero functions, it follows that

π(Ωf ) is pseudoconvex, which is equivalent to g being plurisubharmonic.

Proof of Theorem 1.3.7. We shall successively reduce the theorem to Corollary 1.3.6.

First we shall show that if the result holds for a function f which tends to +∞ at the

boundary in the sense that the set

Ωa = {(x, y) ∈ Ω; f(x, y) < a}

satisfies

Ωa ∩ (Cn ×Rm) b Ω, a ∈ R, (1.3.13)

then it holds generally. To do this we form

fj = max(−j, f) +
1

j

(
max(0,− log d) + |x|2 + |Re y|2

)
,
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where d is the distance to the complement of Ω. The functions fj satisfy (1.3.13), and if

the result holds for them, so that gj = infy fj(x, y) is plurisubharmonic, then it follows that

lim gj = infj gj is plurisubharmonic. Clearly the decreasing limit inf j gj is precisely g. This

means that the theorem holds for general f .

Next suppose that a function f satisfies (1.3.13). Then we form

fε = f ∗ ψε + ε|Re y|2

like in the proof of Proposition 1.2.4, but of course with ψε(x, y) = ε−n−mψ((x, y)/ε). This

convolution is well-defined in the set Ωε of points of distance larger than ε to the complement

of Ω. Given an arbitrary relatively compact subdomain ω of π(Ω) we shall prove that g is

plurisubharmonic in ω. Now g is bounded from above in ω, say g < a there. Pick ε with

0 < ε 6 1 and b > a such that Ωa + εB ⊂ Ωb. Then Ωε contains Ωa, so that f ∗ ψe is

well-defined in Ωa. Next let

c = b+ sup
(x,y)∈Ωa

|Re y|2 < +∞.

Then Ωa ⊂ Ωc ⊂ Ωδ for some small positive δ. For x ∈ ω we have

c > inf
y

(fε(x, y); (x, y) ∈ Ωa) > inf
y

(fε(x, y); (x, y) ∈ Ωc).

In Ωε r Ωc we have fε > f > c, so the last infinimum is equal to infy(fε(x, y); (x, y) ∈ Ωε);

we denote this quantity by gε(x).

Thus fε is a strongly convex3 function of Re y and the infimum when y varies is attained

at a unique real point y = wε(x). Corollary 1.3.6 can be applied to such functions. To see

this, we first have to prove that the function wε is well-defined and of class C1. Now this

follows from the implicit function theorem, for the point y is the solution of the system of

equations ∂fε/∂yj = 0, whose Jacobian is

det
j,k

(
∂2fε

∂(Re yj)∂(Re yk)

)
(x,w(x)).

But this determinant is also the determinant of the real Hessian matrix of fε as a function

of Re y, and is therefore non-zero in view of the strong convexity of fε as a function of Re y.

This proves that wε is of class C∞.

We also have to ensure that the fibers π−1(x) ∩ Ωε are connected, even though the set

Ωε itself need not be connected. To see this, define first

Wx(ε) = {y ∈ Cm; (x, y) + (εB ∩ ({0} ×Cm)) ⊂ Ω} ⊂ Cm, x ∈ Cn, ε > 0.

Since π−1(x)∩Ω is connected, thus convex, the set Wx(ε) is convex. Therefore {x}×Wx′(ε)

is convex as well; it is a subset of π−1(x). But then also the intersection
⋂

x′∈x+εB

{x} ×Wx′

(√
ε2 − |x′ − x|2

)
= π−1(x) ∩Ωε

is convex. Thus Corollary 1.3.6 can be applied, and we deduce that gε(x) = infy fε(x, y) is a

plurisubharmonic function of x. Letting ε tend to 0, we conclude that g = limε→0 gε = infε gε
is plurisubharmonic in ω. Since ω was an arbitrary relatively compact subdomain of π(Ω),

this proves the theorem in general.

3This means that we can subtract a small positive multiple of |Re y|2 and still have a convex

function.
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Chapter 2. The Lelong number and the integrability index

2.1. Introduction

In the present chapter we shall show how to construct in a straight-forward way new pluri-

subharmonic functions from old ones using standard methods of convex analysis. These

new functions can then be used to find analytic varieties that are connected with the original

function, or rather with its singularities. We shall therefore first describe how one can measure

the singularity of a plurisubharmonic function: this is done using the Lelong number and the

integrability index.

The Lelong number measures how big (or “heavy”) the singularities of a plurisubhar-

monic function are. It generalizes the notion of multiplicity of a zero of a holomorphic

function. To define it, we first form the measure µ = (2π)−1∆f , where ∆ is the Laplacian in

all 2n real variables Re zj , Im zj . Note that when f = log |h| is the logarithm of the absolute

value of a holomorphic function of one variable, then µ is a sum of point masses, one at each

zero of h and with weight equal to the multiplicity of the zero. The Lelong number of f

at a point x is by definition the (2n− 2)-dimensional density of the measure µ at x. More

explicitly, it is the limit as r→ 0 of the mean density of µ in the ball of center x and radius r:

νf (x) = lim
r→0

µ(x+ rB)

λ2n−2(rB ∩Cn−1)
, (2.1.1)

where λk denotes k-dimensional Lebesgue measure. Note that we compare the mass of µ in

the ball x+ rB with the volume of the ball of radius r in Cn−1, i.e., of real dimension 2n−2.

This makes sense, because if f = log |h| with h holomorphic, then µ is a mass distribution

on the (2n − 2)-dimensional zero set of h. If n = 1, then λ2n−2(rB ∩Cn−1) = λ0({0}) = 1,

and νf (x) is just the mass of µ at x.

One often approximates a plurisubharmonic function f by fj = max(−j, f) or by smooth

functions fj = f ∗ψj obtained by convolution. However, in these cases the functions fj never

take the value −∞, so their Lelong numbers νfj
(x) are zero everywhere; their singularities

as measured by the Lelong number do not approach those of f as j → +∞. Here we shall

construct functions fτ depending on a non-negative number τ such that f0 = f and fτ has

Lelong number νfτ
(x) = (νf (x) − τ)+. It turns out that the family (fτ )τ can be used in

various constructions. The singularities of fτ are the same as those of f but attenuated in

a certain sense. More precisely, the important property is that νfτ
(x) > 0 if τ < νf (x),

whereas the singularity is completely killed, i.e., νfτ
(x) = 0, if τ > νf (x). In this context

it is convenient to define the Lelong number of a family of plurisubharmonic functions. We

prove analyticity theorems for the superlevel sets of such numbers; see section 2.4.

If f is plurisubharmonic and t a positive number, the function exp(−f/t) may or may not

be integrable. The set of all t such that this function is locally integrable in the neighborhood

of a certain point is an interval, and its endpoint measures how singular f is. This is the
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reason behind the integrability index ιf to be defined in section 2.3 (see (2.3.4)). From

the Hörmander–Bombieri theorem we get analyticity theorems for the integrability index

(see (2.3.4)). There is a relation between the integrability index and the Lelong number:

ιf 6 νf 6 nιf , where n is the complex dimension of the space; see Theorem 2.3.5. This

relation cannot be improved (see Example 2.3.6), but nevertheless it will suffice to yield

analyticity theorems for the Lelong number. The reason for this is roughly speaking that

if we subtract the same quantity τ from two numbers like νf (x) and νf (x′) > νf (x) > τ ,

then the quotient between νf (x′) − τ and νf (x) − τ can be large, for instance larger than

the dimension n. This is why analyticity theorems for sets of plurisubharmonic functions are

useful when it comes to proving analyticity theorems for a single function. For other studies

of Lelong numbers, see Abrahamsson [1988], Demailly [1987, 1989], and Wang [1991].

2.2. Spherical means and spherical suprema

Let f and q be two given plurisubharmonic functions in an open set Ω in Cn, thus f, q ∈
PSH(Ω). We define an open set Ωq in Cn ×C as

Ωq = {(x, t) ∈ Ω×C; q(x) + Re t < 0}, (2.2.1)

and we note immediately that Ωq is pseudoconvex if Ω is pseudoconvex, for the function

(x, t) 7→ q(x) + Re t is plurisubharmonic in Ω×C. We shall assume that q(x) > − log dΩ(x)

for all x ∈ Ω, denoting by dΩ(x) the distance from x to the complement of Ω, and we note

that then (x, t) ∈ Ωq implies that the closed ball of center x and radius |et| is contained in

Ω. We define two functions u and U in Ωq by putting

u(x, t) = uf (x, t) = uf,q(x, t) =

∫
!

z∈S

f(x+ etz), (x, t) ∈ Ωq; (2.2.2)

U(x, t) = Uf (x, t) = Uf,q(x, t) = sup
z∈S

f(x+ etz), (x, t) ∈ Ωq. (2.2.3)

Here S is the Euclidean unit sphere, and the barred integral sign indicates the mean value;

see (1.2.2). So uf (x, t) is the mean value of f over the sphere x + etS, and Uf (x, t) is the

supremum of f over the same sphere. Since we usually keep q fixed, the dependence on that

function need not always be shown. If Ω 6= Cn, the simplest choice of q is just q = − log dΩ.

Then q > −∞ everywhere. However, if Ω = Cn, then it is usually not convenient to use

q = − log dΩ = −∞, because with this choice of q, the behavior of f at infinity would influence

the local properties of the functions we construct. In this case it is best just to take q = 0.

The functions uf,q and Uf,q are well defined and < +∞ in Ωq, thanks to our assumption

exp(−q(x)) 6 dΩ(x). We define them to be +∞ outside Ωq.

Clearly uf 6 Uf , and we shall see that there are inequalities in the opposite direction. We

can note quickly that uaf+bg = auf+bug for non-negative a, b, even for real a, b, which implies

that the function uf depends linearly of f in the linear space of all Borel measurable functions

which are integrable on spheres, thus in particular on the space δPSH(Ω) of delta-plurisub-

harmonic functions, i.e., the vector space spanned by those plurisubharmonic functions which

are not identically minus infinity in any open component of Ω (see the end of section 1.2).

We shall see that this implies that the Lelong number is a linear function on δPSH(Ω). As
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to the function Uf we can only say that Uaf+bg 6 aUf + bUg for a, b > 0, which implies that

Uf is a convex function of f , and the Lelong number a concave function of f . But when it

comes to the maximum of two functions, we have Umax(f,g) = max(Uf , Ug) which implies that

νmax(f,g) = min(νf , νg), whereas for the mean we can say only that umax(f,g) > max(uf , ug)

which implies that νmax(f,g) 6 min(νf , νg). It is therefore useful to know that the Lelong

number can be defined by either uf or Uf , because this enables us to use the best properties

of either one.

We can define the Lelong number as the slope at minus infinity of the function t 7→
u(x, t). As a consequence of the maximum principle, u(x, t) and U(x, t) are increasing in t;

by Hadamard’s three-circle theorem, they are convex functions of t. Therefore their slopes

at −∞ exist:

νf (x) = lim
t→−∞

u(x, t)

t
and Nf (x) = lim

t→−∞

U(x, t)

t
(2.2.4)

both exist. This follows from the fact that the slopes

u(x, t) − u(x, t0)

t− t0
and

U(x, t)− U(x, t0)

t− t0

are increasing in t. The first limit νf (x) is the Lelong number of f at x, and the definition

we shall use in this chapter. The definition (2.1.1) of the Lelong number as the density of

a measure is equivalent to (2.2.4) as can be proved without difficulty using Stokes’ theorem

(Kiselman [1979]). To see this we shall calculate the mean density assuming that f is of class

C2. We first express the mass of µ in a ball in terms of the derivative of u:

µ(x + rB) =
1

2π

∫

x+rB

∆f =
1

2π

∫

x+rS

∂f

∂r
dS =

1

2π

∂u

∂t

dt

dr

∫

rS

dS =
1

2πr

∂u

∂t

∫

rS

dS.

We now compare with the integral over a ball of lower dimension:

∫

rS

dS = r2n−1

∫

S

dS = 2πr2n−1

∫

B2n−2

dλ2n−2 = 2πr

∫

rB2n−2

dλ2n−2 = 2πrλ2n−2(rB2n−2).

Note that we use the unit sphere of dimension 2n− 1 and the unit ball of dimension 2n− 2

here; the remarkable fact is that the quotient

area(S2n−1)

volume(B2n−2)
= 2π

is independent of the dimension. The mean density µ(x+rB)/λ2n−2(rB∩Cn−1) is therefore

equal to the slope ∂u/∂t at the point t = log r, and the density at the point x is equal to the

limit limt→−∞ ∂u/∂t(x, t). We can now get rid of the extra assumption that f is of class C 2,

the derivative of u being replaced by the derivative from the right (we use closed balls).

Since uf 6 Uf we have νf (x) > Nf (x). We shall now see that the two numbers are

equal. To this end we shall use Harnack’s inequality, which takes the form

1 + |x|/r
(1− |x|/r)m−1

h(0) 6 h(x) 6
1− |x|/r

(1 + |x|/r)m−1
h(0) (2.2.5)
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for harmonic functions which satisfy h 6 0 in the ball of radius r in Rm. If f is subharmonic

in a neighborhood of the closed ball esB in Cn, we can consider its harmonic majorant h

there, which satisfies f(x) 6 h(x) and

h(0) =

∫
!

z∈S

h(esz) =

∫
!

z∈S

f(esz) = u(0, s).

Therefore

U(0, t) = sup
etS

f 6 sup
etS

h 6
1− et−s

(1 + et−s)2n−1
u(0, s), t < s,

provided only f 6 0 in esB. If we apply this inequality to the function f − U(0, s), which is

non-positive in esB by definition, we get, writing U(t) instead of U(0, t) for simplicity:

U(t)− U(s) 6
1− et−s

(1 + et−s)2n−1

(
u(s)− U(s)

)
,

equivalently,

U(t) 6 (1− λt−s)U(s) + λt−su(s), t < s, (2.2.6)

where λt is defined for t < 0 as

λt =
1− et

(1 + et)2n−1
.

We can now prove that the two limits in (2.2.4) are equal. As already noted, νf (x) >

Nf (x). In the other direction we can take for instance s = t + 1 in (2.2.6) to obtain the

estimate

U(t) 6 (1− λ−1)U(t+ 1) + λ−1u(t+ 1),

whence
U(t)

t
> (1− λ−1)

U(t+ 1)

t
+ λ−1

u(t+ 1)

t
, t < 0.

Letting t tend to −∞ we see that Nf (x) > νf (x).

To any given f, q ∈ PSH(Ω) we define

ϕτ (x) = inf
t

[
uf (x, t)− τ Re t

]
, x ∈ Ω, τ > 0. (2.2.7)

In view of our convention that uf (x, t) = +∞ if (x, t) /∈ Ωq, the infimum is effectively only

over those t that satisfy Re t < −q(x). The function τ 7→ −ϕτ (x) is the Fenchel transform

of R 3 t 7→ uf (x, t); cf. (3.4.1). We assume all the time that e−q(x) does not exceed the

distance dΩ(x) from x to the boundary of Ω, so that uf is well defined. The function

(x, t) 7→ uf (x, t) − τ Re t is plurisubharmonic in Ωq and independent of the imaginary part

of t. Therefore the minimum principle, Theorem 1.3.7, can be applied and yields that ϕτ is

plurisubharmonic in Ω.

Example. Let us look at the simplest example: f(x) = log |x|, x ∈ Cn. We choose q = 0 and

form Uf (x, t) = log(et + |x|) for t < q(x) = 0. Then ϕτ (x) = inft<0(Uf (x, t) − τt) can be

calculated explicitly: it is ϕτ (x) = (1− τ) log |x|+ Cτ for 0 6 τ < 1, where Cτ is a constant

which depends on the parameter τ , and ϕτ (x) = log(1 + |x|) for τ > 1. Thus the Lelong

number of ϕτ at the origin is max(1− τ, 0) for all τ > 0.

There is no apparent reason why the Lelong number of the plurisubharmonic function

ϕτ at x should be a function of νf (x) and τ ; it could as well depend in some other way on the

behavior of f near x. However, it turns out that the simple formula for the Lelong number

of ϕτ in the example holds quite generally:
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Theorem 2.2.1 (Kiselman [1979]). Let f, q ∈ PSH(Ω) with q > − log dΩ. Define ϕτ by

(2.2.2) and (2.2.7). Then ϕτ ∈ PSH(Ω). If νq(x) = 0, then the Lelong number of ϕτ is

νϕτ
(x) = max(νf (x)− τ, 0) = (νf (x)− τ)+, x ∈ Ω, τ > 0. (2.2.8)

We can also use the function Uf instead of uf in the construction; the proof is the same. If

τ < 0, then of course νϕτ
(x) = +∞.

We shall give a simplified proof of Theorem 2.2.1 under the slightly stronger hypothesis

that q(x) > −∞. This is quite enough for the applications we have in mind. (As soon as

Ω 6= Cn, we must indeed have q > −∞ everywhere.)

Lemma 2.2.2. With f and ϕτ as in Theorem 2.2.1 we have

νϕτ
(x) > νf (x)− τ.

Proof. We first note that by the definition of ϕτ , we have for any t′

ϕτ (y) 6 uf (y, t′)− t′τ.

Taking the mean over the sphere x + etS then gives

uϕτ
(x, t) =

∫
!

z∈S

ϕτ (x+ zet) 6

∫
!

z∈S

∫
!

w∈S

f(x+ zet + wet
′

)− t′τ

6

∫
!

z∈S

f(x+ zet
′′

)− t′τ = uf (x, t′′)− t′τ.

Here t and t′ are arbitrary and t′′ is determined from them by the equation et
′′

= et + et
′

.

The only interesting choice is t = t′, so that t′′ = t+ log 2. Thus

uϕτ
(x, t)

t
>
uf (x, t + log 2)

t
− τ, t < 0,

and letting t tend to −∞ we get the desired conclusion.

Lemma 2.2.3. With f and ϕτ as in Theorem 2.2.1, take a number τ > νf (x). Assume that

q(x) > −∞. Then ϕτ (x) > −∞. In particular νϕτ
(x) = 0.

Proof. Since νf (x) < τ < +∞, f is not equal to −∞ identically in a neighborhood of x. The

value ϕτ (x) is the infimum of the convex function uf (x, t) − tτ of the real variable t when

t varies in the interval ]−∞,−q(x)[. This interval is by hypothesis bounded from the right.

Moreover by the choice of τ , the function is strictly decreasing when t� 0. Thus its infimum

is finite.

Proof of Theorem 2.2.1, assuming that q(x) is finite. The proof consists of the following

steps (cf. Kiselman [1992]). First we note that ϕτ is a concave function of τ with ϕ0 = f .

Therefore νϕτ
(x) is a convex function of τ taking the value νf (x) for τ = 0, for the Lelong
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number is as we have seen a linear function of f , the limit of u(x, t)/t. Second we see from

Lemma 2.2.2 that νϕτ
(x) > νf (x) − τ . Third we know from Lemma 2.2.3 (if νf (x) is finite)

that νϕτ
(x) = 0 if τ > νf (x). Now the only convex function of τ which has these properties

is τ 7→ (νf (x)− τ)+.

2.3. The Hörmander–Bombieri theorem and the integrability index

The purpose of this chapter is to show how the singularities of plurisubharmonic functions

give rise to, and can be described by, analytic varieties. To do so we shall of course need a

method to construct varieties defined by a given plurisubharmonic function. This method is

the technique of solving the ∂ equation using plurisubharmonic functions as weights, most

elegantly expressed by the Hörmander–Bombieri theorem:

Theorem 2.3.1. Let Ω be a pseudoconvex open set in Cn, and let ϕ ∈ PSH(Ω). For every

a ∈ Ω such that e−ϕ ∈ L2
loc

(a) there exists a holomorphic function h ∈ O(Ω) such that

h(a) = 1 and ∫

Ω

|h|2e−2ϕ(1 + |z|2)−3ndλ2n(z) < +∞. (2.3.1)

Here L2
loc

(a) denotes the set of all functions that are square integrable in some neighborhood

of the point a.

For the proof see Hörmander [1990: Theorem 4.4.4]. (The exponent −3n can be improved

to −n − ε for any positive ε; see Hörmander [forthc.]. This is, however, not important in a

local study like ours.) Let us denote by O(Ω, ϕ) the set of all holomorphic functions h in Ω

which satisfy condition (2.3.1) for a given function ϕ. The intersection

V (ϕ) =
⋂

h

(
h−1(0); h ∈ O(Ω, ϕ)

)
(2.3.2)

is an intersection of zero sets of holomorphic functions, and therefore itself an analytic set.

Let us define

I(ϕ) = {a ∈ Ω; e−ϕ /∈ L2
loc

(a)}.
With this notation the theorem says that V (ϕ) ⊂ I(ϕ). It is however obvious that I(ϕ) ⊂
V (ϕ).

In view of this theorem it is natural to measure the singularity of a plurisubharmonic

function ϕ at a point a by its integrability index ιϕ(a):

ιϕ(a) = inf
t>0

[
t; e−ϕ/t ∈ L2

loc
(a)

]
. (2.3.3)

It is easy to see that if e−ϕ/t ∈ L2
loc

(a), then also e−ϕ/s ∈ L2
loc

(a) for every s > t. Thus

the set of t > 0 such that e−ϕ/t ∈ L2
loc

(a) is an interval, either [ιϕ(a),+∞[ or ]ιϕ(a),+∞[. In

all examples I have seen, it is an open interval. It seems to be unknown whether it is always

open for plurisubharmonic ϕ.

Let Φ be an arbitrary subset of PSH(Ω) and κ a functional on Φ in the sense that there is

given a function κϕ: Ω → [0,+∞] for every ϕ ∈ Φ. We introduce a notation for the superlevel

sets of such functionals:

Eκc (ϕ) = {a ∈ Ω; κϕ(a) > c}, c > 0.
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The superlevel sets of the integrability index are analytic varieties. In fact, by the definition

of ι

Eιc(ϕ) ⊂ I(ϕ/t) ⊂ Eιt(ϕ), 0 < t < c.

Using the Hörmander–Bombieri theorem we see that

Eιc(ϕ) ⊂ V (ϕ/t) ⊂ Eιt(ϕ), 0 < t < c.

We now note that by the definition of the superlevel set, the intersection of all E ι
t(ϕ) when t

varies in the interval 0 < t < c is just Eι
c(ϕ), so that

Eιc(ϕ) =
⋂

0<t<c

V (ϕ/t), c > 0. (2.3.4)

Suppose that κ is a functional which is comparable to the integrability index in the sense

that the inequality

sιϕ(x) 6 κϕ(x) 6 tιϕ(x), ϕ ∈ Φ, x ∈ Ω, (2.3.5)

holds for some positive constants s and t. Then there is of course a relation between the

superlevel sets of the two functionals:

Eκtc(ϕ) ⊂ Eιc(ϕ) ⊂ Eκsc(ϕ), ϕ ∈ Φ. (2.3.6)

If we know that Eκtc(ϕ) = Eκsc(ϕ), then Eκtc(ϕ) equals Eιc(ϕ) and so is an analytic variety. Of

course functions which admit such an interval of constancy in their superlevel sets are very

special. But we shall see in the next section that for a set of plurisubharmonic functions such

intervals of constancy can appear quite naturally.

We now ask whether the Lelong number is comparable to the integrability index in the

sense of (2.3.5). The answer is well-known, but will be quoted here for convenience.

Theorem 2.3.2. If ϕ ∈ PSH(Ω) where Ω ⊂ Cn, and νϕ(a) > n, then e−ϕ /∈ L2
loc

(a). Thus

Eνn(ϕ) ⊂ I(ϕ) ⊂ V (ϕ). In terms of the integrability index we have νϕ(x) 6 nιϕ(x).

Proof. This result is contained in Skoda [1972, Proposition 7.1], but it is easy to give a proof

using the function U = Uϕ defined by (2.2.3). If νϕ(a) > n, then the slope of t 7→ U(a, t) at

minus infinity is at least n, and we have

U(a, t) 6 U(a, t0) + n(t− t0), t 6 t0,

for some t0. Rewriting this in terms of ϕ we see that

ϕ(z) 6 ϕ(z0) + log

( |z − a|n
|z0 − a|n

)
, |z − a| 6 |z0 − a|,

for a suitable point z0 on the sphere |z − a| = et0 , or equivalently

e−2ϕ(z)
> e−2ϕ(z0)

|z0 − a|2n
|z − a|2n ,

where the right-hand side is a non-integrable function near a.

In the other direction we have:
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Theorem 2.3.3. If ϕ ∈ PSH(Ω) has a finite value at a point a ∈ Ω, then e−ϕ ∈ L2
loc

(a).

For the proof of this result, see Hörmander [1990: Theorem 4.4.5]. The theorem says that

I(ϕ) is contained in the polar set P (ϕ) = ϕ−1(−∞) of ϕ, thus I(ϕ) ⊂ P (ϕ).

Combining Theorems 2.3.1, 2.3.2 and 2.3.3 we see that

Eνnc(ϕ) ⊂ V (ϕ/c) ⊂ P (ϕ), c > 0. (2.3.7)

A stronger result in the same direction is

Theorem 2.3.4. If νϕ(a) < 1, then e−ϕ ∈ L2
loc

(a). Thus I(ϕ) ⊂ Eν1 (ϕ). Also ιϕ(x) 6 νϕ(x).

For the proof see Skoda [1972: Proposition 7.1].

Combining Theorems 2.3.1, 2.3.2 and 2.3.4 we get

Theorem 2.3.5. The Lelong number ν is comparable to the integrability index ι in the sense

of (2.3.5), more precisely,

ιϕ(x) 6 νϕ(x) 6 nιϕ(x), ϕ ∈ PSH(Ω), x ∈ Ω ⊂ Cn, (2.3.8)

and

Eνnc(ϕ) ⊂ V (ϕ/c) ⊂ Eνc (ϕ) ⊂ V (nϕ/c), ϕ ∈ PSH(Ω), c > 0. (2.3.9)

These inequalities are sharp.

This result is the basis for the analyticity theorems that we shall state. However, the weaker

result (2.3.7) is often sufficient.

That the comparison in (2.3.8) between the Lelong number and the integrability index

cannot be improved follows from simple examples:

Example 2.3.6. The function

f(z) = max(log |z1|a, log |z2|b), z ∈ C2,

has integrability index ιf (0) = ab/(a + b) and Lelong number νf (0) = min(a, b). Thus

νf (0)

ιf (0)
=

a + b

max(a, b)
=

a−1 + b−1

max(a−1, b−1)
∈ ]1, 2] .

A little more generally, if we take 1 6 k 6 n and positive numbers a1, ..., ak and define

f(z) = max
16j6k

log |zj |aj , z ∈ Cn,

then ιf (0) = (
∑
a−1
j )−1 and νf (0) = min aj , so that

νf (0)

ιf (0)
=

∑
a−1
j

max a−1
j

∈ [1, n] .
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(These formulas hold if we define a−1
j = 0 for j = k + 1, ..., n.) Clearly the quotient νf/ιf

can assume all values in the closed interval [1, n] (we allow k = 1 and k = n). Thus (2.3.8)

is sharp.

2.4. Analyticity theorems for sets of plurisubharmonic functions

Let Ω be an open set in Cn and Φ an arbitrary subset of PSH(Ω). Let κ be a functional

on Φ which is comparable to the integrability index in the sense that (2.3.5) holds for some

positive constants s and t. Then we get from (2.3.6) and (2.3.7):

⋂

ϕ∈Φ

Eκtc(ϕ) ⊂
⋂

ϕ∈Φ

Eιc(ϕ) ⊂
⋂

ϕ∈Φ

Eκsc(ϕ) ⊂
⋂

ϕ∈Φ

P (ϕ). (2.4.1)

It is convenient to introduce a notation for these sets:

Eκc (Φ) =
⋂

ϕ∈Φ

Eκc (ϕ)

for any functional κ. If we define the value of the functional on the whole set Φ as

κΦ(x) = inf
ϕ∈Φ

κϕ(x),

then Eκc (Φ) is just the superlevel set of κΦ. We can also define the polar set of Φ as

P (Φ) =
⋂

ϕ∈Φ

P (ϕ).

With this notation we can write (2.4.1) as

Eκtc(Φ) ⊂ Eιc(Φ) ⊂ Eκsc(Φ) ⊂ P (Φ). (2.4.2)

Theorem 2.4.1. Let κ be a functional on a subset Φ of PSH(Ω) which is comparable to the

integrability index in the sense that (2.3.5) holds for some positive constants s and t. If the

superlevel sets Eκc (Φ) are independent of c over an interval of sufficiently large logarithmic

length, viz. if Eκsc(Φ) = Eκtc(Φ), then Eκsc(Φ) is an analytic variety. A little more generally,

if Y is an analytic subset of Ω and Y ∩Eκsc(Φ) = Y ∩Eκtc(Φ), then Y ∩Eκsc(Φ) is analytic.

Proof. Since the result is local, we can assume Ω to be pseudoconvex. The inclusions (2.4.2)

then show that Eκsc(Φ) = Eιc(Φ), which is the set of common zeros of a family of holomorphic

functions in Ω; see (2.3.4). Similarly, Y ∩Eκ
sc(Φ) = Y ∩Eιc(Φ).

Theorem 2.4.2. Let Ω, κ and Φ be as in Theorem 2.4.1, and assume in addition that κ is

positively homogeneous, i.e., ϕ ∈ Φ and t > 0 implies tϕ ∈ Φ and κtϕ(a) = tκϕ(a). Let Y be

an analytic subset of Ω, and let X be a subset of Y . Assume that

inf
x∈X

κϕ(x) > 0 for all ϕ ∈ Φ; (2.4.3)

and

for every x ∈ Y rX there exists a function ϕ ∈ Φ such that κϕ(x) = 0. (2.4.4)
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Then X is an analytic set.

Proof. Define ψ = ϕ/εϕ, where εϕ = infx∈X κϕ(x) > 0, and let Ψ be the set of all functions ψ

obtained in this way. Then κψ(x) > 1 for every ψ ∈ Ψ and every x ∈ X. Using the notation

for superlevel sets we can write this as

X ⊂ Eκ1 (Ψ) ⊂ Eκc (Ψ)

for all c with 0 6 c 6 1.

On the other hand, if x ∈ Y rX, then by (2.4.4) there is a ϕ ∈ Φ such that κϕ(x) = 0.

Thus ψ = ϕ/εϕ is in Ψ and κψ(x) = κϕ(x)/εϕ = 0. So x /∈ Eκc (ψ), c being any positive

number. Thus

x /∈ Eκc (Ψ) =
⋂

ψ∈Ψ

Eκc (ψ).

Therefore Eκc (Ψ) ∩ Y ⊂ X for every c > 0. Combining this with the first part of the proof

we see that Eκc (Ψ) ∩ Y = X for all c satisfying 0 < c 6 1. Hence Eκ
c (Ψ) ∩ Y is constant for

these c and Theorem 2.4.1 yields that X is analytic.

A particular case of Theorem 2.4.2 is when we can associate with a given function or

current a family of plurisubharmonic functions on which our functional takes values that we

can control. The following result is of this character. It holds also for functionals which

have only a loose connection to the integrability index or the Lelong number; more precisely

functionals which are zero at the same time as the integrability index in a semiuniform way:

Theorem 2.4.3. Let Φ = {ϕα; α ∈ A} be a set of plurisubharmonic functions in an open

set Ω, and let κ be a functional on Φ which is weakly comparable to the integrability index in

the sense that

for every ε > 0 there is a δ > 0 such that ϕ ∈ Φ, ιϕ(x) < δ implies κϕ(x) < ε,

and

ϕ ∈ Φ, κϕ(x) = 0 implies ιϕ(x) = 0.

Suppose that the values κϕα
(x) are given by a formula κϕα

(x) = G(H(x), α) for some func-

tions G: [0,+∞] × A → [0,+∞] and H: Ω → [0,+∞]. We assume that c 7→ G(c, α) is

increasing, and that there exists a number c0 such that G(c0, α) > 0 for all α ∈ A. Finally

we suppose that for every c < c0 there is an α ∈ A such that G(c, α) = 0. Then the superlevel

set {x; H(x) > c0} is analytic.

Proof. We shall apply Theorem 2.4.2 to X = {x; H(x) > c0}. First we note that

inf
x∈X

κϕα
(x) = inf

x∈X
G(H(x), α) > G(c0, α) = εα > 0

for any α ∈ A. Hence ιϕα
(x) > δα > 0, which means that (2.4.3) holds for ι. Next, if x /∈ X,

then c = H(x) < c0 and there is an α such that G(c, α) = 0. We get

κϕα
(x) = G(H(x), α) = G(c, α) = 0;
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hence also ιϕα
(x) = 0, so that (2.4.4) holds for ι. Thus Theorem 2.4.2, applied to ι, shows

that X is analytic.

This theorem contains the classical theorem of Siu [1974]. For if we let κϕ(x) = νϕ(x),

A = [0, c0[, G(c, α) = (c− α)+, H(x) = νf (x), and define ϕα as

ϕα(x) = inf
t

[
uf (x, t)− tα; (x, t) ∈ Ωq

]
, x ∈ Ω, α ∈ [0, c0[ ,

then by Theorem 2.2.1,

νϕα
(x) =

(
νf (x)− α

)+
= G(H(x), α).

The function G(c, α) = (c− α)+ satisfies the hypotheses of Theorem 2.4.3, so it follows that

the superlevel set {x; νf (x) > c0} is an analytic variety. The singularities of the ϕα are the

same as those of f , but attenuated to some degree as shown by the formula. This attenuation

is the reason behind their usefulness in proving Siu’s theorem.
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Chapter 3. Order and type as measures of growth

3.1. Introduction

The notions of order and type of entire functions are classical in complex analysis. They

result from a comparison of a given function with standard functions. The purpose of this

chapter is to generalize this comparison in such a way that order and type become dual to

each other in the sense of convex analysis (section 3.4), and to show that the concept of order

so obtained appears as the natural answer to a problem of extrapolation: to extend convex

functions from the union of two parallel hyperplanes to as large a set as possible (section

3.7). Then we return to entire functions to consider an analogous extension problem for

them (section 3.8).

It is shown that the relative order of one function with respect to another can always be

calculated from the growth of its Taylor coefficients (section 3.6). This is true for the type

only if the growth is sufficiently regular (see Kiselman [1993]).

In Kiselman [1983] I studied order and type from this point of view, using methods from

my paper [1981]. For earlier developments see the references in that paper. See also Kiselman

[1984, 1986]. A different approach to the relation between maximum modulus and Taylor

coefficients is presented in Freund and Görlich [1985]. Halvarsson [forthc.] has proved an

extension theorem for entire functions with estimates both from above and from below. He

has also studied the dependence of the order on parameters.

3.2. Order and type in classical complex analysis

Let h be an entire function in Cn, h ∈ O(Cn). Its order and type are defined classically by

comparing h with the function exp(b|z|a) for various choices of the parameters a and b. More

precisely, one considers first estimates

|h(z)| 6 Cae
|z|a , z ∈ Cn,

and defines the order ρ as the infimum of all numbers a for which such an estimate holds

(0 < a < +∞; 0 6 ρ 6 +∞). In the case where 0 < ρ < +∞ one then considers all numbers

b such that

|h(z)| 6 Cbe
b|z|ρ , z ∈ Cn,

for some constant Cb. The type (with respect to the order ρ) is then the infimum σ of all

such numbers b (0 < b < +∞; 0 6 σ 6 +∞).

For the order we have the formula

ρ = order(h) = lim sup
r→+∞

sup
|z|=r

log log |h(z)|
log r

. (3.2.1)
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Now sup|z|=r log |h(z)| is a convex function of log r in view of the Hadamard three-circle

theorem, so it is natural to consider the function

f(t) = sup
|z|=et

log |h(z)|, t ∈ R;

we shall call it the growth function of h. The definition of order then means that we

consider all numbers a such that

f(t) 6 eat + Ca, t ∈ R,

for some constant Ca, and then define the order as the infimum of all such numbers a. (The

role of the constant Ca is to eliminate all influence of values of f at any particular point.)

Similarly, the type (for order ρ) is the infimum of all numbers b such that

f(t) 6 beρt + Cb, t ∈ R.

Now this leads naturally to the idea of comparing with some other function g instead of

the exponential function g(t) = et. So we might want to consider all numbers a such that

f(t) 6 g(at) + Ca, t ∈ R, (3.2.2)

and then take the infimum of all a.

For reasons which will become clear when we come to the duality between order and

type, it is desirable to change this inequality to

f(t) 6
1

a
g(at) + Ca, t ∈ R. (3.2.3)

Now in the classical case, when g(t) = et, the factor 1/a does not make any difference

whatsoever, for in this case we see that for any a > 0 and any b > a there is a constant Ca,b
such that

g(at) 6
1

b
g(bt) + Ca,b and

1

a
g(at) 6 g(bt) + Ca,b.

This implies that comparisons with g(at) and with g(at)/a give identical infima. But of

course there exist functions g such that this is not true (e.g., g(t) = t), and then (3.2.2) and

(3.2.3) lead to different definitions of the order.

3.3. Relative order and type of convex functions

Definition 3.3.1. Let f, g:E → [−∞,+∞] be two functions defined on a real vector space

E. We consider inequalities of the form

f(x) 6
1

a
g(ax) + c, x ∈ E, (3.3.1)

where a is a positive constant and c a real constant. We shall call the infimum of all positive

numbers a such that (3.3.1) holds for some constant c the order of f relative to g, and

denote it by ρ = order(f : g).
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Examples. The motivating example is

order(t 7→ eAt : t 7→ et) = A

for all positive numbers A. Trivial examples are: order(a : b) = 0 if a and b are finite

constants; order(f : +∞) = 0; order(−∞ : g) = 0; order(f : −∞) = +∞ except if f is

identically −∞; order(+∞ : g) = +∞ except if g is identically +∞.

If g is convex, we know that

1

a
g(ax) 6

1− t

a
g(0) +

· t

a
g(bx) =

(
1

a
− 1

b

)
g(0) +

· 1

b
g(bx), x ∈ E, (3.3.2)

if 0 < a < b and ax = (1 − t) · 0 + tbx, i.e., t = a/b. Here the sign +
·

denotes upper

addition, which is an extension of the usual addition from R2 to [−∞,+∞]
2
; it satisfies

(+∞) +
·

(−∞) = +∞. Similarly we define lower addition as the extension of + which

satisfies (+∞) +· (−∞) = −∞. If g(0) = +∞, the inequality (3.3.2) is without interest,

but if g(0) < +∞, it shows that the inequality (3.3.1) for a particular a implies the same

inequality with a replaced by b for any b > a. The set of all numbers a, 0 < a < +∞, such

that (3.3.1) holds is therefore an interval, either [ρ,+∞[ or ]ρ,+∞[ for some ρ ∈ [0,+∞].

So although Definition 3.3.1 has a sense for all f and g, it is often desirable to assume

that g is convex with g(0) < +∞: in this case the order determines the set of all a for which

(3.3.1) holds, with the exception of one point, the order itself.

Lemma 3.3.2. Let fy denote the translate of f by the vector y: fy(x) = f(x− y). If one of

f and g is convex and real valued, then

order(fy : g) = order(f : gy) = order(f : g).

In particular order(fy : gy) = order(f : g) so that the order is translation invariant and can

be defined on affine spaces as soon as one of the functions is convex and real valued.

Proof. If f is convex and real valued, we know that

f(x− y) 6
1

b
f(bx) +

(
1− 1

b

)
f(z)

for any b > 1, if we choose z such that

x− y =
1

b
bx+

(
1− 1

b

)
z,

i.e., if z = −y/(1 − 1/b). If order(f : g) = ρ, there are numbers a arbitrarily close to ρ such

that

f(x) 6
1

a
g(ax) + c.

We then estimate f as follows:

f(x− y) 6
1

b
f(bx) +

(
1− 1

b

)
f(z) 6

1

ab
g(abx) +

1

b
c+

(
1− 1

b

)
f(z).
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Since f(z) is finite and independent of x, this shows that order(fy : g) 6 ab, and since b is

arbitrarily close to 1, we see that order(fy : g) 6 ρ. If we apply this result to fy, translating

by the vector −y, we get equality.

Similarly, if g is convex and real valued, we can write

f(x− y) 6
1

a
g(a(x − y)) + c 6

1

ab
g(abx) +

1

a

(
1− 1

b

)
g(z) + c,

where z = −ay/(1 − 1/b), thus independent of x. This shows that, in this case also,

order(fy : g) 6 ab with ab arbitrarily close to ρ.

It remains to consider order(f : gy). The arguments are the same as for order(fy : g);

we omit the proof.

It is easy to give examples of functions with values in ]−∞,+∞] such that the order is

not translation invariant:

Example. Let f be the indicator function of the ball rB, i.e., let f(x) = 0 when |x| 6 r and

f(x) = +∞ otherwise. Similarly let g be the indicator function of the ball sB. In the case

where 0 < s 6 r we get
s

r
6 order(fy : gy) =

s+ |y|
r + |y| 6 1.

If s > r > 0, we have

order(fy : gy) =





s− |y|
r − |y| >

s

r
> 1 when |y| < r;

+∞ when |y| > r.

We now consider a generalization of the notion of type in complex analysis.

Definition 3.3.3. Given two functions f, g:E → [−∞,+∞] on a vector space E, we consider

inequalities

f(x) 6 bg(x) + c, x ∈ E, (3.3.3)

where b is a positive number. We define the type of f relative to g as the infimum of

all positive numbers b such that (3.3.3) holds for some constant c. We shall denote it by

σ = type(f : g).

Example. The motivating example is

type(t 7→ Aeρt : t 7→ eρt) = A.

The two functions here are the growth functions of the entire functions exp(Azρ) and exp(zρ)

if ρ is a natural number, and then A is the classical type with respect to order ρ.

If g is bounded from below, the set of all numbers such that (3.3.3) holds is an interval,

for as soon as b1 > b we have

bg(x) + c = b1g(x) + c− (b1 − b)g(x) 6 b1g(x) + c− (b1 − b) inf g = b1g(x) + c1.
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Therefore, although the definition has a sense for all functions, it is clear that it will often

be necessary to assume g bounded from below. In this case the type determines all numbers

b for which (3.3.3) holds, except the number σ itself.

Proximate orders are introduced to give functions of finite order normal type (0 < σ <

+∞); see Lelong & Gruman [1986, Appendix II]. The type with respect to a proximate order

is a special case of Definition 3.3.3.

A generalization of the classical order and type has been studied, e.g., by Sato [1963] and

Juneja, Kapoor & Bajpai [1976, 1977]. For given integers p and q, they study the (p, q)-order

defined as

ρpq = lim sup
log[p]M(r)

log[q] r
= lim sup

log[p−1] f(t)

log[q−1] t
,

where M(r) = exp f(log r). (Sato considered this only for q = 1.) Here the brackets indi-

cate iterations of the logarithm function. Now it is easy to see that the (p, q)-order is just

order(fq : gp) where fq(t) = f(exp[q−1](t)) and gp(t) = exp[p−1](t). Both fq and gp are con-

vex. Their generalization of the notion of type is, however, different from that of Definition

3.3.3. The (p, q)-type is

Tpq = lim sup
log[p−1]M(r)

(log[q−1] r)ρ
= lim sup

log[p−2] f(t)

(log[q−2] t)ρ
.

For p > 3 this is not the relative type of one convex function with respect to another, but

rather an order: it is the order of f(exp[q−2] t1/ρ) with respect to exp[p−2](t). Therefore our

results on order generalize those of the authors mentioned, but our type is different, and some

of the earlier results on type can be interpreted as orders in the framework of the present

chapter.

3.4. Order and type in duality

The notion of order and type as defined in the last section are dual, or conjugate, to each

other in the sense of convexity theory. We shall express duality here in terms of the Fenchel

transformation: for any function f :E → [−∞,+∞] we define

f̃(ξ) = sup
x∈E

(ξ · x− f(x)), ξ ∈ E′. (3.4.1)

Here E is a real vector space, and E ′ is any fixed linear subspace of its algebraic dual E∗.

The function f̃ is called the Fenchel transform of f ; other names are the Legendre

transform of f , or the conjugate function. It is easy to see that f̃ is convex, lower

semicontinuous for the weak-star-topology σ(E ′, E) and that it never takes the value −∞
except when it is equal to −∞ identically.

Points where f(x) = +∞ do not influence the supremum in (3.4.1). We shall use this fact

in the following way. Let dom f denote the set where f(x) < +∞, the effective domain

of f . Then for any set M such that dom f ⊂M ⊂ E we have

f̃(ξ) = sup
x∈M

(ξ · x− f(x)), ξ ∈ E′. (3.4.2)

The inequality

ξ · x 6 f(x) +
·
f̃(ξ), (3.4.3)
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which follows from (3.4.1), is called Fenchel’s inequality (here the sign +
·

denotes upper

addition; see section 3.3). Applying the transformation twice we get

˜̃
f(x) = sup

ξ∈E′

(ξ · x− f̃(ξ)) 6 f(x), x ∈ E.

Thus always
˜̃
f 6 f ; the equality

˜̃
f = f holds if and only if f is convex, lower semicontinuous

for the weak topology σ(E,E ′), and takes the value −∞ only if it is −∞ identically. More

generally, it follows that
˜̃
f is the maximal convex lower semicontinuous minorant of f which

never takes the value −∞ except when it is the constant −∞. For these properties of

the Fenchel transform see Rockafellar [1970]. Of course
˜̃
f depends on the choice of E ′; if

E′ = {0}, then
˜̃
f is the constant inf f . If E = Rn it is natural to take E ′ = E∗ ∼= Rn; if E

is a topological vector space one usually takes E ′ as the topological dual of E.

Proposition 3.4.1. Let f, g:E → [−∞,+∞] be two functions on a vector space E. Then

type(g̃ : f̃) 6 order(f : g).

Proof. If order(f : g) < A, then f(x) 6 g(ax)/a + c for some number a < A, and we deduce

that f̃(ξ) > g̃(ξ)/a− c, which we write as g̃(ξ) 6 af̃(ξ) + ac. Therefore type(g̃ : f̃) 6 a < A.

Proposition 3.4.2. If f, g:E → [−∞,+∞] are two functions on a vector space E, then

order(g̃ : f̃) 6 type(f : g).

Proof. If type(f : g) < A there are numbers a < A and c such that f(x) 6 ag(x)+c. We take

the transformation to obtain f̃(ξ) > ag̃(ξ/a)−c, which can be written as g̃(ξ) 6 f̃(aξ)/a+c/a.

Therefore order(g̃ : f̃) 6 a < A.

Theorem 3.4.3. Let f, g:E → [−∞,+∞] be two functions on a vector space E such that
˜̃
f = f and ˜̃g = g. Then

order(g̃ : f̃) = type(f : g) and type(g̃ : f̃) = order(f : g).

Proof. We just combine Propositions 3.4.1 and 3.4.2.

Corollary 3.4.4. Let E = Rn and choose E′ = Rn. Let f, g: Rn → [−∞,+∞] be two

functions satisfying the hypotheses of the theorem. Assume in addition that f is finite in a

neighborhood of the origin and grows faster than any linear function, and that g is not the

constant +∞. Then

order(f : g) = lim sup
ξ→∞

g̃(ξ)

f̃(ξ)
.

Proof. If f 6 M for |x| < ε we obtain f̃(ξ) > ε|ξ| −M . Therefore 0 < f̃ < +∞ in a

neighborhood of ∞, and lim f̃ = +∞, so that the type is given by

type(g̃ : f̃) = lim sup
ξ→∞

g̃(ξ)

f̃(ξ)
.
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3.5. The infimal convolution

The infimal convolution is an important operation in convexity theory. It is actually dual to

addition, so many problems can be reduced to simple questions using the Fenchel transfor-

mation, but it is often preferable to work directly with it. In this section we just recall the

definition.

The infimal convolution of two functions f, g:E → [−∞,+∞] is defined by

f ut g(x) = inf
y

(
f(y) +

·
g(x− y)

)
, x ∈ E. (3.5.1)

Here the sign +
·

denotes upper addition; see section 3.3. The Fenchel transform of an infimal

convolution is

(f ut g)˜(ξ) = f̃(ξ) +· g̃(ξ), ξ ∈ E′,

where +· is lower addition. (It might seem strange that we get lower addition here, for in

general f +
·
g is convex when both f and g are convex, but not f +· g. However, in this case

f̃ +· g̃ equals f̃ +
·
g̃ except when it is constant, so it is always convex.)

The infimal convolution is sometimes called the epigraphical sum. The explanation is

the following formula for the strict epigraph (cf. 1.1.4) of f ut g

epis(f ut g) = epis f + epis g,

where the plus sign denotes vector addition in Rn+1.

3.6. The order of an entire function

Let F ∈ O(Cn) be an entire function. We shall measure its growth by

f(t) = sup
z

[log |F (z)|; z ∈ Cn, |z| 6 et], t ∈ R. (3.6.1)

Here |z| can be any norm on Cn, or even an arbitrary function which is complex homogeneous

of degree one and positive on the unit sphere. We shall refer to f as the growth function

of F . In view of Hadamard’s three-circle theorem, f is convex and increasing, and we shall

write

order(F : G) = order(f : g)

by abuse of language if F,G are two entire functions and f, g are their growth functions.

One may ask which convex increasing functions can appear as growth functions. A

necessary condition is that of Hayman [1968]: for a transcendental entire function F ∈ O(C),

we have

lim sup
t→+∞

f ′′(t) > H,

where H is an absolute constant satisfying 0.18 < H 6 0.25. Kjellberg [1974] proved that

0.24 < H < 0.25. (A similar statement holds for polynomials.) Another necessary condition

is as follows. Define

f1(t) = sup
j∈N

(jt− f̃(j)), t ∈ R.
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(The epigraph of f1 is the smallest polygon which contains the epigraph of f and whose sides

have integer slopes.) Then there is a constant C such that

f(t)− C 6 f1(t) 6 f(t), t ∈ R.

Moreover the best constant C satisfies log 2 6 C 6 log 3 (Kiselman [1984, Proposition 3.5.1]).

These two results are not unrelated, for the latter implies that H > (8C)−1. With C = log 3

this gives H > (8 log 3)−1 ≈ 0.11, which is much weaker than the Hayman–Kjellberg result.

On the other hand, that statement does not say anything about tangents of integer slope.

If two entire functions F and G are given, we consider their expansions in terms of

homogeneous polynomials Pj and Qj :

F (z) =

∞∑

0

Pj(z), G(z) =

∞∑

0

Qj(z),

and ask whether we can determine order(F : G) from knowledge of the growth of |Pj | and

|Qj |. It turns out that this is so. For the classical order, when G = exp, this is well known.

This is not necessarily true for type(F : G); see Kiselman [1993].

So let F be given with an expansion in terms of homogeneous polynomials Pj . Cauchy’s

inequalites say that

|Pj(z)| 6 exp(f(log |z|)),
but the homogeneity of Pj also gives

|Pj(z)| =
|z|j
ejt

Pj(e
tz/|z|) 6

|z|j
ejt

exp(f(t)) = |z|j exp(f(t)− jt)

for all real t and all z ∈ Cn. We take the infimum over all t and get

|Pj(z)| 6 |z|j exp(−f̃(j)).

We define the norm ‖Pj‖ of the homogeneous polynomial Pj as

‖Pj‖ = sup
|z|61

|Pj(z)|, j ∈ N.

(When n = 1 we have a Taylor expansion F (z) =
∑
ajz

j and ‖Pj‖ = |aj |.) We next define

a function p: R → ]−∞,+∞] as

p(j) =

{− log ‖Pj‖ when j ∈ N;

+∞ when j ∈ R r N.
(3.6.2)

We shall call p the coefficient function of F . Cauchy’s inequalities become just ‖Pj‖ 6

exp(−f̃(j)), or more concisely

p > f̃ on R. (3.6.3)

This implies of course that p̃ 6
˜̃
f = f . Note also that

exp p̃(log r) = sup
j∈N

sup
|z|6r

|Pj(z)|.



Plurisubharmonic functions and their singularities 37

We now ask for inequalities in the other direction. To describe this result we need an

auxiliary function K which is defined as follows:

K(t) =

{− log(1− et), t < 0;

+∞, t > 0.
(3.6.4)

We have K(t) > − log(−t) when t < 0 (a good approximation for small |t|) and K(t) > et

for all t (a good approximation for t� 0). The Fenchel transform of K is

K̃(τ) =





τ log τ − (τ + 1) log(τ + 1), τ > 0;

0, τ = 0;

+∞, τ < 0.

We note that

−1− log(τ + 1) 6 K̃(τ) 6 − log(τ + 1), τ > 0. (3.6.5)

The inverse of K is given by K−1(s) = −K(−s) for s > 0: this means that the graph of K is

symmetric around the line s+ t = 0. This symmetry corresponds to the functional equation

K̃(1/τ) = K̃(τ)/τ , τ > 0, for the transform.

Theorem 3.6.1. Let F be an entire function in Cn and define f and p by (3.6.1) and

(3.6.2), respectively. Then

p̃ 6 f 6 p̃ ut K on R. (3.6.6)

Proof. We have just noted that Cauchy’s inequalities give p̃ 6
˜̃
f = f . To estimate f from

above we write

|F (z)| 6
∑

‖Pj‖ · |z|j 6
∑

exp(−p(j) + jt),

where t = log |z|. We shall apply Fenchel’s inequality (3.4.3) jt 6 p(j) +
·
p̃(t) in the form

−p(j) + jt 6 js+ p̃(t− s).

This gives

f(t) 6 log
∑

exp(−p(j) + jt) 6 log
∑

exp(js + p̃(t− s)).

We observe that ∑

j∈N

ejs =
1

1− es
= eK(s)

if s < 0, which is why we introduced K. Thus f(t) 6 p̃(t − s) + K(s) for all t ∈ R and all

s < 0. Now for s > 0, K(s) = +∞, so then the inequality also holds, and we can let s vary

over the whole real axis:

f(t) 6 inf
s

(
p̃(t− s) +

·
K(s)

)
= (p̃ ut K)(t), t ∈ R.

This proves the theorem.

The inequalities (3.6.6) say that the graph of f is in a strip whose lower boundary is the

polygon defined by p̃ and whose upper boundary is given by p̃ ut K. Since K(− log 2) = log 2,

the width of this strip is at most
√

2 log 2 ≈ 0.98 < 1.

Applying the Fenchel transformation to all members of (3.6.6) we get:

p > ˜̃p > f̃ > ˜̃p+ K̃, (3.6.7)

where K̃ can be estimated by (3.6.5).

For lacunary series we can state:
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Theorem 3.6.2. Let F be lacunary: Pj = 0 for j /∈ J . Then

p̃ 6 f 6 p̃ ut KJ on R,

where

KJ (s) = log

(∑

j∈J

ejs
)
.

Proof. Just restrict summation in the proof of Theorem 3.6.1 to j ∈ J .

It could be noted here that for any convex function H which is positive on the negative

half-axis and tends to +∞ as t < 0, t → 0, there exists an infinite set J ⊂ N such that

KJ 6 H.

Theorem 3.6.1 implies that the norms of the homogeneous polynomials Pj can serve just

as well as the growth function f to determine the order of F relative to any other function.

More precisely we have:

Corollary 3.6.3. Let F be an entire function on Cn, let f be its growth function defined

by (3.6.1), and let p be its coefficient function defined by (3.6.2). Assume that F is not a

polynomial. Then

order(f : p̃) = order(p̃ : f) = 1.

Proof. From (3.6.6) we get immediately

order(p̃ : f) 6 1, order(f : p̃ ut K) 6 1.

Now p̃ ut K(t) 6 p̃(t+ 1) +K(−1) and Lemma 3.3.2 shows that the translation of p̃ does not

influence the order, neither does of course the additive constant K(−1). Therefore

order(f : p̃) 6 order(f : p̃ ut K) 6 1.

It follows from Corollary 3.4.4 that order(f : f) = 1. By submultiplicativity,

1 = order(f : f) 6 order(f : p̃) · order(p̃ : f) 6 1,

so that all orders must be one. (When F is a polynomial, order(f : f) = 0 and order(f : p̃) =

order(p̃ : f) = 0.)

Corollary 3.6.4. Let F be an entire function in Cn, with expansion

F (z) =
∑

Pj(z)

in terms of homogeneous polynomials Pj . Let f be its growth function defined by (3.6.1) and

let p be its coefficient function defined by (3.6.2). Let g: R → [−∞,+∞] be any function

which satisfies ˜̃g = g. Then

order(f : g) = order(p̃ : g) = type(g̃ : ˜̃p). (3.6.8)
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When F is not a polynomial and g is bounded from below and not identically +∞, the order

is also given by

lim sup
j→+∞

g̃(j)

p(j)
. (3.6.9)

Proof. Using Corollary 3.6.3 we can write

order(f : g) 6 order(f : p̃) · order(p̃ : g) = order(p̃ : g)

provided F is not a polynomial. Similarly

order(p̃ : g) 6 order(p̃ : f) · order(f : g) = order(f : g).

The last equality in (3.6.8) follows from Theorem 3.4.3. If F is a polynomial, one can verify

(3.6.8) directly, using p̃ 6 f 6 p̃ + logN , where N is the number of terms in the expansion

(see Theorem 3.6.2). The only possibilities are then order(f : g) = 0,+∞.

We finally have, if F is not a polynomial and g is bounded from below and not identically

+∞,

type(g̃ : ˜̃p) = lim sup
τ→+∞

g̃(τ)

˜̃p(τ)
= lim sup

j→+∞

g̃(j)

p(j)
. (3.6.10)

The first equality here is proved like in the proof of Corollary 3.4.4. There is a difference in

that f(t) does not go to +∞ when t → −∞, but if g is bounded from below, the behavior

for negative τ in (3.6.10) is unimportant. The last equality in (3.6.10) holds because on the

one hand ˜̃p 6 p, on the other hand ˜̃p = p in a sequence of integers tending to plus infinity,

and ˜̃p is affine in between these points.

Formula (3.6.9) generalizes the classical formula for the order

ρ = lim sup
j log j

− log |aj |
of an entire function

∑
ajz

j . Indeed, when the comparison function is g(t) = et, then

g̃(j) = j log j − j.

The (p, q)-order of Juneja, Kapoor & Bajpai [1976, Theorem 1] is determined in terms

of the coefficients by the formula

ρp,q = lim sup
log[p−1] j

log[q−1]
(
− (1/j) log |aj |

) ;

we state it only for p > q > 1 here. Sato [1963] proved this for q = 1. In the latter case

(3.6.9) is a generalization. For q > 2, however, this is not so, since then f(exp[q−1] t) is used

as the growth function and consequently defines another relation between the coefficients aj
(or p(j)) and f .

It could also be noted here that Corollary 3.6.4 generalizes the classical result that the

order can be calculated from the dominant term in a series expansion
∑
ajz

j . Indeed, with

t = log |z| the maximal term is just

sup
j
|ajzj | = exp sup

j
(jt− p(j)) = exp p̃(t).

When we have two entire functions we can state:
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Corollary 3.6.5. Let F,G be two entire functions in Cn, with expansions

F (z) =
∑

Pj(z), G(z) =
∑

Qj(z),

in terms of homogeneous polynomials Pj , Qj . Let p and q denote their coefficient functions

defined by (3.6.2). Then

order(F : G) = order(p̃ : q̃) = type(˜̃q : ˜̃p).

Proof. The proof is analogous to that of Corollary 3.6.4.

We can also define a growth function related to the growth of an entire function on

polydisks, and to Taylor expansions in terms of monomials. Let us define

f(x) = sup
|zj |6expxj

log |F (z)|, x ∈ Rn, (3.6.11)

if F is an entire function on Cn. Then f is convex in Rn. The function F has an expansion

F (z) =
∑

k∈Nn

Akz
k, z ∈ Cn,

where zk denotes the monomial zk1

1 · · · zkn
n of multidegree k = (k1, ..., kn) and total degree

k1 + · · ·+ kn. Cauchy’s inequalities now say that, for r = (r1, ..., rn) with rj > 0,

|Ak|rk 6 sup
|zj|6rj

|F (z)| = ef(x), xj = log rj .

This gives |Ak| 6 exp(f(x)− k · x) for all x ∈ Rn, and therefore, after variation of x,

|Ak| 6 exp(−f̃(k)), k ∈ Nn.

We introduce in analogy with (3.6.2)

a(k) =

{− log |Ak| when k ∈ Nn;

+∞ when k ∈ Rn
r Nn.

(3.6.12)

Then a > f̃ and ã 6
˜̃
f = f . Next define Kn(x) = K(x1) + · · · + K(xn) for x ∈ Rn. In

complete analogy with Theorem 3.6.1 we have:

Theorem 3.6.6. Let F be an entire function in Cn and define the growth function f and

the coefficient function a by (3.6.11) and (3.6.12), respectively. Then

ã 6 f 6 ã ut Kn on Rn.

A variant of the growth function can be defined as follows. Let u be a plurisubharmonic

function on Cn which is extremal in the set a < u(z) < b: it is the regularized supremum of

all plurisubharmonic functions ϕ in a neighborhood of the closure of {z; a < u(z) < b} which
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satisfy ϕ(z) 6 a when u(z) 6 a and ϕ(z) 6 b when u(z) 6 b. We suppose that {z; u(z) < b}
is bounded, and define for F ∈ O(Cn)

fu(t) = sup
z

(log |F (z)|; u(z) < t).

Then fu is easily seen to be convex on ]a, b]. (The growth function f defined by (3.6.1)

is with respect to the extremal plurisubharmonic function u(z) = log |z| provided |z| is a

norm or more generally log |z| is plurisubharmonic; if not, we can replace it by a suitable

plurisubharmonic minorant.)

We can for instance ask whether a holomorphic function on a complex analytic variety

X admits an entire extension of the same order: if F ∈ O(X), X ⊂ Cn, does there exist an

entire function G ∈ O(Cn) such that order(G : F ) = 1? Here it might be natural to define

the growth functions fu and gv of F and G with respect to extremal functions u on X and

v on Cn, respectively.

3.7. A geometric characterization of the relative order

In this section we shall give a geometric interpretation of the relative order. Let E be a real

vector space. We consider two hyperplanes E × {0} and E × {1} in the Cartesian product

E ×R. Now let two functions f0, f1:E → ]−∞,+∞] be given. We consider them as defined

on E × {0} and E × {1} respectively, and want to find a function F :E ×R → ]−∞,+∞]

extending them, i.e., a function such that

F (x, j) = fj(x), x ∈ E, j = 0, 1.

If the fj are convex, a solution is of course the supremum of all convex minorants to the

function f(x, t) = ft(x) if t = 0 or t = 1, f(x, t) = +∞ otherwise. This solution is the largest

possible: it majorizes all others. But it is of no interest outside the slab {0 6 t 6 1}, since it

is always +∞ there.

In general there is no unique solution, for we can always add t2− t to any given solution.

We can however write down an explicit formula for an extremal solution.

Proposition 3.7.1. Let E be a real vector space and E ′ a subspace of its algebraic dual.

Let f0, f1:E → ]−∞,+∞] be two given convex functions which are lower semicontinuous

with respect to σ(E,E ′). We assume that they are not identically plus infinity. Then the

extrapolation problem

{
Find F :E ×R → ]−∞,+∞] such that

F (x, j) = fj(x), x ∈ E, j = 0, 1,
(3.7.1)

has a solution

F (x, t) = sup
ξ

[
ξ · x− (1− t)f̃0(ξ)− tf̃1(ξ); ξ ∈ dom f̃0 ∪ dom f̃1

]

= sup
ξ

[
ξ · x−

(
(1− t)f̃0(ξ) +

·
tf̃1(ξ)

)
; ξ ∈ E′

]
, (x, t) ∈ E ×R.

(3.7.2)

This solution is extremal in the sense that any convex solution G which is lower semicontin-

uous in x satisfies G 6 F in {0 6 t 6 1} and G > F outside this slab.
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Proof. First a word about the definition of F . We note that the function t 7→ t · (+∞)

is convex on the whole real line, if we define 0 · (+∞) = 0. We also note that in the first

expression defining F at most one of the three terms is infinite, for we have −∞ < f̃j 6 +∞
everywhere, and at most one of them is allowed to be plus infinity in the set of ξ which we

use. Therefore F is well defined, and it is convex as a supremum of functions of (x, t) each of

which is an affine function plus possibly one function of the form (t−1) ·(+∞) or (−t) ·(+∞).

Moreover, for t = j the function F assumes the values
˜̃
f j(x) = fj(x), j = 0, 1, in view of

(3.4.2). Therefore it is a convex solution to the extension problem. It is of course not lower

semicontinuous in all variables, but it is lower semicontinuous in x for fixed t.

Now let G be another convex solution to the problem. Let us consider

G̃t(ξ) = sup
x∈E

(ξ · x−G(x, t)), t ∈ R, ξ ∈ E ′.

It is concave in t for fixed ξ, for it is the marginal function of a concave function of (x, t); cf.

Theorem 1.3.1. It satisfies moreover G̃j(ξ) = f̃j(ξ), j = 0, 1. If we assume that G is lower

semicontinuous in x and > −∞, we also have

G(x, t) = sup
ξ

(ξ · x− G̃t(ξ)).

When 0 < t < 1 we have

dom((1− t)f̃0 +
·
tf̃1) = dom f̃0 ∩ dom f̃1 ⊂ dom f̃0 ∪ dom f̃1.

The fact that G̃j = f̃j for j = 0, 1 implies that G̃t > (1− t)f̃0 + tf̃1. This gives G 6 F .

When t < 0 or t > 1 the concavity in t gives G̃t 6 (1− t)f̃0 +
·
tf̃1 and then G > F . This

establishes the extremal character of the solution F .

We now ask how far outside the slab {0 6 t 6 1} we can obtain a real-valued solution

to the extrapolation problem. An answer is given by the next theorem.

Theorem 3.7.2. Let f0, f1:E → ]−∞,+∞] be two given convex and lower semicontinuous

functions. Assume that f0(0) < +∞. If the extrapolation problem (3.7.1) admits a convex

solution F which is finite at a point (0, t) with t satisfying 1 < t < +∞, then

order(f1 : f0) 6
t

t− 1
.

Conversely, if 1 6 order(f1, f0) = ρ < +∞, then the extrapolation problem has a lower

semicontinuous convex solution F with F (0, t) < +∞ for all t with 0 6 t < ρ/(ρ − 1). Thus

if we denote by b the supremum of all numbers t such that there exists a solution F which is

finite at the point (0, t), then

order(f1 : f0) = ρ =
b

b− 1
= b′.

(We assume 1 6 ρ < +∞ and 1 < b 6 +∞.)
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Proof. If F is convex we have

F (x, 1) 6
1

a
F (ax, 0) +

· (
1− 1

a

)
F (0, t),

where a > 1 is chosen so that

(x, 1) =
1

a
(ax, 0) +

(
1− 1

a

)
(0, t) ∈ E ×R,

i.e., a = t/(t− 1). Now if F (0, t) < +∞ this inequality shows that

f1(x) 6
1

a
f0(ax) + c,

in other words that order(f1 : f0) 6 a = t/(t− 1).

Conversely, if order(f1, f0) 6 ρ with 1 6 ρ < +∞, then the solution F defined by (3.7.2)

has the desired properties. We need only estimate F as follows. For any a > ρ we know that

f1(x) 6 f0(ax)/a+ c, which gives f̃1 > a−1f̃0− c. In particular we see that dom f̃0 ⊃ dom f̃1.

For any t < a/(a − 1) we can write, letting ξ vary in dom f̃0,

F (x, t) 6 sup
ξ

[
ξ · x− (1− t)f̃0(ξ)− t

(
a−1f̃0(ξ)− c

)]
= sup

ξ

[
ξ · x− (1− t+ t/a)f̃0(ξ)

]
+ tc

= (1− t+ t/a) sup
ξ

[(1− t+ t/a)−1ξ · x− f̃0(ξ)] + tc = δf0(x/δ) + tc,

where δ is the positive number 1 − t + t/a. Now, since we assume that f0(0) < +∞, this

shows that F (0, t) is finite for all t ∈ [0, a/(a − 1)[, and since a is any number larger than ρ,

the function is finite for all t ∈ [0, b[.

For real-valued functions the geometry is particularly simple:

Corollary 3.7.3. Let f0, f1:E → ]−∞,+∞] be two functions as in Proposition 3.7.1 and

assume in addition that one of them is real valued. If the extrapolation problem (3.7.1) admits

a convex solution F which is finite at some point (x, t) with t satisfying 1 < t < +∞, then

order(f1 : f0) 6
t

t− 1
.

Conversely, if 1 6 order(f1, f0) = ρ < +∞, then the extrapolation problem has a lower

semicontinuous convex solution F which is real valued in the slab

E × ]0, ρ′[ = {(x, t) ∈ E ×R; 0 < t < ρ′},

where ρ′ = ρ/(ρ− 1); 1 < ρ′ 6 +∞.

Therefore the relative order of f1 with respect to f0 is determined by, and determines, the

maximal slab E × ]0, b[ in which our extrapolation problem has a solution.

Proof. Suppose fj is real valued (j = 0 or j = 1). It is clear that if a solution F is finite at

some point (x, s) with s > 1, then F is finite in the convex hull of the union of (x, s), some
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point (y, 0) where f0 is finite, and the hyperplane E×{j}. This convex hull contains the slab

E × ]0, s[. Thus Theorem 3.7.2 implies Corollary 3.7.3.

It follows again (cf. Lemma 3.3.2) that the notion of relative order is translation invariant

for real-valued convex functions (at least when 1 6 ρ + ∞). Indeed, the slabs are invariant

under transformations (x, t) 7→ (x − (1 − t)y − tz, t) for all y and z; these transformations

correspond to translations f0 7→ f0,y and f1 7→ f1,z.

3.8. An extension theorem for holomorphic functions

In this section we shall first characterize the classical order in terms of an extension property

of holomorphic functions. Then we pass to the relative order.

Theorem 3.8.1. An entire function F ∈ O(Cn) is of order at most ρ (1 6 ρ < +∞) if and

only if there exists a holomorphic function H in the cylinder

Ω = {(z, w) ∈ Cn ×C; |w| < eρ
′},

where ρ′ = ρ/(ρ− 1), satisfying

|H(z, w)| 6 e|z| for z ∈ Cn, |w| 6 1, (3.8.1)

and

H(z, e) = F (z) for z ∈ Cn. (3.8.2)

Proof. Suppose such an H exists. Then putting

h(s, t) = sup
[

log |H(z, w)|; |z| 6 es, |w| 6 et
]
, s ∈ R, t < ρ′, (3.8.3)

we get a convex function of (s, t) which satisfies h(s, 0) 6 es and h(s, 1) > f(s). Therefore,

applying Corollary 3.7.3 with f0(s) = h(s, 0) and f1(s) = h(s, 1), we can write

order(F : exp) 6 order(f1 : exp) 6 order(f1 : f0) · order(f0 : exp) 6 ρ.

In the other direction the results of section 3.7 give only convex, not holomorphic, so-

lutions to the extrapolation problem. But it turns out that there is an explicit solution in

terms of power series.

We expand F in a series of homogeneous polynomials:

F (z) =
∑

Pj(z).

Then we just define

H(z, w) =
∑

Pj(z)(w/e)mj , (3.8.4)

where the integers mj are chosen large enough to make (3.8.1) true. This means that we take

‖Pj‖e−mj 6
1

j!
.
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On the other hand, we do not want to take them unnecessarily large, so we prescribe that

log ‖Pj‖+ log j! 6 mj < log ‖Pj‖+ log j! + 1

unless Pj = 0 in which case the choice of mj is immaterial, so we may take mj = 0.

Since F is of order ρ, we know that for any a > ρ there is an estimate f(t) 6 eat + Ca,

which implies that

f̃(τ) >
τ

a

(
log

τ

a
− 1

)
− Ca

and

− log ‖Pj‖ = p(j) > f̃(j) >
j

a

(
log

j

a
− 1

)
− Ca. (3.8.5)

This estimate shows that the series defining H converges uniformly on any compact subset

of Ω. In fact, the series defining H converges uniformly for |z| 6 R1 < R and |w| 6 r1 <

r if ‖Pj‖Rj(r/e)mj → 0. Substituting the expression for mj we see that this is true if

(log r − 1) log j!− p(j) log r + j logR→ −∞. Now this holds for all positive R if

(log r − 1) log j!− p(j) log r

j
→ −∞.

Using finally the estimate (3.8.5) for p and the inequality j! 6 j j for the factorial function

we see that this follows if

(log r − 1) log j − 1

a

(
log

j

a
− 1

)
log r → −∞,

which in turn is true if log r < a/(a− 1). Here the only condition is that a > ρ, so the series

defining H converges locally uniformly in the set log |w| < ρ/(ρ− 1).

We now replace the exponential function in Theorem 3.8.1 to obtain the follwong result.

Theorem 3.8.2. Let two transcendental entire functions F,G ∈ O(Cn) be given, and let

1 6 ρ < +∞. We define an open set Ω in the space of n+ 1 variables as

Ω = {(z, w) ∈ Cn ×C; |w| < eρ
′},

where ρ′ = ρ/(ρ − 1) (thus 1 < ρ′ 6 +∞). For a holomorphic function H in Ω we denote

by hw the growth function of the partial function z 7→ H(z, w). Let K denote the function

defined by (3.6.4). Then the following five conditions are equivalent.

(a) order(F : G) 6 ρ.

(b) There exists a holomorphic function H ∈ O(Ω) satisfying

hw 6 g ut K when |w| = 1, and f 6 hw ut K when |w| = e.

(b′) There exists a holomorphic function H ∈ O(Ω) satisfying H(z, 1) = G(z),

g 6 hw ut K, and hw 6 g ut K when |w| = 1,
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and

f 6 hw ut K when |w| = e.

(c) There exists a holomorphic function H ∈ O(Ω) satisfying H(z, e) = F (z) and

hw 6 g ut K when |w| = 1.

(c′) There exists a holomorphic function H ∈ O(Ω) satisfying H(z, e) = F (z),

f 6 hw ut K and hw 6 f ut K when |w| = e,

and

hw 6 g ut K when |w| = 1.

In particular, order(H( · , w) : G) 6 1 for |w| = 1 and order(F : H( · , w)) 6 1 for |w| = e if H

is the holomorphic function whose existence is guaranteed by (b), (b′) or (c′).

Proof. The proof that (b) implies (a) and that (c) implies (a) is just like the easy direction

in the proof of Theorem 3.8.1. If H is a holomorphic function satisfying (b) or (c) we let h

be the growth function of two real variables defined by (3.8.3); it is related to the hw by the

formula h(s, t) = sup|w|=et hw(s). By submultiplicativity we then have

order(f : g) 6 order(f : h( · , 1)) · order(h( · , 1) : h( · , 0)) · order(h( · , 0) : g) 6 ρ.

It is also clear that (b′) implies (b) and that (c′) implies (c).

For the proof of (a) implies (b′) we expand G and F in terms of homogeneous polyno-

mials:

F (z) =
∑

j∈N

Pj(z), G(z) =
∑

j∈N

Qj(z),

and define

H(z, w) =
∑

j∈N

Qj(z)wnj + (w − 1)
∑

j /∈J

Q∗j (z)wnj ,

where J is the set of all j ∈ N such that q(j) 6 ˜̃q(j) + log 3, q being the coefficient function

of G defined by (3.6.2). Moreover nj are suitable integers and Q∗
j homogeneous polynomials

of degree j and norm ‖Q∗j‖ = 1
3 exp(−˜̃q(j)) > ‖Qj‖. Let pw denote the coefficient function

of the entire function H( · , w). Consider first |w| = 1: when j ∈ J we have pw(j) = q(j), and

when j /∈ J we can estimate as follows:

‖Qjwnj + (w − 1)Q∗jw
nj‖ 6 ‖Qj‖+ 2‖Q∗j‖ 6 3‖Q∗j‖ = exp(−˜̃q(j)),

so that pw(j) > ˜̃q(j) when j /∈ J . Therefore we have pw > ˜̃q everywhere, and pw = q in J ,

which implies p̃w = q̃ for |w| = 1. Thus in view of Theorem 3.6.1,

hw 6 p̃w ut K = q̃ ut K 6 g ut K as well as g 6 q̃ ut K = p̃w ut K 6 hw ut K.
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This far the numbers nj play no role; we shall now choose them to get the right kind of growth

of H( · , w) for |w| = e. When |w| = e and j ∈ J we have pw(j) = q(j)−nj 6 ˜̃q(j)−nj+log 3.

The homogeneous part of degree j /∈ J in H(z, w) can be estimated as

‖Qjwnj + (w − 1)Q∗jw
nj‖ > enj (‖(w − 1)Q∗j‖ − ‖Qj‖)

> enj (e− 2)‖Q∗j‖ =
e− 2

3
exp(nj − ˜̃q(j)),

which gives

pw(j) = q(j) − nj 6 ˜̃q(j) − nj + log 3 6 ˜̃q(j) − nj + 2, j ∈ J,

pw(j) 6 ˜̃q(j) − nj − log

(
e− 2

3

)
6 ˜̃q(j)− nj + 2, j /∈ J.

We shall now choose the integers nj as follows. If ˜̃q(j) = +∞ (this can happen for finitely

many numbers j only), then also ˜̃p(j) = +∞ and we choose nj = 0. If ˜̃q(j) < +∞, we choose

nj as the smallest non-negative integer which is > ˜̃q(j) − ˜̃p(j) + 2. Thus in all cases pw 6 ˜̃p
for every w with |w| = e, so that p̃ 6 p̃w and we get

f 6 p̃ ut K 6 p̃w ut K 6 hw ut K, |w| = e.

Finally we have to make sure that H is holomorphic in all of Ω. To prove this it is

enough to prove that

‖Qj‖Rjrnj → 0 and ‖Q∗j‖Rjrnj → 0

as j →∞ for all R and all r < eρ
′

. This in turn follows if we can prove that

nj log r − q(j)

j
→ −∞ and

nj log r − q∗(j)

j
→ −∞. (3.8.6)

We shall use the fact that type(˜̃q : ˜̃p) = order(f : g) 6 ρ, which yields an inequality ˜̃q 6

a˜̃p + Ca for every a > ρ. If nj = 0, the first expression in (3.8.6) is at most −˜̃q(j)/j which

certainly tends to −∞. If nj > 0, it can be estimated by (it suffices to consider r > 1)

nj log r − q(j)

j
6

(˜̃q(j)− ˜̃p(j) + 3) log r − ˜̃q(j)
j

6

˜̃p(j)(a log r − log r − a) +O(1)

j
,

which tends to −∞ if log r < a/(a− 1).

If nj = 0, the second expression in (3.8.6) is −q∗(j)/j = −(˜̃q(j) − log 3)/j which tends

to −∞; if nj > 0, it can be estimated by

nj log r − q∗(j)

j
6

(˜̃q(j) − ˜̃p(j) + 3) log r − ˜̃q(j) + log 3

j

6

˜̃p(j)(a log r − log r − a) +O(1)

j
,
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which tends to −∞ as soon as log r < a/(a− 1); here again a is any number greater than ρ.

This proves that the series defining H converges locally uniformly in Ω and finishes the proof

of (b′).

The proof that (a) implies (c′) is similar to that of Theorem 3.8.1. As in that proof we

define H by (3.8.4):

H(z, w) =
∑

j∈N

Pj(z)(w/e)mj ,

where we shall choose integers mj . Then obviously H(z, e) = F (z). For |w| = e we have

pw(j) = p(j). This gives p̃w = p̃ and therefore, for all w with |w| = e,

hw 6 p̃w ut K = p̃ ut K 6 f ut K as well as f 6 p̃ ut K = p̃w ut K 6 hw ut K.

For |w| = 1, on the other hand, we obtain

‖Pj(w/e)mj‖ = exp(−mj − p(j)) 6 exp(−mj − ˜̃p(j)).

Thus, when |w| = 1 we have pw(j) = p(j) + mj > ˜̃p(j) + mj . We now choose mj so that

pw > ˜̃q, which implies p̃w 6 q̃ and yields the estimate

hw 6 p̃w ut K 6 q̃ ut K 6 g ut K.

To be explicit, if ˜̃q(j) = +∞, then ˜̃p(j) = +∞ and we take mj = 0; if ˜̃q(j) < +∞, we take

mj as the smallest non-negative integer greater than or equal to ˜̃q(j)− ˜̃p(j). This guarantees

that pw > ˜̃q and gives the estimate above. On the other hand, mj is not too large, which will

ensure that ‖Pj‖Rj(r/e)mj tends to zero for every R and every r < eρ
′

and hence that H is

holomorphic in Ω. The calculation is very similar to the one we just carried out in the case

of (b′) and is omitted.
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