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Resumo
Plursubharmonaj funkcioj kaj iliaj malrequlejoj

La temo de tiuj ¢i lekcioj estas lokaj kaj mallokaj ecoj de plursubharmonaj funkcioj.
Unue diferencialaj neegalajoj difinantaj konveksajn, subharmonajn kaj plursubharmon-
ajn funkciojn estas pritraktitaj. Estas pruvite ke la margena funkcio de plursubharmona
funkcio estas plursubharmona sub certaj supozoj. Ni studas la malregulejojn de plur-
subharmonaj funkcioj per metodoj de la teorio pri konvekseco. En la lasta capitro ni
pligeneraligas la klasikajn nociojn de ordo kaj tipo de entjera funkcio de finia ordo al kiom
ajn rapide kreskantaj funkcio].

Abstract

The theme of these lectures is local and global properties of plurisubharmonic functions.
First differential inequalities defining convex, subharmonic and plurisubharmonic functions
are discussed. It is proved that the marginal function of a plurisubharmonic function is
plurisubharmonic under certain hypotheses. We study the singularities of plurisubharmonic
functions using methods from convexity theory. Then in the final chapter we generalize
the classical notions of order and type of an entire function of finite order to functions of
arbitrarily fast growth.

This work was partially supported by the Swedish Natural Science Research Council.
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Introduction

The plurisubharmonic functions appear in complex analysis as logarithms of moduli of holo-
morphic functions and as analogues of potentials. Their usefulness for many constructions is
due to the fact that they are easier to manipulate than holomorphic functions—this is why
Lelong [1985] includes them among “les objets souples de I'analyse complexe.”

In these lectures we shall first consider analogies between the convex, subharmonic, and
plurisubharmonic functions: these three classes can be defined using differential inequalities.
We shall also study marginal functions of plurisubharmonic functions, i.e., functions of the
form

g(x17"'7$n) = inf f('xlv"'?xnvylv"'?ym)‘

Y1yeesYm
It is a known fact that marginal functions of convex functions are convex, but the corre-
sponding result is not true for plurisubharmonic functions. However, it is true under some
extra hypotheses, and we shall establish one such result, called the minimum principle, in
Chapter 1.

In Chapter 2, we use the minimum principle to prove that sets related to plurisubhar-
monic functions are analytic varieties. The model result here is Siu’s theorem, which says
that the set of points where the Lelong number is larger than or equal to a certain number
is an analytic variety. We shall see that the minimum principle provides us with a family of
plurisubharmonic functions related to a given one, and that there are analyticity theorems
for families of plurisubharmonic functions which are easy to deduce from the Hérmander—
Bombieri theorem.

In the third chapter we shall take a look at the classical notions of order and type for
entire functions. To every entire function F' we can in a natural way associate a convex
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function f which describes its growth:

f(t) = sup log|F(z)|, teR.

|z|=e*

We call f the growth function of F'. That f is convex is the content of Hadamard’s three-
circle theorem. These classical definitions can quite naturally be extended to plurisubhar-
monic functions; just replace log |F'| by an arbitrary plurisubharmonic function. What we do
in classical complex analysis is to compare the growth of two convex functions, the growth
function f and the growth function g(t) = e’ of the exponential function G(z) = e*. The
notion of relative order, the order of f relative to g, arises from such a comparison of two
convex functions. The notion of relative type of one function with respect to another is the
result of a slightly different comparison.

All classical results on order and type can now be considered in this more general setting,
and many of them have very precise counterparts. It should be stressed that the functions
we consider may grow arbitrarily fast, whereas classically one considers functions of finite
order. We have adjusted the definitions so that order and type become dual in the sense of
convexity theory. This fact is very useful, for we can often choose to do calculations either
on the functions themselves or on their conjugate functions, their Fenchel transforms.

The relative order determines the maximal domain in which a solution to a natural
extension problem exists. This extension problem can be formulated for convex, plurisubhar-
monic or entire functions—the resulting domain of existence is the same in all three cases.

ACKNOWLEDGMENTS. I am grateful to the Séminaire de Mathématiques Supérieures for the
invitation to participate in this summer school. It was a great experience! It is also a pleasure
to acknowledge the good help provided by Stefan Halvarsson, who have typed Chapter 1 into
TEX, made many useful suggestions, and proofread all the chapters. My thanks go also to
Maciej Klimek for checking the manuscript and for valuable comments on the presentation.
Chapter 3 is essentially taken from my paper [1993] (which contains four additional sections).
The London Mathematical Society has kindly given its permission to include this material
here.
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Chapter 1. Convexity and plurisubharmonicity

1.1. Introduction

Let us first recall that the real-valued convex functions on the real line are those that satisfy
the inequality

F(1=tr+ty) <1 —Df@) +1f(y),  0<t<1 z,yeR. (1.1.1)
In particular, for ¢ = 1/2 they satisfy
fle) < 3fle=r)+3f(c+r), e, r€R, (1.1.2)

which can be written as
f(c) < Mpr f,

denoting by M the mean value over a set, in this case dI = {¢ — r,c + r}, which is the
boundary of the one-dimensional ball ¢+ rB.

Some regularity has to be imposed if we use (1.1.2) though, for while (1.1.1) implies that
f is continuous (where it is real-valued), (1.1.2) does not:

Ezxzample. Take a Hamel basis for the vector space of all real numbers over the rational
numbers with 1 and /2 as basis elements. Define f to be a Q-linear form f:R — Q such
that f(1) = 1, f(v/2) = 0. Then obviously f satisfies (1.1.1) for rational ¢ (with equality), in
particular (1.1.2), but it is not continuous (and we would not like to call it convex). Indeed,
f(s +tV/2) = s for rational s, ¢, which shows that f is unbounded near any point.

However, (1.1.2) plus some mild regularity assumption (like semicontinuity or even mea-
surability) is equivalent to (1.1.1) for real-valued functions.

The definition of a subharmonic function is a generalization of this: a function f is
called subharmonic in an open subset Q2 of R" if it takes its values in [—oo, +00], is upper
semicontinuous, and satisfies the mean-value inequality

flc) < Maaf

whenever A is a closed ball of center ¢ contained in 2 C R™. We shall write f € SH(Q2). The
constant —oo is allowed.

However, we can generalize the notion of a convex function of one variable in a different
direction: we consider a function in R™ and look at its restrictions to real lines, in other words
at its pull-backs ¢*f = f o ¢ for an arbitrary affine function ¢: R — R™. If this pull-back
is always convex, then f is called convex in R™. (Actually such a function should be called
“pluriconvex” if we were to follow the idea that has led to the word plurisubharmonic!) We
shall write f € CVX(Q) if f is real-valued and convex in a convex open set ).
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Remark. In convexity theory one usually allows values in [—o0,4+00]. A function f:R"™ —
[—00, 4+00] is defined to be convex if its epigraph

epi f ={(z,t) e R" x R; f(x) <t} (1.1.3)
is convex as a subset of R™ x R.. It is sometimes more convenient to use the strict epigraph
epiy f = {(z,t) e R" x R; f(z) < t}. (1.1.4)

It is easy to see that the epigraph and the strict epigraph are convex simultaneously. For
real-valued functions, the definition using the epigraph is equivalent to (1.1.1).

We can now generalize the subharmonic functions of one complex variable in the same
way as we did when we defined convex functions in R™. If ¢* f = f o is subharmonic for all
complex affine mappings ¢: C — C"™ and has in addition some kind of regularity, then f is
called plurisubharmonic. The additional regularity assumption is usually taken to be upper
semicontinuity, which means the the strict epigraph epi, f (cf. (1.1.4)) is assumed to be open.

Definition 1.1.1. We say that f is plurisubharmonic in an open set Q in C™ if
f:Q — [—o0,+0o0[ is upper semicontinuous in Q and, for all a,b € C", z — f(a + 2zb)
is subharmonic as a function of the complex variable z in the open set where it is defined.
Notation: f € PSH().

The scheme of generalizations can be illustrated as follows:

n=1 n>1
. —_—
subharmonic = convex convex
! !
n=2%k=2 . k>1
subharmonic = plurisubharmonic plurisubharmonic

In all cases, the mean-value inequality f(c) < Mg f is imposed, but with different balls
A: they can be real one-dimensional or complex one-dimensional or full-dimensional. This
will lead to important analogies between the different cones of functions: the cone PSH is
sometimes analogous with SH, sometimes with C'VX.

A very natural question is this: if the pull-back ¢* f is subharmonic for all affine func-
tions ¢ mapping the complex plane into C”, is f plurisubharmonic? In other words, is the
assumption of upper semicontinuity superfluous? The answer seems to be unknown. There
is a similar question whether separately subharmonic! functions are subharmonic: this is not
true as shown by Wiegerinck [1988]. However, if we add some, even very weak, integrability
condition, separately subharmonic functions are indeed subharmonic; see Riihentaus [1989].

It is not difficult to prove the following inclusions:

CVX () C SH(Q), QCR", (1.1.5)

I'This means that the function is subharmonic in each variable when the others are kept fixed.
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and
CVX () C PSH(2) C SH(Q), Qcc, (1.1.6)

where CVX,.(€) is the cone of functions which are locally convex, i.e., convex in some ball
around an arbitrary point. They can be proved using the mean-value inequalities, but they
will also follow from the differential inequalities to be presented in the next section.

For general information about plurisubharmonic functions see Hérmander [1990; forthc.],
Klimek [1991], and Lelong [1969].

1.2. Conditions on the derivatives of convex and plurisubharmonic functions

We shall now take a look at various differential inequalities which are related to convexity,
subharmonicity and plurisubharmonicity. The simplest is this:

Proposition 1.2.1. Let f € C?(I), where I C R is an interval. Then f is convex if and
only if f"" > 0.

This can of course be proved directly, but since it is a special case of Proposition 1.2.3 below,
we omit the proof.

We shall write D(Q2) for the set of all test functions in an open set 2 and D’(2) for the
set of all distributions in €2, the space dual to D().

Proposition 1.2.2. Let f € L%OC(I), I being an interval. Then f is equal to a convex function
almost everywhere if and only if f" > 0 in the sense of distributions, i.e., [;¢" fd\ >0 for
all p € D(I) satisfying ¢ > 0. Moreover, if u is a distribution in I, uw € D'(I), then there
exists a convex function f such that [, fod\ = u(p) for every test function ¢ € D(I) if and
only if u” > 0.

This result is a special case of Proposition 1.2.4 below.

Proposition 1.2.3. Let f € C?(Q), Q C R™. Then f € SH() if and only if Af > 0, where
A =0%/0x3 + -+ 0?/022 is the Laplacian.

Proof. We shall write B for the closed unit ball and S for its boundary, the unit sphere, so
that ¢+ rB is the closed ball of radius r and center at ¢, and ¢ + 7S its boundary. Let E be
the fundamental solution of the Laplacian such that AE = §. and E vanishes on the sphere
¢+ rS. Then Green’s formula yields

o) — 7[ = / EAfd), (1.2.1)
c+rS c+rB

where d\ denotes Lebesgue measure. We use a barred integral sign to denote mean value,
thus

Ma(f) = %fd)\ - / fd)\// d\ provided 0 < / d\ < +oc. (1.2.2)
A A A
A
Since ¥ < 0 in the ball z + rB, Af > 0 implies

fe- f r<o

c+rS
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This holds for all ¢ € € and all r such that ¢+ rB C §2. This is the mean-value inequality
for f.
For the other direction, assume Af(c) < 0 at some point c. Take r so small that Af < 0
in ¢+ rB. Then (1.2.1) shows that
f@ - f 1>0

c+rS

for these r, so f does not satisfy the mean-value inequality.

Proposition 1.2.4. Let v € D'(Q), Q@ C R™. Then there exists f € SH(Y) such that
[ fedh = u(p) for all ¢ € D(Q) if and only if Au > 0 in the sense of distributions, i.e.,
u(Ap) =0 for all ¢ € D(Q) satisfying ¢ = 0.

Proof. First let f € SH(Q2). Form f. € C*°().) by convolution:

fo(@) = (f %40 (@ /f Yz — y)dA(y /fw—ey Yd\y),  xeR”,

where 1 is a radial?> C* function with support in the unit ball and of integral one satisfying
Y > 0, and ¢.(z) = e "p(x/e). Then f. is subharmonic in Q. = {z € Q; x + B C Q}.
Indeed, the integral [ f(z—ey)i(y)dA(y) is a limit of finite sums Y f(z—ey’)c; with positive
¢;j. Since f. is smooth, Proposition 1.2.3 implies that Af. > 0. When ¢ — 0, f. tends to f
in L}, () and the positivity in the sense of distributions is preserved: Af > 0

Conversely, if u € D'(Q2) with Au > 0, form u. = u * ¢.. Then u. € C*(£.) and
Auc > 0. Hence by Proposition 1.2.3, u. € SH(€).). I claim that u. is an increasing function
of . To see this, note that the solution x. of Ax. = 1. in R™ ~ {0} which is zero for |z| > ¢
can be written

€ 1
Xe(z) = / 3‘”+1ds/ t" I (t)dt, 0<|z|<e
|z| s/e

where U(|z|) = ¢(x). This formula shows that x. is increasing in ¢ > 0, because the
integrand is non-negative and the domain of integration increases with €. Now if ¢ > § > 0,
then x. —xs € D(R™) and ¢. — 15 = A(xe —xs) in all of R™, not only in R~ {0}. Moreover
Xe — Xo = 0, so that by the positivity of Au, (u* (1) —15))(0) = u(1pe —1ps) > 0. Translating
this we get (ue —ug)(x) = (u* (¢ —5))(x) = 0 for all x such that this has a sense, i.e., for
all z € Q.. This proves the claim that u. is an increasing function of ¢.

By known properties of subharmonic functions, the limit f = limw. is subharmonic in
), and since the convergence holds in L} loc(§82), f defines the distribution u. This proves the
proposition.

If f e C?Q), Q c R", then by definition f is convex if and only if the function
t— fla+tb) = fa(t) is convex for all a € 2 and b € R"™ where it is defined. Hence by the
chain rule

82
fay(t) = Z mgxk (a+tb)bjby = 0, a,beR", teR, a+tbe .
J

It suffices to take t = 0. We state the result as a proposition:

2A function is called radial if it is a function of the distance to the origin.
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Proposition 1.2.5. Let  C R" be convex and f € C*(Q). Then f is convex if and only if

a)b;b Q, beR". 1.2.
Zax]axk k=20, a€Q be (1.2.3)

Proposition 1.2.6. Letu € D'(2), where Q C R™ is convex. Then there exists f € CVX(Q)
such that

— [ foar  weD@,
Q
if and only if
2
3 fiubjbk >0, beR" (1.2.4)

in the sense of distributions.

Proof. If f € CVX(Q), form f. = f x1. € CVX(Q.) with ¢ as in the proof of Proposition
1.2.4. Then f. — f in D'(Q), which implies

in D’(Q), since convergence there is stable under differentiation. (We use here the weak
topology o(D’(£2), D(£2)), meaning that u; — w if u;(p) — u(p) for every test function ¢.)
Positivity is preserved under passage to the limit, which means that (1.2.4) holds.

Conversely, if u satisfies the positivity condition (1.2.4), form u. = u * b, € C®°(Q.).
Then also u,. satisfies the positivity condition (1.2.4), which is the same as (1.2.3) since u. is a
smooth function. Therefore u, is convex by Proposition 1.2.5. Moreover u. tends decreasingly
(cf. the proof of Proposition 1.2.4) to some function f, which is then necessarily convex as a
pointwise limit of convex functions. Since convergence holds in Ll ,c(§), f defines the given
distribution wu.

Proposition 1.2.7. Let f € C?(Q), Q C C™. Then f is plurisubharmonic if and only if

L >0, Q, n 1.2.
ZaZJaZk 0 aeQ beC (1.2.5)

Proof. This follows from the chain rule and Proposition 1.2.3.

Proposition 1.2.8. Let u € D'(2), Q@ C C". Then there exists f € PSH(Q) such that
u(p) = [ fdX for every test function ¢ € D(Q) if and only if

> 82 8zk >0, beCn, (1.2.6)

in the sense of distributions.

Proof. The proof is analogous to the convex case, Proposition 1.2.6.

It is now easy to prove the inclusions (1.1.5) and (1.1.6). The first follows from taking
b = 5;? in (1.2.4) and then summing over k. In (1.1.6) the first inclusion follows from (1.1.5)
and the second from (1.2.6): again take b; = 6;“ and sum over k.
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Proposition 1.2.9. Let u € PSH(Q) be locally independent of the imaginary part of z, i.e.,
forany z € Q, f(2') = f(z) if 2’ is sufficiently close to z and Rez’ = Rez. Then f is locally
convex in Q (thus convex if Q0 is convez).

Proof. If w is a plurisubharmonic function it satisfies (1.2.6), but if it is locally independent
of the imaginary part of the variables z;, that condition reduces to (1.2.4) for v regarded as
a function of the x; = Re z;. Thus by Proposition 1.2.6 there is a locally convex function f
which defines the same distribution as u. The regularizations u. and f. are therefore equal,
which implies that also their limits lim. .o u. = u and lim._,¢ f. = f are equal at every point.

Corollary 1.2.10. If Q is a pseudoconvexr open set in C™ which is independent of the
imaginary parts of the variables in the sense that z € Q and Re 2z’ = Re z implies z € ), then
every component of £ is conver.

Proof. Consider the function u = — logd, where d is the distance to the complement of 2.
Thus w is plurisubharmonic if €2 is pseudoconvex—this is indeed one of the possible definitions
of pseudoconvexity; see Hormander [1990:Theorem 2.6.7]. By the proposition, u is locally
convex. Therefore the restriction of u to any segment contained in €2 is convex. Now if a° and
a' are two points which belong to the same component of ), there is a curve from one to the
other, say [0,1] 3 t — a' € Q. We claim that the segment from a® to a® must be contained
in Q for all . Indeed the set T of all such ¢ is open in [0, 1] by the openness of €, and it is
closed by the definition of u, for the smallest distance from any point on the segment [a, a’]
to the complement of  is never smaller than the distance from {a® a’} to C" \ Q by the
convexity of u on [a,a’]. Moreover T is not empty, for 0 € T.. This proves that T is equal
to all of [0,1]. Thus the segment [a°,a'] is contained in .

These results illustrate some of the many analogies between the three cones CVX, SH
and PSH. Let us mention one aspect where this analogy is not clear. Given any cone K in a
vector space we may form the space 0 K = K — K of all differences of elements of K. Thus we
form three subspaces 6CVX (Q), 0SH(Q) and 6PSH() of L} .(Q) (or D’()) consisting of
all differences of functions that are, respectively, convex and finite-valued, subharmonic and
finite almost everywhere, and plurisubharmonic and finite almost everywhere in Q (2 being
convex and open in R” in the first case, just open in the second, and open in C™ in the last
case). Each of these spaces has a local variant consisting of those locally integrable functions
that admit a representation f = f; — fo with f; € K in a neighborhood of an arbitrary point.
It is now easy to prove that 6SH,.(2) = 0SH(2) for all open sets (it is the space of all
locally integrable functions f such that Af is a measure). Also 0CVX,,.(Q) = §CVX(Q) if
) is convex. But it seems not to be known whether 6 PSH,,.(2) = 0 PSH(Q2) (for example in
a pseudoconvex open set). See Kiselman [1977] for details.

1.3. The minimum principle

For any given function f defined in R™ x R™, we call

g(x) = inf f(z,y), r €R", (1.3.1)
yeR'm

the marginal function of f. (It defines a kind of margin of the epigraph of f.)
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Theorem 1.3.1. Let f:R"™ x R™ — [—o00,+0o0] be convex. Then its marginal function
(1.3.1) is convex.

Proof. The strict epigraph of f (cf. 1.1.4) is
epi, f = {(z,y,t) e R" X R™ x R; f(z,y) < t}.

We now observe that epiy g = m(epi, f), where 7 is the projection (z,y,t) — (z,t). If f is
convex, then epi, f is convex, and any linear image of a convex set is convex, so epi, g =
m(epi, f) is also convex. This means that the function g is convex.

Calculus proof. (Not that it is necessary now—we shall do it only as a warm-up for the
plurisubharmonic case.) Let us assume that the function is of class C? and that the infimum
is attained at a point y = w(x) for each x which depends in a C'! fashion on z:

Yy = (wl(x)v "'awm(x))T )

where the exponent means transpose, so that y is regarded as a column vector. Assume also
r € R, i.e., n = 1. This is enough; in general we consider g(z° + tz!), t € R.

Thus ¢g(z) = f(z,w(x)); the chain rule yields
9 _0f , 5~ 0F
oxr  Ox Z '

At a minimum point we have df /0y = 0, so that dg/0x = 0f/0x when y = w(z). By the
chain rule again

0? 0? 0*f 0
g f+z [ Owy

3 5 — A o - — Jazx A 5
0r?2  Ox? 0x0yy, Ox Jaw + A
where A is the row matrix
0% f
( 1, ) ) w1 k 8m8yk

and o the column matrix
oz (Ow  Owm)T
S\ 9z Ox '
We now apply the chain rule to the equation 9f /0y (z, w(x)) = 0, which gives

o°f | _Of 0w
0xdy,  Oy;0yi Ox

2
= (agiafyk)

is the Hessian matrix of f with respect to y. Summing up:

=0, in other words A+ a"H =0,

where

Jra = fza: + Ao = fza: —ao"Ha.
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Now what do we know about H? The convexity of f in all variables (z,y1, ..., Y ) implies
that

0% f 0% f 0% f
v b b, ———0b;b, >0,
f +Z dx Oy k +Z Dy; 0 +Z Dy; 0y, k
for all b (column vectors) or
frz + Ab+bTAT +0"Hb > 0.

Since Ab is a scalar, Ab = bT A" and we have f,, + 2Ab+ b"Hb > 0, and since A = —a™H
this can be written as
fow — 20 Hb+b"Hb > 0

for any column vector b. Now choose b = a. Then we finally obtain
Gz = fza: —a"Ha P 0

and we are done.

During this calculation we needed that w(z) is a C! function of x. It is the solution of
the system 0f/9y; = 0, and it follows from the implicit function theorem that w is C'* if the
Hessian H is positive definite, for the Hessian is precisely the Jacobian matrix of this system
and we need the Jacobian (determinant) to be non-zero. Hence w € C' and the chain rule
can be applied as above. Note as a matter of curiosity that g(z) = f(z,w(z)) is C! since
w € C1, but since g, = f, when y = w(x) we see that g, is also C*, hence g € C2. This
concludes our calculations on convex functions.

The condition that f € C? and that the infimum is attained can be removed. Regular-
ization and addition of a coercive function will help! We shall not show this now, since we
shall do it soon in the plurisubharmonic case in detail.

We shall now investigate similarily the Levi form of a minimum of a plurisubharmonic
function f. Thus as before g(x) = f(z,w(zx)), where y = w(x) defines a stationary point of
y— f(z,y). Welet x € C" = C and y € C™. It is enough to consider n = 1, because for
plurisubharmonicity in z we consider complex lines in C™.

We shall use the notation
0% f 0% f 0% f 0%f
T Ozoy, TF T amoy, TN oyou YT dyjoy,

and put A = (A4, ..., An), B=(By,..., By,). Here H = (Hj},) is the complex Hessian matrix
and L = (Lj) is the Levi matrix with respect to the y variables. We write

(1.3.2)

H(b) =Y Hjpb;by = b"Hb (1.3.3)
for the Hessian form, which is a symmetric quadratic form (thus H* = H, H* = H), and
L(b) = Ljrbby = b"Lb (1.3.4)

for the Levi form, which is an Hermitian form if f is real-valued; thus L™ = L and L* = L in
that case. We write aj = 0w;/0x, o = (a1, ..., 4y, )" and 3; = 0w; /0T, B = (b1, ..., Bm)"-
The result is this:
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Proposition 1.3.2. Let f be a real-valued C? function in some open set 2 in the space of
1 +m complez variables, (x,y) € C x C™. If y = w(x) is a stationary point of y — f(x,y)
which depends in a C' fashion on x, then the Laplacian of g(x) = f(x,w(x)) satisfies

1Ag = gz = foz — 2ReH(a, B) — L(a) — L(B), (1.3.5)
where H and L are given by (1.3.2-4) and H(«, B) = o Hf is obtained by polarization.

Proof. 1f we differentiate g(x) = f(z,w(z)) once we get

() = 5@) = Lulow@) + 3 5oy + 30 508 = ),

since df/dy; and Of /0y, both vanish at a stationary point. This shows that g, is of class
C'. We can therefore apply 9/0T to the equation g, = f, and get

0?%g 0%f Owy OPf owy
0x0% 8a:8x 0xdy;, 0T 0xdy, 0T

Gz =
Since f is real-valued it follows that 02 f /020y, = By, thus
9oz = foz + O AP+ > Brtk = foz + AB + Ba. (1.3.6)

To determine A and B we differentiate the equation df/dy; = 0 with respect to x to get

oy P owy  ~ P 0w
aazayk y;0yr, Ox Jy,;0yy, Ox -

or Ay + > a;Hj, + ZBjLJTk = 0, which in matrix notation becomes

A=—a"H - 3*L". (1.3.7)

Next we differentiate 0f/Jy), = 0 with respect to T and get

Zaf 8w] 0*f 8wj_0
8m8yk y; 0y, 83: Iy, 0y, 0T ’
or By, + > BjHj, + > @;Ly; =0, which in matrix notation gives
—B"H — o*L". (1.3.8)

Now insert the values A = —a™H — *L" and B = —"H — a*L" into (1.3.6). Then we
get

9aw = faz —"HB — B L3 — BTHa — a*LTa = fuz — 2Re(a"HB) — o" La — 3L,
which in terms of 3 and L is just (1.3.5). This proves Proposition 1.3.2.
So far we have not assumed any plurisubharmonicity! We have just used the identity
g(z) = f(z,w(x)), where Of /Oyr(x,w(x)) = 0 and Of /0y, (x, w(x)) = 0, equations which
hold since y = w(x) is a stationary point of y — f(x,y). Note, by the way, that these two

equations are equivalent if f is real-valued. We shall now assume that f is plurisubharmonic,
and deduce a lower bound for its partial Laplacian with respect to z:
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Proposition 1.3.3. If f is plurisubharmonic and of class C? in an open set in C x C™,
then

0% f —
0z = — > BMBT", 1.3.
/ 0x0T (1.3.9)
where 82f
B=(By,....B,,), By = — ,
( 1y-eey ) k 8.’138yk

and M is an Hermitian quasi-inverse of the Levi matriz
82
£~ ()
ayjayk

Remark. In a nice coordinate system L = L1 ®0, where L; is positive definite. Any Hermitian
quasi-inverse then has the form M = M; & M> = Ll_1 @ Mo, where My is Hermitian. We get
LM =ML=I1®0,s0o LML = L. Moreover MLM = L;* &0 (= M if My = 0).
Proof of Proposition 1.3.3. What does it mean that f is plurisubharmonic? By Proposition
1.2.7 it means that

o0 f 0? 0*f 0?

3 —J sz — ) .= — 27, >0,

5eom"™ T 2 g, T 2 0 T 2 g

t.e., M* =M and LML = L.

for all s € C, z € C™. It suffices to take s = 1:
foz+ Bz+Bz+2"Lz >0, zeC",

or equivalently
foz = —inf(2"LZ + Bz + Bz). (1.3.10)

To find the best possible use of the plurisubharmonicity we need to determine the infimum
in terms of B. The result is this:

Lemma 1.3.4. Suppose F(z) = 2" Lz +2Re Bz is bounded from below. Then its infimum is

inf (:"LzZ+2ReBz) =—-BMB",

zeCm

and is attained at z = —M B*, where M is any Hermitian quasi-inverse of L. (Then LM BT =
B™, and this property is sufficient for the formula above to hold.)

Proof of Lemma 1.3.4. If the infimum is attained at a point a, we must have
F(z)=(2—a)"L(z —a) —a" La,

for the linear terms must vanish in an expansion around a. Hence inf F'(z) = —a"La. Now
assume M is such that LM BT = BT and M* = M. Then we just calculate:

F(z)=2"Lz+2ReBz = (2+ MB*)"L(2 + MB*) — BMLMB".
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Thus inf F = ~—BMLMB™ = —BMB" and it is attained at the point z = —MB* (not
necessarily unique, since it depends on the choice of quasi-inverse). Here we only used the
fact that M satisfies LM BT = B™ and M* = M.

For completeness we shall also show that if LML = L, M* = M, then necessarily
LM B™ = B". If this is not true there is a row-vector ¢ such that ¢B™ # 0 but ¢L = 0. (We
have LMx = x for all columns of L, hence for x in the linear span of those columns, so if
BT™ does not belong to this span, there is a linear form which annihilates the columns of L
without annihilating B™). Now consider

F(sc") = (sc¢")"L(sc™) + Bsc" + Bsc™ = 2Re(sBc").

This real-linear form is not identically zero by hypothesis, and hence not bounded from below.
But we assumed F' to be bounded from below. The set of all column vectors x such that
LMz = x includes all columns of L and therefore also B~.

Thus Lemma 1.3.4 and hence Proposition 1.3.3 are proved.

Theorem 1.3.5. Let f be plurisubharmonic and of class C? in an open set in C x C™ and
y = w(z) a stationary point of y — f(x,y) with w of class C*. We write

T 2 ?
R e )

and let M be an arbitrary Hermitian quasi-inverse of L, i.e., M = M*, LML = L. Define
N=HM"H — L. (1.3.11)
Then g(z) = f(z,w(x)) satisfies
gsz > 3" (HMH — L)F = M(HB) — L(8) = 5"NF = N(5). (1.3.12)

where M(b) = b* Mb and N(b) = b*Nb denote the Hermitian forms defined by M and N (cf.
(1.3.4)). In particular, g is subharmonic if N(3) = 0.

Thus for every plurisubharmonic function f of class C'? we have defined an Hermitian matrix
N = HM™H — L which is of interest. It is highly non-linear in f.

Proof. The criterion (1.3.9) of Proposition 1.3.3, f,z > BMB?”, takes the form f,z >
M(HB) + 2Re H(a, B) + L(a) if we are at a critical point. Indeed, B = —3TH — a* L™ (see
(1.3.8)), so

BMB"™ = 3*HMHB+ 3*HMLa + o"LMHS3 + o LM La.

To simplify this expression we use the equations LML = L and LM B™ = B™, which give
LMHfB = Hf and f*HML = 3*H. Therefore

foz > BMB™ = 3*"HMHB + 3*Ha + o"HB + o La = M (Hf) + 2Re H(a, 8) + L(a).
On the other hand we calculated g,z in Proposition 1.3.2:

9oz = fzi - QRGJ’C(O[,IB) _L’(a) _L(ﬂ)
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Using the estimate for f.z we get g,z > M (H—ﬁ) — L(B) = N(B), which concludes the proof
of the theorem.

Let us look at a few special cases of the theorem.

1. If wis a holomorphic function, then 5 = 0 so g is subharmonic. This is no surprise, g(x) =
f(xz,w(x)) being the composition of a plurisubharmonic function and a holomorphic
mapping.

2. f N=HM"™H — L > 0 (positive semi-definite), then g is subharmonic.

3. The term BT"HMTHf is equal to 2" M™T with = Hf3, so it is always greater than or
equal to zero if L > 0. Therefore g,z > —L(3). Suppose we know that L < al, || < b.
Then —BLB* > —al|B]? = —ab?, so that g(z) + ab?|z|? is subharmonic. This means that
we have some control of the lack of subharmonicity.

4. If L is invertible, the condition HMT™H > L means that P = L~1H satisfies PP > I. Is
there a nice interpretation of this inequality?

5. For m =1 it is easy to analyze the condition. It becomes
9xz > (HMH — L)|3>.

Hence ¢ is subharmonic if either § = 0 or |H| > L. At a minimum we must have
|H| < L, so the case |H| > L is then equivalent to |H| = L, which means that there
exists a direction where the second derivative is zero. (If m > 1 and L and H can be
diagonalized simultaneously then we have more or less this case.)

6. Again for m = 1, the expression N = HMH — L is equal to

ny/yu — fyy fyryr _ real Monge-Ampere(f)
fy/y/ + fy//y// Laplacian(f) ’

where y = v’ +1iy”, y/,y” € R. Same conclusion as in 5.

N =

7. Consider the special case L = 0. Then f is plurisubharmonic if B = 0 and f,z > 0.
Taking M = 0 in the theorem we see that g,z > 0, which is true, since in Proposition
1.3.2 we have ¢,z = fuz. Indeed, 0 = B = —3"H, so H(a,3) = «"HB = 0. The
conclusion cannot be improved.

8. Consider now the special case H = 0. Then f is plurisubharmonic if and only if

foz = L(a). In fact, the necessary and sufficient condition for plurisubharmonicity
(see (1.3.10)) is

Jaz 2 —irzlf(L(z)+2 Re Bz) = —irzlf(L(z)—2 Rea*L"z2) = —irzlf(L(a—z)—L(a)) = L(a).

In Proposition 1.3.2 we have g,z = f.z — L(a) — L(8). The theorem says that g,z >
—L(5), which is true and cannot be improved.

We have thus seen in 7. and 8. that if either H or L vanishes, the conclusion of the
theorem cannot be improved.

9. If f is independent of Imy, then H = L, so
N=HM'H—-L=LM"L—-L=(LML)" —L" =0" =0,

for L* = L, H" = H. So then the matrix IV vanishes identically! Thus we have proved:
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Corollary 1.3.6. If f € C?(Q) N PSH(Q) is locally independent of Imy, then g(z) =
flz,w(x)) is plurisubharmonic if y = w(x) is a stationary point (local minimum) of the
function y — f(z,y) which depends in a C* manner of x.

It is now a matter of routine to eliminate the smoothness assumptions in Corollary 1.3.6. We
then obtain the following theorem:

Theorem 1.3.7 (The Minimum Principle, Kiselman [1978]). Let @ C C™ x C™ be pseudo-
convex and f € PSH(QY). Assume that Q and f are both independent of the imaginary part
of y € C™, i.e., if (x,y) € Q and y' is a point in C™ with Rey; = Rey;, then (z,y") € Q
and f(z,y') = f(x,y). Assume also (now only for simplicity) that the fiber 7=1(x) N Q is
connected (thus a convex set according to Corollary 1.2.10) for each x € C™, where 7 is the
projection C™ x C™ — C" defined by 7(x,y) = x. Define

g(x) = nf f(z,y).
Then 7 (§2) is pseudoconver and g € PSH(w(2)).

Remarks. If the fiber 7=!(z) is not connected, it consists of several convex components, and
the theorem makes sense in this case also; however, the function g will not be defined in
a subset of C" but on a Riemann domain over C”. See Kiselman [1978] for details. — If
m = 1, then each component of a fiber 771(x) N is a strip or a half-plane or the whole
plane. In most of the applications that we are going to present we do have m = 1, and the
fiber is a half-plane, in particular connected.

A special case of the theorem is when f =0 in Q and g = 0 in 7(Q2). Then the theorem
just says that the projection 7(2) is pseudoconvex. This special case is equivalent to the
whole theorem. Indeed, let

Qp ={(z,y,t) € A x C; f(z,y) < Ret}.
Then
() ={(z,t) € m1(Q) x C; g(z) < Ret}.

It is known that Qy is pseudoconvex if and only if 2 is pseudoconvex and f € PSH(Q).
Therefore, if we have proved the theorem in the special case of zero functions, it follows that
7(§25) is pseudoconvex, which is equivalent to g being plurisubharmonic.

Proof of Theorem 1.3.7. We shall successively reduce the theorem to Corollary 1.3.6.

First we shall show that if the result holds for a function f which tends to +oo at the
boundary in the sense that the set

Q" = {(v,y) € Q; f(x,y) <a}

satisfies
Q°N(C"xR™) e Q, a €R, (1.3.13)

then it holds generally. To do this we form

1
fj = max(—j, f) + 3 (max(O, —logd) + |x]2 + |Rey|2) ,
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where d is the distance to the complement of Q. The functions f; satisfy (1.3.13), and if
the result holds for them, so that g; = inf, f;(z,y) is plurisubharmonic, then it follows that
lim g; = inf; g; is plurisubharmonic. Clearly the decreasing limit inf; g; is precisely g. This
means that the theorem holds for general f.

Next suppose that a function f satisfies (1.3.13). Then we form

Je = [ * +5|Rey|2
like in the proof of Proposition 1.2.4, but of course with ¢ (z,y) = ¢~ " ™ ((z,y)/e). This
convolution is well-defined in the set 2. of points of distance larger than e to the complement
of Q. Given an arbitrary relatively compact subdomain w of 7(£2) we shall prove that g is
plurisubharmonic in w. Now g is bounded from above in w, say g < a there. Pick ¢ with
0 <e<1landb > asuch that Q% +eB C Q. Then €. contains Q% so that f * 1, is
well-defined in 2¢. Next let
c=b+ sup |Rey|* < +ooc.
(z,y)eQe

Then Q% C Q¢ C Qs for some small positive §. For x € w we have
c>mf(fe(z,y); (z,y) € Q%) > mb(fe(z,y); (z,y) € Q).

In Q. \ Q¢ we have f. > f > ¢, so the last infinimum is equal to inf, (f-(z,y); (z,y) € Qc);
we denote this quantity by g.(z).

Thus f. is a strongly convex® function of Rey and the infimum when y varies is attained
at a unique real point y = w.(x). Corollary 1.3.6 can be applied to such functions. To see
this, we first have to prove that the function w, is well-defined and of class C''. Now this
follows from the implicit function theorem, for the point y is the solution of the system of
equations 0f./0y; = 0, whose Jacobian is

O f-
%ekt <8(Re y;)O(Reyy) > (z, w(x)).

But this determinant is also the determinant of the real Hessian matrix of f. as a function
of Rey, and is therefore non-zero in view of the strong convexity of f. as a function of Rey.
This proves that w, is of class C'°.

We also have to ensure that the fibers 7—1(z) N Q. are connected, even though the set
Q. itself need not be connected. To see this, define first

We(e) ={y € C™; (z,y) + (BN ({0} x C™)) Cc O} Cc C™, zeC™ e>0.

Since 71 (x) N is connected, thus convex, the set W, (¢) is convex. Therefore {z} x W,/ (¢)
is convex as well; it is a subset of 7~1(x). But then also the intersection

N fe} x W ( 2| g;|2) — 7 Yz) N Q.
' Ex+eB
is convex. Thus Corollary 1.3.6 can be applied, and we deduce that g.(z) = inf, f.(z,y) is a
plurisubharmonic function of . Letting ¢ tend to 0, we conclude that g = lim._,4 g. = inf, g.
is plurisubharmonic in w. Since w was an arbitrary relatively compact subdomain of (),
this proves the theorem in general.

3This means that we can subtract a small positive multiple of | Rey|? and still have a convex
function.
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Chapter 2. The Lelong number and the integrability index

2.1. Introduction

In the present chapter we shall show how to construct in a straight-forward way new pluri-
subharmonic functions from old ones using standard methods of convex analysis. These
new functions can then be used to find analytic varieties that are connected with the original
function, or rather with its singularities. We shall therefore first describe how one can measure
the singularity of a plurisubharmonic function: this is done using the Lelong number and the
integrability index.

The Lelong number measures how big (or “heavy”) the singularities of a plurisubhar-
monic function are. It generalizes the notion of multiplicity of a zero of a holomorphic
function. To define it, we first form the measure u = (27r) " Af, where A is the Laplacian in
all 2n real variables Re zj, Im z;. Note that when f = log|h| is the logarithm of the absolute
value of a holomorphic function of one variable, then p is a sum of point masses, one at each
zero of h and with weight equal to the multiplicity of the zero. The Lelong number of f
at a point z is by definition the (2n — 2)-dimensional density of the measure p at x. More
explicitly, it is the limit as » — 0 of the mean density of i in the ball of center z and radius r:

vi(z) = lim ple £ rB)

21.1
r—0 )\gn,Q(TB N Cn—l)’ ( )

where A\ denotes k-dimensional Lebesgue measure. Note that we compare the mass of y in
the ball  +rB with the volume of the ball of radius r in C"~!, i.e., of real dimension 2n — 2.
This makes sense, because if f = log|h| with A holomorphic, then p is a mass distribution
on the (2n — 2)-dimensional zero set of h. If n = 1, then Ay, _o(rB N C" 1) = X\o({0}) =1,
and v¢(x) is just the mass of p at .

One often approximates a plurisubharmonic function f by f; = max(—j, f) or by smooth
functions f; = f *1; obtained by convolution. However, in these cases the functions f; never
take the value —oo, so their Lelong numbers vy, (x) are zero everywhere; their singularities
as measured by the Lelong number do not approach those of f as j — 4o0o. Here we shall
construct functions f, depending on a non-negative number 7 such that fo = f and f, has
Lelong number vy (z) = (vy(z) — 7)". It turns out that the family (f;), can be used in
various constructions. The singularities of f, are the same as those of f but attenuated in
a certain sense. More precisely, the important property is that vy (z) > 0 if 7 < v¢(x),
whereas the singularity is completely killed, i.e., v¢ (x) = 0, if 7 > v¢(z). In this context
it is convenient to define the Lelong number of a family of plurisubharmonic functions. We
prove analyticity theorems for the superlevel sets of such numbers; see section 2.4.

If f is plurisubharmonic and ¢ a positive number, the function exp(— f/t) may or may not
be integrable. The set of all ¢ such that this function is locally integrable in the neighborhood
of a certain point is an interval, and its endpoint measures how singular f is. This is the
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reason behind the integrability index ¢y to be defined in section 2.3 (see (2.3.4)). From
the Hormander—-Bombieri theorem we get analyticity theorems for the integrability index
(see (2.3.4)). There is a relation between the integrability index and the Lelong number:
tp < vy < nuyp, where n is the complex dimension of the space; see Theorem 2.3.5. This
relation cannot be improved (see Example 2.3.6), but nevertheless it will suffice to yield
analyticity theorems for the Lelong number. The reason for this is roughly speaking that
if we subtract the same quantity 7 from two numbers like vy(x) and vy(z') > vy(x) > 7,
then the quotient between vy(z’) — 7 and v¢(z) — 7 can be large, for instance larger than
the dimension n. This is why analyticity theorems for sets of plurisubharmonic functions are
useful when it comes to proving analyticity theorems for a single function. For other studies
of Lelong numbers, see Abrahamsson [1988], Demailly [1987, 1989], and Wang [1991].

2.2. Spherical means and spherical suprema

Let f and ¢ be two given plurisubharmonic functions in an open set €2 in C”, thus f,q €
PSH(S2). We define an open set €2, in C" x C as

Q, ={(z,t) e 2 x C; ¢q(x) + Ret < 0}, (2.2.1)

and we note immediately that €, is pseudoconvex if 2 is pseudoconvex, for the function
(x,t) — q(z) + Ret is plurisubharmonic in € x C. We shall assume that g(z) > —log dg(z)
for all z € Q, denoting by dqg(z) the distance from x to the complement of €2, and we note
that then (z,t) € Q, implies that the closed ball of center x and radius |e’| is contained in
2. We define two functions v and U in €2, by putting

u(z,t) = up(x,t) = usq(x,t) = % flx+e'z), (x,t) € Qg; (2.2.2)
z€S
Uz, t) =Up(x,t) = Upq(x,t) = Slelgf(.r +e'z), (x,t) € Q. (2.2.3)

Here S is the Euclidean unit sphere, and the barred integral sign indicates the mean value;
see (1.2.2). So uy(wz,t) is the mean value of f over the sphere x + e'S, and Uy(x,t) is the
supremum of f over the same sphere. Since we usually keep ¢ fixed, the dependence on that
function need not always be shown. If {2 # C”, the simplest choice of ¢ is just ¢ = —logdg.
Then ¢ > —oo everywhere. However, if = C", then it is usually not convenient to use
q = —logdg = —o0, because with this choice of ¢, the behavior of f at infinity would influence
the local properties of the functions we construct. In this case it is best just to take ¢ = 0.

The functions uy 4, and Uy , are well defined and < 400 in €2, thanks to our assumption
exp(—q(x)) < do(x). We define them to be 400 outside €.

Clearly uy < Uy, and we shall see that there are inequalities in the opposite direction. We
can note quickly that uqy44g = auy+bu, for non-negative a, b, even for real a, b, which implies
that the function uy depends linearly of f in the linear space of all Borel measurable functions
which are integrable on spheres, thus in particular on the space dPSH () of delta-plurisub-
harmonic functions, i.e., the vector space spanned by those plurisubharmonic functions which
are not identically minus infinity in any open component of Q (see the end of section 1.2).
We shall see that this implies that the Lelong number is a linear function on 6PSH (2). As
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to the function Uy we can only say that Uy y1pg < aUy + bU, for a,b > 0, which implies that
Uy is a convex function of f, and the Lelong number a concave function of f. But when it
comes to the maximum of two functions, we have Upyax(f,g) = max(Uy, Uy) which implies that
Vmax(f,g) = Min(vy,v,), whereas for the mean we can say only that wmax(s,g) = max(uy,ug)
which implies that viyax(r,g) < min(vy,vy). It is therefore useful to know that the Lelong
number can be defined by either u; or Uy, because this enables us to use the best properties
of either one.

We can define the Lelong number as the slope at minus infinity of the function t +—
u(z,t). As a consequence of the maximum principle, u(z,t) and U(x,t) are increasing in t;
by Hadamard’s three-circle theorem, they are convex functions of t. Therefore their slopes
at —oo exist:

u(x,t)

ve(xz) = lim and Ny(xz)= lim U, ) (2.2.4)

t——00 t——00 t

both exist. This follows from the fact that the slopes

’LL(:L‘,t) - U(.’L‘,to) and U(Qj‘,t) - U(l‘,to)
t —to t—1o

are increasing in ¢. The first limit v¢(z) is the Lelong number of f at x, and the definition
we shall use in this chapter. The definition (2.1.1) of the Lelong number as the density of
a measure is equivalent to (2.2.4) as can be proved without difficulty using Stokes’ theorem
(Kiselman [1979]). To see this we shall calculate the mean density assuming that f is of class
C?. We first express the mass of y in a ball in terms of the derivative of u:

1 1 8f 1 Oudt 1 Ou
pe +rB) = 2 L+TBAf 2 /m+TS or S_%EJ/ " 2 8t/ ds.

We now compare with the integral over a ball of lower dimension:

/ ds = 7,277,—1/ ds = 271'7’2"_1/ d)\2n72 = 27TT/ d)‘2n72 = 27'(7“)\2,“72(7«32"_2)‘
rS S B2n—2 rB2n—2

Note that we use the unit sphere of dimension 2n — 1 and the unit ball of dimension 2n — 2
here; the remarkable fact is that the quotient

area(S?"1)
volume(B?"~2)

=2m

is independent of the dimension. The mean density pu(x+7rB)/A2,_2(rBNC" 1) is therefore
equal to the slope du/0t at the point ¢ = logr, and the density at the point x is equal to the
limit lim;_, o, Ou/0t(z,t). We can now get rid of the extra assumption that f is of class C'2,
the derivative of u being replaced by the derivative from the right (we use closed balls).

Since uy < Uy we have v¢(z) > Ny(x). We shall now see that the two numbers are
equal. To this end we shall use Harnack’s inequality, which takes the form

1+ |z|/r
(L= |zl/r)mt

1 — [zf/r

W}L(O) (2.2.5)

h(0) < h(z) <
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for harmonic functions which satisfy h < 0 in the ball of radius r in R™. If f is subharmonic
in a neighborhood of the closed ball e*B in C", we can consider its harmonic majorant h
there, which satisfies f(z) < h(x) and

h(0) = 7[h(esz) _ 7[ F(e*2) = u(0, ).
z€S z€S
Therefore

1—ets
1) = <suph< —— 5
V0.0 = sp) <uph <

provided only f < 0 in e®B. If we apply this inequality to the function f — U(0, s), which is
non-positive in e®* B by definition, we get, writing U (t) instead of U(0,¢) for simplicity:

1— et—s

Ut)—U(s) < et (u(s) = U(s)),

u(0, s), t<s,

equivalently,
U(t) < (1= —s)U(s) + Ap—su(s), t < s, (2.2.6)
where \; is defined for ¢ < 0 as
N 1—¢f
t = (]_ + et)anl :

We can now prove that the two limits in (2.2.4) are equal. As already noted, v¢(z) >
N¢(z). In the other direction we can take for instance s =t + 1 in (2.2.6) to obtain the
estimate

Ul) < (1T =A_)U{t+1)+ A_qu(t+1),

whence
@ >(1- /\_1)LH D +>\_1u(t: 1), t<0
Letting ¢ tend to —oo we see that Nf(x) > v¢(z).
To any given f,q € PSH(Q2) we define
or(z) = iI%f [ug(z,t) — T Ret], xeQ, 7=0. (2.2.7)

In view of our convention that uy¢(z,t) = +oo if (x,t) ¢ Q, the infimum is effectively only
over those t that satisfy Ret < —q(x). The function 7 — —p,(x) is the Fenchel transform
of R >t + ug(z,t); cf. (3.4.1). We assume all the time that e~9®) does not exceed the
distance dq(x) from x to the boundary of €, so that uy is well defined. The function
(x,t) — us(x,t) — 7Ret is plurisubharmonic in Q, and independent of the imaginary part
of t. Therefore the minimum principle, Theorem 1.3.7, can be applied and yields that ¢, is
plurisubharmonic in €.

Ezample. Let us look at the simplest example: f(x) =log|z|, z € C™. We choose ¢ = 0 and
form Uy (z,t) = log(e® + |z|) for t < g(x) = 0. Then ¢, (z) = infco(Us(x,t) — 7t) can be
calculated explicitly: it is ¢, () = (1 — 7)log|z| + C; for 0 < 7 < 1, where C; is a constant
which depends on the parameter 7, and ¢,(x) = log(1l + |z|) for 7 > 1. Thus the Lelong
number of ¢, at the origin is max(1 — 7,0) for all 7 > 0.

There is no apparent reason why the Lelong number of the plurisubharmonic function
¢, at = should be a function of v¢(z) and 7; it could as well depend in some other way on the
behavior of f near z. However, it turns out that the simple formula for the Lelong number
of ¢, in the example holds quite generally:
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Theorem 2.2.1 (Kiselman [1979]). Let f,q € PSH(Q) with ¢ > —logdq. Define v, by
(2.2.2) and (2.2.7). Then ¢, € PSH(QY). If vy(xz) =0, then the Lelong number of ¢, is

vy, (z) = max(vy(z) — 7,0) = (vy(z) — 1) 7T, xeQ, 7>0. (2.2.8)

We can also use the function U; instead of us in the construction; the proof is the same. If
7 < 0, then of course v, _(z) = +o0.

We shall give a simplified proof of Theorem 2.2.1 under the slightly stronger hypothesis
that g(x) > —oo. This is quite enough for the applications we have in mind. (As soon as
2 # C", we must indeed have ¢ > —oo everywhere.)

Lemma 2.2.2. With f and ¢, as in Theorem 2.2.1 we have

Ve, () 2 v(x) — .

Proof. We first note that by the definition of ¢, we have for any ¢’
or(y) Sup(y,t) —t'T.

Taking the mean over the sphere z + €S then gives

Uy, (z,t) = 7[g07(a:+zet) < 7[ 7[ flx+ zet +we ) —t'7

z€S zeSwesS
< 7£ fla+ze ) —t'r = up(z, t") —t'r.
z€S
Here t and ¢’ are arbitrary and ¢” is determined from them by the equation e’ = et +et'.

The only interesting choice is t = t, so that ¢’/ =t + log 2. Thus

u‘»@‘r(w7t) > uf(x7t+10g2) _T t<0
t = t b )

and letting ¢ tend to —oo we get the desired conclusion.

Lemma 2.2.3. With f and ¢, as in Theorem 2.2.1, take a number T > v¢(x). Assume that
q(x) > —o0. Then . (x) > —oo. In particular v,_(x) = 0.

Proof. Since v¢(x) < T < 400, f is not equal to —oo identically in a neighborhood of . The
value ¢, (z) is the infimum of the convex function us(x,t) — t7 of the real variable ¢ when
t varies in the interval |—oo, —¢g(z)[. This interval is by hypothesis bounded from the right.
Moreover by the choice of 7, the function is strictly decreasing when ¢ < 0. Thus its infimum
is finite.

Proof of Theorem 2.2.1, assuming that q(x) is finite. The proof consists of the following
steps (cf. Kiselman [1992]). First we note that ¢, is a concave function of 7 with ¢o = f.
Therefore v,_(x) is a convex function of 7 taking the value v¢(x) for 7 = 0, for the Lelong
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number is as we have seen a linear function of f, the limit of u(x,t)/t. Second we see from
Lemma 2.2.2 that v, _(z) > v¢(z) — 7. Third we know from Lemma 2.2.3 (if v¢(x) is finite)
that v, (x) = 0if 7 > v¢(x). Now the only convex function of 7 which has these properties

is 7— (vp(z) —7)*.

2.3. The Hormander—Bombieri theorem and the integrability index

The purpose of this chapter is to show how the singularities of plurisubharmonic functions
give rise to, and can be described by, analytic varieties. To do so we shall of course need a
method to construct varieties defined by a given plurisubharmonic function. This method is
the technique of solving the 0 equation using plurisubharmonic functions as weights, most
elegantly expressed by the Hérmander—Bombieri theorem:

Theorem 2.3.1. Let Q2 be a pseudoconvexr open set in C™, and let ¢ € PSH(Q). For every
a € Q such that e=% € L3 (a) there exists a holomorphic function h € O(Q) such that
h(a) =1 and

/ B2e=22 (1 + |2[2) 3" dAgn () < +o0. (2.3.1)
Q

Here L%O .(a) denotes the set of all functions that are square integrable in some neighborhood
of the point a.

For the proof see Hormander [1990: Theorem 4.4.4]. (The exponent —3n can be improved
to —n — ¢ for any positive ¢; see Hormander [forthc.]. This is, however, not important in a
local study like ours.) Let us denote by O(€2, ) the set of all holomorphic functions A in Q
which satisfy condition (2.3.1) for a given function ¢. The intersection

V(p) =) (71 (0); h € O(,¢)) (2.3.2)
h

is an intersection of zero sets of holomorphic functions, and therefore itself an analytic set.
Let us define

I(p) ={a€ Qe ? ¢ Li,(a).
With this notation the theorem says that V(¢) C I(p). It is however obvious that I(¢) C
V().
In view of this theorem it is natural to measure the singularity of a plurisubharmonic
function ¢ at a point a by its integrability index v, (a):

— .o/t 2
Lp(a) = %gg [t; e o/t ¢ Li, (a)]. (2.3.3)

It is easy to see that if e/t € L? (a), then also e~%/¢ € L? (a) for every s > t. Thus
the set of ¢ > 0 such that =¥/t € L? (a) is an interval, either [1,(a), +o0o[ or ]i,(a), +00l. In
all examples I have seen, it is an open interval. It seems to be unknown whether it is always
open for plurisubharmonic ¢.

Let @ be an arbitrary subset of PSH(2) and « a functional on @ in the sense that there is
given a function k,: Q0 — [0, 4+00] for every ¢ € ®. We introduce a notation for the superlevel
sets of such functionals:

El(p) ={a € Q; ky(a) > c}, c=0.
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The superlevel sets of the integrability index are analytic varieties. In fact, by the definition
of ¢
Ei(p) CI(p/t) C Ei(p), O0<t<ec

Using the Hérmander—Bombieri theorem we see that
Ei(p) CV(p/t) CEi(p), O0<t<ec

We now note that by the definition of the superlevel set, the intersection of all E'f(y) when ¢
varies in the interval 0 < t < ¢ is just E%(¢), so that

Eip)= (] Vig/t), >0 (2.3.4)

0<t<c

Suppose that x is a functional which is comparable to the integrability index in the sense
that the inequality
sty () < Ryp(T) < trp(x), ped e, (2.3.5)

holds for some positive constants s and ¢t. Then there is of course a relation between the
superlevel sets of the two functionals:

Ep(p) C Ec(p) C EL(¢), ¢ €. (2.3.6)

If we know that Ef.(¢) = E%.(p), then Ef.(p) equals EX(¢) and so is an analytic variety. Of
course functions which admit such an interval of constancy in their superlevel sets are very
special. But we shall see in the next section that for a set of plurisubharmonic functions such
intervals of constancy can appear quite naturally.

We now ask whether the Lelong number is comparable to the integrability index in the
sense of (2.3.5). The answer is well-known, but will be quoted here for convenience.

Theorem 2.3.2. If ¢ € PSH(Q) where 2 C C", and v,(a) > n, then e=% ¢ L? (a). Thus

loc

El(p) CI(p) CV(p). In terms of the integrability index we have v,(x) < niy(x).

Proof. This result is contained in Skoda [1972, Proposition 7.1], but it is easy to give a proof
using the function U = U, defined by (2.2.3). If v,(a) > n, then the slope of ¢t — U(a,t) at
minus infinity is at least n, and we have

U(a,t) SU(a,to)—Fn(t—tg), této,
for some tg. Rewriting this in terms of ¢ we see that

[z —al”

o(2) < p(z0) + log <| ) 2 —a] < |20 — dl,

20 — al®
for a suitable point zg on the sphere |z — a| = €', or equivalently

2n
“20(2) 5 —20(20) 120 — ]
e 3 el

where the right-hand side is a non-integrable function near a.

In the other direction we have:
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Theorem 2.3.3. If ¢ € PSH(Q) has a finite value at a point a € Q, then e=% € L? (a).

loc

For the proof of this result, see Hormander [1990: Theorem 4.4.5]. The theorem says that
I(¢p) is contained in the polar set P(p) = p~!(—o0) of ¢, thus I(¢) C P(y).

Combining Theorems 2.3.1, 2.3.2 and 2.3.3 we see that

E; (¢) CV(p/c) C P(y), c¢>0. (2.3.7)

A stronger result in the same direction is
Theorem 2.3.4. Ifv,(a) <1, thene ¥ € L} (a). Thus I(¢) C EY (). Also vy(x) < vp(x).

For the proof see Skoda [1972: Proposition 7.1].
Combining Theorems 2.3.1, 2.3.2 and 2.3.4 we get

Theorem 2.3.5. The Lelong number v is comparable to the integrability index v in the sense
of (2.83.5), more precisely,

Lo () S Vp(x) < ne(x), p€ePSH(Q)), x€QCC", (2.3.8)

and
E; (¢) CV(p/c) C EX(p) C Ving/ec), p € PSH(QY), ¢> 0. (2.3.9)

These inequalities are sharp.

This result is the basis for the analyticity theorems that we shall state. However, the weaker
result (2.3.7) is often sufficient.

That the comparison in (2.3.8) between the Lelong number and the integrability index
cannot be improved follows from simple examples:

Ezxzample 2.3.6. The function
f(2) = max(log|z|*, log|=["), 2 € C?,
has integrability index ¢¢(0) = ab/(a + b) and Lelong number v¢(0) = min(a,b). Thus

—1 p-1
v¢(0) a+b __a —_l—lb - e,
tf(0)  max(a,b) max(a=t,b71)

A little more generally, if we take 1 < k < n and positive numbers a1, ..., ax and define

flz)= 1I?]a<xk log |z;]%7, z e C",

then ¢£(0) = (3 aj_l)_1 and v¢(0) = mina;, so that
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(These formulas hold if we define a;l =0 for j = k+1,..,n.) Clearly the quotient vy /iy
can assume all values in the closed interval [1,n]| (we allow £ = 1 and k = n). Thus (2.3.8)
is sharp.

2.4. Analyticity theorems for sets of plurisubharmonic functions

Let © be an open set in C™ and ® an arbitrary subset of PSH({2). Let s be a functional
on ® which is comparable to the integrability index in the sense that (2.3.5) holds for some
positive constants s and t. Then we get from (2.3.6) and (2.3.7):

() Ei(e) € () Biw) C [ Esle) € [ Ple). (2.4.1)
ped ped pecd ped

It is convenient to introduce a notation for these sets:

Ef (@)= () Ei(p)

ped

for any functional x. If we define the value of the functional on the whole set ® as

(@) = inf ki, (2),

then EF(®) is just the superlevel set of kg. We can also define the polar set of @ as
P(®) = () P(p).
ped

With this notation we can write (2.4.1) as
E5(®) C EL(®) C E%(®) C P(®). (2.4.2)

Theorem 2.4.1. Let k be a functional on a subset ® of PSH () which is comparable to the
integrability index in the sense that (2.3.5) holds for some positive constants s and t. If the
superlevel sets Ef(®) are independent of ¢ over an interval of sufficiently large logarithmic
length, viz. if EL(®) = EL(®), then E5.(P) is an analytic variety. A little more generally,
if Y is an analytic subset of Q@ and Y N EL(®) =Y N EL(D), then Y N EX (P) is analytic.

Proof. Since the result is local, we can assume 2 to be pseudoconvex. The inclusions (2.4.2)
then show that E¥ (®) = E‘(®), which is the set of common zeros of a family of holomorphic
functions in €; see (2.3.4). Similarly, Y N E%.(®) =Y N E4(D).

Theorem 2.4.2. Let 2, k and ® be as in Theorem 2.4.1, and assume in addition that k is
positively homogeneous, i.e., ¢ € ® and t > 0 implies tp € ® and ryp,(a) = thy(a). Let Y be
an analytic subset of ), and let X be a subset of Y. Assume that

1g§( Kp(x) >0  for all p € O; (2.4.3)

and

for every x € Y \ X there exists a function ¢ € ® such that k,(x) = 0. (2.4.4)
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Then X s an analytic set.

Proof. Define ¢ = /e, where €, = infc x k,(2) > 0, and let ¥ be the set of all functions 1
obtained in this way. Then k(z) > 1 for every ¢ € ¥ and every z € X. Using the notation
for superlevel sets we can write this as

X C Ef(¥) C EX (D)

for all ¢ with 0 < ¢ < 1.

On the other hand, if x € Y \ X, then by (2.4.4) there is a ¢ € ® such that x,(z) = 0.
Thus ¢ = ¢/e, is in ¥ and ky(z) = Kky(z)/ep, = 0. So x ¢ Ef (), ¢ being any positive
number. Thus

z ¢ Ef(0) = () EZ(v).
pew
Therefore EF(¥)NY C X for every ¢ > 0. Combining this with the first part of the proof
we see that Ef (V) NY = X for all ¢ satisfying 0 < ¢ < 1. Hence EF(¥)NY is constant for
these ¢ and Theorem 2.4.1 yields that X is analytic.

A particular case of Theorem 2.4.2 is when we can associate with a given function or
current a family of plurisubharmonic functions on which our functional takes values that we
can control. The following result is of this character. It holds also for functionals which
have only a loose connection to the integrability index or the Lelong number; more precisely
functionals which are zero at the same time as the integrability index in a semiuniform way:

Theorem 2.4.3. Let & = {p,; a € A} be a set of plurisubharmonic functions in an open
set 2, and let k be a functional on ® which is weakly comparable to the integrability index in
the sense that

for every e > 0 there is a § > 0 such that ¢ € ®, 1,(x) < § implies K, () <€,

and
© € D, ky(x) =0 implies L,(x) = 0.

Suppose that the values k() are given by a formula K, () = G(H(x), o) for some func-
tions G:[0,4+00] x A — [0,+00] and H:Q — [0,400]. We assume that ¢ — G(c,a) is
increasing, and that there exists a number ¢y such that G(co, ) > 0 for all o € A. Finally
we suppose that for every ¢ < cq there is an « € A such that G(c,a) = 0. Then the superlevel
set {x; H(x) > co} is analytic.

Proof. We shall apply Theorem 2.4.2 to X = {x; H(z) > co}. First we note that

mlg( Kp, (x) = Ilg( G(H(z),a) = G(co, ) = €4 >0

for any o € A. Hence ¢, (x) > §, > 0, which means that (2.4.3) holds for ¢. Next, if x ¢ X,
then ¢ = H(x) < ¢o and there is an « such that G(c,a) = 0. We get

Ky, () = G(H(x),a) = G(c, ) = 0;
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hence also ¢, (z) = 0, so that (2.4.4) holds for . Thus Theorem 2.4.2, applied to ¢, shows
that X is analytic.

This theorem contains the classical theorem of Siu [1974]. For if we let k,(x) = v, (z),
A=10,c0[, G(c,) = (¢ — )T, H(xz) = vy(x), and define ¢, as

valz) = iItlf [uf(a:,t) —ta; (x,t) € Qq], r€Q, ael0,cf,
then by Theorem 2.2.1,
Voo (2) = (vi(z) — )" = G(H(z), ).
The function G(c¢, ) = (¢ — a)™ satisfies the hypotheses of Theorem 2.4.3, so it follows that
the superlevel set {z; v¢(x) > co} is an analytic variety. The singularities of the ¢, are the

same as those of f, but attenuated to some degree as shown by the formula. This attenuation
is the reason behind their usefulness in proving Siu’s theorem.



Plurisubharmonic functions and their singularities 29

Chapter 3. Order and type as measures of growth

3.1. Introduction

The notions of order and type of entire functions are classical in complex analysis. They
result from a comparison of a given function with standard functions. The purpose of this
chapter is to generalize this comparison in such a way that order and type become dual to
each other in the sense of convex analysis (section 3.4), and to show that the concept of order
so obtained appears as the natural answer to a problem of extrapolation: to extend convex
functions from the union of two parallel hyperplanes to as large a set as possible (section
3.7). Then we return to entire functions to consider an analogous extension problem for
them (section 3.8).

It is shown that the relative order of one function with respect to another can always be
calculated from the growth of its Taylor coefficients (section 3.6). This is true for the type
only if the growth is sufficiently regular (see Kiselman [1993]).

In Kiselman [1983] I studied order and type from this point of view, using methods from
my paper [1981]. For earlier developments see the references in that paper. See also Kiselman
[1984, 1986]. A different approach to the relation between maximum modulus and Taylor
coefficients is presented in Freund and Gérlich [1985]. Halvarsson [forthc.] has proved an
extension theorem for entire functions with estimates both from above and from below. He
has also studied the dependence of the order on parameters.

3.2. Order and type in classical complex analysis

Let h be an entire function in C”, h € O(C"™). Its order and type are defined classically by
comparing h with the function exp(b|z|*) for various choices of the parameters a and b. More
precisely, one considers first estimates

|h(z)| < Cuel?”,  zecCm,

and defines the order p as the infimum of all numbers a for which such an estimate holds
(0 <a < +400; 0< p < +00). In the case where 0 < p < 400 one then considers all numbers
b such that

h(2)] < Cpe?™",  zecCr,
for some constant C. The type (with respect to the order p) is then the infimum o of all
such numbers b (0 < b < +00; 0 < 0 < +00).

For the order we have the formula

log log |h
P = Order(h) = lim sup sup M

3.2.1
r—+oo |z|=r IOgr ( )
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Now sup),_, log|h(z)| is a convex function of logr in view of the Hadamard three-circle
theorem, so it is natural to consider the function

f(t) = sup log|h(z)], t € R;

|z|=et

we shall call it the growth function of h. The definition of order then means that we
consider all numbers a such that

ft) <e +C,, teR,

for some constant C,, and then define the order as the infimum of all such numbers a. (The
role of the constant C, is to eliminate all influence of values of f at any particular point.)
Similarly, the type (for order p) is the infimum of all numbers b such that

f(t) < be’t + Oy, t € R.

Now this leads naturally to the idea of comparing with some other function g instead of
the exponential function g(t) = e’. So we might want to consider all numbers a such that

f(t) <glat)+C,,  teR, (3.2.2)

and then take the infimum of all a.

For reasons which will become clear when we come to the duality between order and
type, it is desirable to change this inequality to
1
flt) < ag(at) + Cy, teR. (3.2.3)
Now in the classical case, when g(t) = e, the factor 1/a does not make any difference
whatsoever, for in this case we see that for any a > 0 and any b > a there is a constant C
such that

1 1
g(at) < gg(bt) +Cap and ag(at) < g(bt) + Cop.

This implies that comparisons with g(at) and with g(at)/a give identical infima. But of
course there exist functions g such that this is not true (e.g., g(t) = t), and then (3.2.2) and
(3.2.3) lead to different definitions of the order.

3.3. Relative order and type of convex functions

Definition 3.3.1. Let f,g9: E — [—00,400] be two functions defined on a real vector space
E. We consider inequalities of the form

1
f(z) < —g(ax) +¢, z€EE, (3.3.1)
a
where a is a positive constant and ¢ a real constant. We shall call the infimum of all positive

numbers a such that (3.3.1) holds for some constant ¢ the order of f relative to g, and
denote it by p = order(f : g).
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Ezamples. The motivating example is
order(t — et 1t el) = A

for all positive numbers A. Trivial examples are: order(a : b) = 0 if a and b are finite
constants; order(f : +00) = 0; order(—oo : g) = 0; order(f : —o0) = +oo except if f is
identically —oo; order(+o00 : g) = +00 except if g is identically +o0.

If ¢ is convex, we know that

Lgtan) < L=t g(0) 4 Lo = (3 - %)gmw Lobr). B, (33.2)

if 0 < a<band ar = (1 —t)-0+ thz, ie.,, t = a/b. Here the sign + denotes upper
addition, which is an extension of the usual addition from R? to [—oo,—i—oo]2; it satisfies
(+00) + (—00) = +oo. Similarly we define lower addition as the extension of + which
satisfies (+00)+ (—00) = —oo. If g(0) = 400, the inequality (3.3.2) is without interest,
but if g(0) < +o0, it shows that the inequality (3.3.1) for a particular a implies the same
inequality with a replaced by b for any b > a. The set of all numbers a, 0 < a < +o00, such
that (3.3.1) holds is therefore an interval, either [p, +o00[ or |p, +00] for some p € [0, +00].

So although Definition 3.3.1 has a sense for all f and g, it is often desirable to assume
that g is convex with g(0) < +o0: in this case the order determines the set of all a for which
(3.3.1) holds, with the exception of one point, the order itself.

Lemma 3.3.2. Let f, denote the translate of f by the vector y: f,(x) = f(x —y). If one of
f and g is conver and real valued, then

order(f, : g) = order(f : g,) = order(f : g).

In particular order(f, : g,) = order(f : g) so that the order is translation invariant and can
be defined on affine spaces as soon as one of the functions is convex and real valued.

Proof. If f is convex and real valued, we know that

1

fea)+ (1-3) /)

S| =

flz—y) <

for any b > 1, if we choose z such that

m—y:%bx—i-(l—%)z,

ie, if z=—y/(1 —1/b). If order(f : g) = p, there are numbers a arbitrarily close to p such
that

We then estimate f as follows:

Fa—y) < 3 70m) + (1-3)7() < wolab) + 2+ (1 1) £(2)
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Since f(z) is finite and independent of z, this shows that order(f, : g) < ab, and since b is
arbitrarily close to 1, we see that order(f, : g) < p. If we apply this result to f,, translating
by the vector —y, we get equality.

Similarly, if g is convex and real valued, we can write

1 1 1 1
_) < Z _ < -
flx—y) < ag(a(a: y)) +c < abg(aba:) +o (1 b)g(z) +c,
where z = —ay/(1 — 1/b), thus independent of z. This shows that, in this case also,

order(f, : g) < ab with ab arbitrarily close to p.

It remains to consider order(f : g,). The arguments are the same as for order(f, : g);
we omit the proof.

It is easy to give examples of functions with values in |—oo, +00] such that the order is
not translation invariant:

Ezample. Let f be the indicator function of the ball 7B, i.e., let f(z) =0 when |z| < r and
f(x) = 400 otherwise. Similarly let g be the indicator function of the ball sB. In the case
where 0 < s < r we get

s s+ |yl
- < ord : = < 1.
- Sor er(fy : gy) R
If s >r >0, we have
5—|y[>§>1 when |y| < r;
order(fy:g,) =< =1yl ~
+0o0 when |y| > 7.

We now consider a generalization of the notion of type in complex analysis.

Definition 3.3.3. Given two functions f, g: E — [—00, +00] on a vector space E, we consider
inequalities
f(z) < bg(x) + c, x €F, (3.3.3)

where b is a positive number. We define the type of f relative to g as the infimum of
all positive numbers b such that (3.3.3) holds for some constant ¢. We shall denote it by

o = type(f:g).
FEzample. The motivating example is
type(t — Aef! 1t eft) = A.

The two functions here are the growth functions of the entire functions exp(Az”) and exp(z”)
if p is a natural number, and then A is the classical type with respect to order p.

If g is bounded from below, the set of all numbers such that (3.3.3) holds is an interval,
for as soon as by > b we have

bg(z) + ¢ = big(x) + ¢ — (b1 — b)g(x) < brg(z) +c— (by — b)inf g = big(z) + 1.
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Therefore, although the definition has a sense for all functions, it is clear that it will often
be necessary to assume g bounded from below. In this case the type determines all numbers
b for which (3.3.3) holds, except the number o itself.

Proximate orders are introduced to give functions of finite order normal type (0 < o <
+00); see Lelong & Gruman [1986, Appendix II]. The type with respect to a proximate order
is a special case of Definition 3.3.3.

A generalization of the classical order and type has been studied, e.g., by Sato [1963] and
Juneja, Kapoor & Bajpai [1976, 1977]. For given integers p and ¢, they study the (p, ¢)-order

defined as
log"~! f(t)

log[q—l} t

where M (r) = exp f(logr). (Sato considered this only for ¢ = 1.) Here the brackets indi-
cate iterations of the logarithm function. Now it is easy to see that the (p,q)-order is just
order(f, : g,) where f,(t) = f(expld=U(¢)) and g,(t) = expP~1(¢). Both f, and g, are con-
vex. Their generalization of the notion of type is, however, different from that of Definition
3.3.3. The (p, q)-type is

log[p] M(r)

= lim sup
log[q} r

Ppq = limsup ,

log[p_l] M(r)

log”* £ (1)
(logh*~r)r

Tpq = limsup (log[q_Q] . .

For p > 3 this is not the relative type of one convex function with respect to another, but
rather an order: it is the order of f(expl?=2¢1/?) with respect to expP~2(t). Therefore our
results on order generalize those of the authors mentioned, but our type is different, and some
of the earlier results on type can be interpreted as orders in the framework of the present
chapter.

3.4. Order and type in duality

The notion of order and type as defined in the last section are dual, or conjugate, to each
other in the sense of convexity theory. We shall express duality here in terms of the Fenchel
transformation: for any function f: £ — [—o00, +00]| we define

[ =sup(§ -z~ fz), ek (3.41)
zeE
Here E is a real vector space, and E’ is any fixed linear subspace of its algebraic dual E*.
The function f is called the Fenchel transform of f; other names are the Legendre
transform of f, or the conjugate function. It is easy to see that f is convex, lower
semicontinuous for the weak-star-topology o(E’, E) and that it never takes the value —oco
except when it is equal to —oo identically.

Points where f(z) = 400 do not influence the supremum in (3.4.1). We shall use this fact
in the following way. Let dom f denote the set where f(x) < 400, the effective domain
of f. Then for any set M such that dom f C M C E we have

fl& =sup(6-z—f(x), €€k (3.4.2)

reM

The inequality

§-x < fa)+ f(9), (3.4.3)
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which follows from (3.4.1), is called Fenchel’s inequality (here the sign + denotes upper
addition; see section 3.3). Applying the transformation twice we get

f(@)=sup(§-2—f(§)) < flx), =z€k.

13394

Thus always fé f; the equality f: f holds if and only if f is convex, lower semicontinuous
for the weak topology o(F, E’), and takes the value —oo only if it is —oo identically. More

generally, it follows that fis the maximal convex lower semicontinuous minorant of f which
never takes the value —oo except when it is the constant —oo. For these properties of
the Fenchel transform see Rockafellar [1970]. Of course fdepends on the choice of E’; if
E’ = {0}, then f is the constant inf f. If E = R" it is natural to take B/ = E* =~ R"; if E
is a topological vector space one usually takes E’ as the topological dual of E.

Proposition 3.4.1. Let f,g: E — [—00,+00] be two functions on a vector space E. Then

type(g : f) < order(f : g).

Proof. If order(f : g) < A, then f(x) < g(aw)/a + c for some number a < A, and we deduce
that f(§) > g(€)/a — ¢, which we write as g(§) < af(§) + ac. Therefore type(g: f) < a < A.

Proposition 3.4.2. If f,g: E — [—o00,+00] are two functions on a vector space E, then

order(g : f) < type(f : g).

Proof. If type(f : g) < A there are numbers a < A and c such that f(z) < ag(x) +c. We take
the transformation to obtain f(§) > ag(§/a)—c, which can be written as g(£) < f(a§)/a+c/a.
Therefore order(g : f) < a < A.

Theorem 3.4.3. Let f,g: E — [—00,400] be two functions on a vector space E such that
f: f and?z g. Then

order(g : f) =type(f :g) and type(qg: f) = order(f: g).

Proof. We just combine Propositions 3.4.1 and 3.4.2.

Corollary 3.4.4. Let E = R"™ and choose E' = R"™. Let f,g:R" — [—00,+00] be two
functions satisfying the hypotheses of the theorem. Assume in addition that f is finite in a
neighborhood of the origin and grows faster than any linear function, and that g is not the
constant +o0o. Then

9(8)

d H =1l - .
order(f : g) I?LS:ip )

Proof. If f < M for |x| < & we obtain f(€) > el¢| — M. Therefore 0 < f < 400 in a
neighborhood of oo, and lim f = 400, so that the type is given by
R 9(¢)
type(g : f) = limsup ===.
¢=oo f(E)
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3.5. The infimal convolution

The infimal convolution is an important operation in convexity theory. It is actually dual to
addition, so many problems can be reduced to simple questions using the Fenchel transfor-
mation, but it is often preferable to work directly with it. In this section we just recall the
definition.

The infimal convolution of two functions f, g: E — [—00,+00] is defined by
fOgl) =it (f(y)+g(—y)), zek (3.5.1)

Here the sign + denotes upper addition; see section 3.3. The Fenchel transform of an infimal
convolution is

(SO (@) =,&)+39(&), E€F,

where + is lower addition. (It might seem strange that we get lower addition here, for in
general f - g is convex when both f and g are convex, but not f + g. However, in this case
f—f g equals f—'k g except when it is constant, so it is always convex.)

The infimal convolution is sometimes called the epigraphical sum. The explanation is
the following formula for the strict epigraph (cf. 1.1.4) of f O g

epi,(f O g) = epi, f + epi, g,

where the plus sign denotes vector addition in R™*1.

3.6. The order of an entire function

Let F' € O(C"™) be an entire function. We shall measure its growth by

f(t) = sup[log |F(2)]; 2 € C™, |z| < €], teR. (3.6.1)

Here |z| can be any norm on C™, or even an arbitrary function which is complex homogeneous
of degree one and positive on the unit sphere. We shall refer to f as the growth function
of F. In view of Hadamard’s three-circle theorem, f is convex and increasing, and we shall
write

order(F : G) = order(f : g)

by abuse of language if F, G are two entire functions and f, g are their growth functions.

One may ask which convex increasing functions can appear as growth functions. A
necessary condition is that of Hayman [1968]: for a transcendental entire function F' € O(C),
we have

limsup f”(t) > H,

t——4o0
where H is an absolute constant satisfying 0.18 < H < 0.25. Kjellberg [1974] proved that
0.24 < H < 0.25. (A similar statement holds for polynomials.) Another necessary condition
is as follows. Define

fi(t) = sglg(jt - f(j)), teR.
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(The epigraph of f; is the smallest polygon which contains the epigraph of f and whose sides
have integer slopes.) Then there is a constant C' such that

f)—C< fi(t) < f@), teR.

Moreover the best constant C satisfies log2 < C' < log 3 (Kiselman [1984, Proposition 3.5.1]).
These two results are not unrelated, for the latter implies that H > (8C)~!. With C' = log 3
this gives H > (8log 3)~! ~ 0.11, which is much weaker than the Hayman—Kjellberg result.
On the other hand, that statement does not say anything about tangents of integer slope.

If two entire functions F' and G are given, we consider their expansions in terms of
homogeneous polynomials P; and @);:

F(z)=) Pi(z), G(z)=) Q).
0 0

and ask whether we can determine order(F : G) from knowledge of the growth of |P;| and
|Q;|. It turns out that this is so. For the classical order, when G = exp, this is well known.
This is not necessarily true for type(F : G); see Kiselman [1993].

So let F' be given with an expansion in terms of homogeneous polynomials P;. Cauchy’s
inequalites say that

[P (2)] < exp(f(log |z])),

but the homogeneity of P; also gives

1Py = EL pyeta1o)) < L exp(re)) = 1ob expir ) — )

eJt e
for all real ¢ and all z € C™. We take the infimum over all £ and get
|Pj(2)] < |2 exp(—f(j)).
We define the norm || P;|| of the homogeneous polynomial P; as

|1Pj]| = sup [P;(z)

|z[<1

.,  jEN.

(When n = 1 we have a Taylor expansion F(z) = > a;2/ and || P;|| = |a;|.) We next define
a function p: R — |—o00, +00] as

. —log || 75| when j € N;
p(j) =

_ (3.6.2)
400 when 7 € R~ N.

We shall call p the coefficient function of F. Cauchy’s inequalities become just ||P;| <

exp(—f(j)), or more concisely N
p=f on R. (3.6.3)

This implies of course that p < f: f. Note also that

exp p(logr) = sup sup |P;(z)|.
JEN [z|<r
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We now ask for inequalities in the other direction. To describe this result we need an
auxiliary function K which is defined as follows:
K(t) = { —log(1 — e'), t < 0;
400, t>0.
We have K(t) > —log(—t) when ¢t < 0 (a good approximation for small |t|) and K(t) > e
for all ¢ (a good approximation for ¢ < 0). The Fenchel transform of K is

(3.6.4)

t

Tlog T — (7 +1)log(7 + 1), T > 0;
K(r)=X 0, T=0;
+00, 7 <0.
We note that N
—1—log(t+1) < K(1) < —log(7 + 1), 7> 0. (3.6.5)

The inverse of K is given by K ~1(s) = —K(—s) for s > 0: this means that the graph of K is
symmetric around the line s 4+ ¢ = 0. This symmetry corresponds to the functional equation
K(1/7)=K(7)/T, 7> 0, for the transform.

Theorem 3.6.1. Let F' be an entire function in C™ and define f and p by (3.6.1) and
(8.6.2), respectively. Then
p< f<pOK on R. (3.6.6)

Proof. We have just noted that Cauchy’s inequalities give p < f f. To estimate f from

above we write
<D P - [ < exp(—p(j) + jt),

where ¢t = log |z|. We shall apply Fenchel’s inequality (3.4.3) gt < p(j) + p(t) in the form
—p(j) + jt < js +p(t — s).

This gives
logZeXp j)+jt) < logZeXp(js+ﬁ(t —5)).
We observe that
3= LI
: 1—es
JEN

if s < 0, which is why we introduced K. Thus f(t) < p(t — s) + K(s) for all t € R and all
s < 0. Now for s > 0, K(s) = +00, so then the inequality also holds, and we can let s vary
over the whole real axis:

ft) < mﬂ(t—$+KX»:J§Dme t€R.

This proves the theorem.

The inequalities (3.6.6) say that the graph of f is in a strip whose lower boundary is the
polygon defined by p and whose upper boundary is given by p O K. Since K (—log2) = log 2,
the width of this strip is at most v/21log2 ~ 0.98 < 1.

Applying the Fenchel transformation to all members of (3.6.6) we get:
p2p2f2p+K, (3.6.7)
where K can be estimated by (3.6.5).

For lacunary series we can state:
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Theorem 3.6.2. Let F' be lacunary: P; =0 for j & J. Then
ﬁ < f < 1’5 u KJ on R7

where

K;(s) = log < > ej5> .

jeJ

Proof. Just restrict summation in the proof of Theorem 3.6.1 to j € J.

It could be noted here that for any convex function H which is positive on the negative
half-axis and tends to +00 as t < 0, t — 0, there exists an infinite set J C N such that
K; <H.

Theorem 3.6.1 implies that the norms of the homogeneous polynomials P; can serve just
as well as the growth function f to determine the order of F' relative to any other function.
More precisely we have:

Corollary 3.6.3. Let F' be an entire function on C", let f be its growth function defined
by (3.6.1), and let p be its coefficient function defined by (3.6.2). Assume that F' is not a
polynomial. Then

order(f : p) = order(p: f) = 1.
Proof. From (3.6.6) we get immediately
order(p: f) < 1, order(f:p 0O K) < 1.

Now p O K(t) < p(t+1)+ K(—1) and Lemma 3.3.2 shows that the translation of p does not
influence the order, neither does of course the additive constant K (—1). Therefore

order(f :p) <order(f:pO0K) < 1.
It follows from Corollary 3.4.4 that order(f : f) = 1. By submultiplicativity,
1 =order(f: f) <order(f:p)-order(p: f) <1,

so that all orders must be one. (When F' is a polynomial, order(f : f) = 0 and order(f : p) =
order(p: f) =0.)

Corollary 3.6.4. Let F be an entire function in C™, with expansion
F(z)=) Pi(z)

in terms of homogeneous polynomials P;. Let f be its growth function defined by (3.6.1) and
let p be its coefficient function defined by (8.6.2). Let g:R — [—o00,+0o0] be any function
which satisfies g = g. Then

order(f : g) = order(p : g) = type(g : 5) (3.6.8)
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When F is not a polynomial and g is bounded from below and not identically +o00, the order
s also given by
. 9()
lim sup ===. 3.6.9
j—+oo P(J) (369)

Proof. Using Corollary 3.6.3 we can write

order(f : g) < order(f :p)-order(p: g) = order(p: g)

provided F' is not a polynomial. Similarly

order(p : g) < order(p: f)-order(f : g) = order(f : g).

The last equality in (3.6.8) follows from Theorem 3.4.3. If F' is a polynomial, one can verify
(3.6.8) directly, using p < f < p+ log N, where N is the number of terms in the expansion
(see Theorem 3.6.2). The only possibilities are then order(f : g) = 0, +oc.

We finally have, if F' is not a polynomial and g is bounded from below and not identically

+00, B B
type(q : 5) = lim sup @ = lim sup M (3.6.10)

T—+oo p(T) j—too P(J)

The first equality here is proved like in the proof of Corollary 3.4.4. There is a difference in
that f(¢) does not go to +00 when ¢ — —oo, but if g is bounded from below, the behavior
for negative 7 in (3.6.10) is unimportant. The last equality in (3.6.10) holds because on the
one hand p < p, on the other hand p = p in a sequence of integers tending to plus infinity,

and p is affine in between these points.

Formula (3.6.9) generalizes the classical formula for the order

—log|a,|
of an entire function Y a;27. Indeed, when the comparison function is g(t) = e’, then

g(j) = jlogj —j.
The (p, g)-order of Juneja, Kapoor & Bajpai [1976, Theorem 1] is determined in terms
of the coefficients by the formula

log[p_l] j

logh™ ! (— (1/7) log |ay])
we state it only for p > ¢ > 1 here. Sato [1963] proved this for ¢ = 1. In the latter case
(3.6.9) is a generalization. For ¢ > 2, however, this is not so, since then f(expl?=1#) is used
as the growth function and consequently defines another relation between the coefficients a;
(or p(j)) and f.

It could also be noted here that Corollary 3.6.4 generalizes the classical result that the
order can be calculated from the dominant term in a series expansion ) ajzj . Indeed, with
t = log|z| the maximal term is just

Pp.q = limsup

sup |a;27| = expsup(jt — p(j)) = exp p(t).
J J

When we have two entire functions we can state:
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Corollary 3.6.5. Let F,G be two entire functions in C™, with expansions

F(z) =Y Pi(2), G(z) =) Qj(2),

in terms of homogeneous polynomials P;, Q. Let p and q denote their coefficient functions
defined by (3.6.2). Then

order(F': G) = order(p: q) = type(gz 5’)

Proof. The proof is analogous to that of Corollary 3.6.4.

We can also define a growth function related to the growth of an entire function on
polydisks, and to Taylor expansions in terms of monomials. Let us define

flx)=sup log|F(2)|, r e R", (3.6.11)

|zj]|<exp x;
if F'is an entire function on C™. Then f is convex in R™. The function F' has an expansion
F(z) = E A", z e C",
kEN™

where 2* denotes the monomial zfl <o zkn of multidegree k = (ki, ..., k,) and total degree

ki + -+ ky. Cauchy’s inequalities now say that, for r = (rq,...,r,) with r; >0,

|Ak|rk < sup |F(2)| = ef(”C), x; = logr;.

lzj1<r;
This gives |Ax| < exp(f(z) — k- x) for all z € R™, and therefore, after variation of x,
|Arl <exp(=f(k),  keN™.

We introduce in analogy with (3.6.2)

a(k) =

—log|A hen k € N";
{ o8 |4 el (3.6.12)

+o00 when k£ € R" ~ N"™.
Then a > f and @ < f = f. Next define K,(z) = K(z1) + -+ + K(2,,) for z € R*. In
complete analogy with Theorem 3.6.1 we have:

Theorem 3.6.6. Let F' be an entire function in C™ and define the growth function f and
the coefficient function a by (3.6.11) and (3.6.12), respectively. Then

e f<aOK, on R".
A variant of the growth function can be defined as follows. Let u be a plurisubharmonic

function on C™ which is extremal in the set a < u(z) < b: it is the regularized supremum of
all plurisubharmonic functions ¢ in a neighborhood of the closure of {z; a < u(z) < b} which
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satisfy ¢(z) < a when u(z) < a and ¢(z) < b when u(z) < b. We suppose that {z; u(z) < b}
is bounded, and define for F' € O(C"™)

Fu(t) = sup(log [F(2)]; u(z) <1).

Then f, is easily seen to be convex on Ja,b]. (The growth function f defined by (3.6.1)
is with respect to the extremal plurisubharmonic function u(z) = log |z| provided |z| is a
norm or more generally log |z| is plurisubharmonic; if not, we can replace it by a suitable
plurisubharmonic minorant.)

We can for instance ask whether a holomorphic function on a complex analytic variety
X admits an entire extension of the same order: if F' € O(X), X C C™, does there exist an
entire function G € O(C") such that order(G : F') = 1?7 Here it might be natural to define
the growth functions f, and g, of F' and G with respect to extremal functions © on X and
v on C”, respectively.

3.7. A geometric characterization of the relative order

In this section we shall give a geometric interpretation of the relative order. Let E be a real
vector space. We consider two hyperplanes E' x {0} and E x {1} in the Cartesian product
E x R. Now let two functions fo, f1: E — ]—00, +00] be given. We consider them as defined
on E x {0} and E x {1} respectively, and want to find a function F: E x R — |—00, 4+00]
extending them, i.e., a function such that

F(ﬂfyj):fj(ﬂi), xeFE, j57=0,1.

If the f; are convex, a solution is of course the supremum of all convex minorants to the
function f(x,t) = fi(xz)ift =0o0rt =1, f(z,t) = 400 otherwise. This solution is the largest
possible: it majorizes all others. But it is of no interest outside the slab {0 < ¢ < 1}, since it
is always 400 there.

In general there is no unique solution, for we can always add t? —t to any given solution.
We can however write down an explicit formula for an extremal solution.

Proposition 3.7.1. Let E be a real vector space and E' a subspace of its algebraic dual.
Let fo, f1: E — ]—00,+00] be two given convex functions which are lower semicontinuous
with respect to o(E,E"). We assume that they are not identically plus infinity. Then the
extrapolation problem

Find F: E x R — |—00, 00| such that
{ . . (3.7.1)
F(:E,]):fj(ﬂf), era ]:0717
has a solution
F(at) = sup [€ 2 = (1= )o(€) = tf1(): € € dom fo U dom i
_ _ (3.7.2)
=swp 6o = (1-0H©O+h©) ¢ B, @nebxR

This solution is extremal in the sense that any convex solution G which is lower semicontin-
uous in x satisfies G < F in {0 <t < 1} and G > F outside this slab.
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Proof. First a word about the definition of F. We note that the function ¢ +— t - (4+00)
is convex on the whole real line, if we define 0 - (+00) = 0. We also note that in the first
expression defining I’ at most one of the three terms is infinite, for we have —oco < f; < +o0
everywhere, and at most one of them is allowed to be plus infinity in the set of £ which we
use. Therefore F' is well defined, and it is convex as a supremum of functions of (z,t) each of
which is an affine function plus possibly one function of the form (t—1)-(4+00) or (—t)- (+00).

Moreover, for ¢t = j the function F' assumes the values f](a:) = fi(x), j = 0,1, in view of
(3.4.2). Therefore it is a convex solution to the extension problem. It is of course not lower
semicontinuous in all variables, but it is lower semicontinuous in x for fixed ¢.

Now let GG be another convex solution to the problem. Let us consider

Gy =sup( -z —G(a,t)), teR, £ckE.

el

It is concave in ¢ for fixed &, for it is the marginal function of a concave function of (z,t); cf.
Theorem 1.3.1. It satisfies moreover G;(§) = f;(§), 7 = 0,1. If we assume that G is lower
semicontinuous in z and > —oo, we also have

G(x,t) = Slglp(ﬁ -z — Gy(€)).

When 0 < ¢t < 1 we have
dom((1 — t)fg + tfl) = dom fo Ndom f; C dom fu U dom f;.

The fact that éj = ]A‘; for j = 0,1 implies that Gy > (1-— t)fg + tfl. This gives G
G

When ¢ < 0 or ¢ > 1 the concavity in ¢ gives Gy < (1— t)fg + tfl and then
establishes the extremal character of the solution F'.

F.
F. This

A\ARW/N

We now ask how far outside the slab {0 < ¢ < 1} we can obtain a real-valued solution
to the extrapolation problem. An answer is given by the next theorem.

Theorem 3.7.2. Let fy, f1: E — |—00,400] be two given convex and lower semicontinuous
functions. Assume that fo(0) < +o00. If the extrapolation problem (3.7.1) admits a convex
solution F which is finite at a point (0,t) with t satisfying 1 < t < o0, then

t

order(fi : fo) < ronch

Conversely, if 1 < order(f1, fo) = p < 400, then the extrapolation problem has a lower
semicontinuous convex solution F with F(0,t) < 400 for all t with 0 <t < p/(p—1). Thus
if we denote by b the supremum of all numbers t such that there exists a solution F which is
finite at the point (0,t), then

b
order(fy: fo) =p= o1 b'.

(We assume 1 < p < 400 and 1 < b < +00.)
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Proof. If F' is convex we have

1

F(z,1) < FﬂmiD%(l—a)FQJL

SH N

where @ > 1 is chosen so that
1
(2,1) = = (a2,0) + (1 - —)(o t) € E xR,

ie,a=1t/(t—1). Now if F(0,t) < 4o0o this inequality shows that

Fi(e) <~ folaz) + e,

in other words that order(f; : fo) <a=1t/(t —1).

Conversely, if order(f1, fo) < p with 1 < p < 400, then the solution F' defined by (3.7.2)
has the desired properties. We need only estimate ' as follows. For any a > p we know that
fi(z) < folax)/a+ ¢, which gives f1 >a lfo —c. In particular we see that dom fo D dom fl
For any ¢t < a/(a — 1) we can write, letting £ vary in dom fo,

F(z,t) < sup (€ 2= (1 =1)fo(&) —t(afo(§) — ¢)] = sup [-x—(1—t+t/a)fo(&)] +1tc
= (1 —t+t/a) s%p[u —t4t/a) T ez — fo(€)] +te = 6 fo(x/d) + te,

where 0 is the positive number 1 — ¢t + ¢/a. Now, since we assume that fy(0) < +oo, this
shows that F'(0,¢) is finite for all ¢t € [0,a/(a — 1)[, and since a is any number larger than p,
the function is finite for all ¢ € [0, b[.

For real-valued functions the geometry is particularly simple:

Corollary 3.7.3. Let fo, f1: E — |—00,400| be two functions as in Proposition 3.7.1 and
assume in addition that one of them is real valued. If the extrapolation problem (3.7.1) admits
a convex solution F' which is finite at some point (x,t) with t satisfying 1 < t < 400, then

t

order(fi : fo) < rent

Conversely, if 1 < order(f1, fo) = p < 400, then the extrapolation problem has a lower
semicontinuous convex solution I which is real valued in the slab

x 10,0 = {(z,t) e ExR; 0 < t < p'},

where p' = p/(p—1); 1 < p’ < +o0.
Therefore the relative order of f; with respect to fy is determined by, and determines, the
maximal slab E x ]0, b[ in which our extrapolation problem has a solution.

Proof. Suppose f; is real valued (j = 0 or j = 1). It is clear that if a solution F is finite at
some point (z,s) with s > 1, then F' is finite in the convex hull of the union of (z,s), some
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point (y,0) where fj is finite, and the hyperplane E x {j}. This convex hull contains the slab
E x 10, s[. Thus Theorem 3.7.2 implies Corollary 3.7.3.

It follows again (cf. Lemma 3.3.2) that the notion of relative order is translation invariant
for real-valued convex functions (at least when 1 < p + 00). Indeed, the slabs are invariant
under transformations (z,t) — (z — (1 — t)y — tz,t) for all y and z; these transformations
correspond to translations fy — fo, and fi — fi ..

3.8. An extension theorem for holomorphic functions

In this section we shall first characterize the classical order in terms of an extension property
of holomorphic functions. Then we pass to the relative order.

Theorem 3.8.1. An entire function F' € O(C™) is of order at most p (1 < p < +00) if and
only if there exists a holomorphic function H in the cylinder

Q= {(z,w) € C" x C; |w| < e},
where p' = p/(p — 1), satisfying
|H(z,w)| < el forzeC™, |uw| <1, (3.8.1)
and

H(z,e) = F(z) forze C" (3.8.2)

Proof. Suppose such an H exists. Then putting
h(s.t) = sup [log [H(zw)l: [o| < e, [w| < ef],  seR, t<p,  (383)

and h(s,1) > f(s). Therefore,

we get a convex function of (s,t¢) which satisfies h(s,0) < e®
= h(s,1), we can write

applying Corollary 3.7.3 with fo(s) = h(s,0) and f1(s)
order(F : exp) < order(f; : exp) < order(f; : fo) - order(fp : exp) < p.

In the other direction the results of section 3.7 give only convex, not holomorphic, so-
lutions to the extrapolation problem. But it turns out that there is an explicit solution in
terms of power series.

We expand F' in a series of homogeneous polynomials:

F(z) =) Pi(2).

Then we just define

H(z,w) =Y Pi(z)(w/e)™, (3.8.4)

where the integers m; are chosen large enough to make (3.8.1) true. This means that we take

O |
I1slle™™ < 5
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On the other hand, we do not want to take them unnecessarily large, so we prescribe that
log || Pj[| +log j! < m; <log||Pj|| 4 logj! +1

unless P; = 0 in which case the choice of m; is immaterial, so we may take m; = 0.

Since F is of order p, we know that for any a > p there is an estimate f(t) < e + C,,
which implies that

fr) = Z(log = —1) = C,

and ' '
N =p(i)> F(i)> 2L J_q) =
—log||P5]| = p(j) = f(5) = % (log " 1) Ca. (3.8.5)

This estimate shows that the series defining H converges uniformly on any compact subset
of . In fact, the series defining H converges uniformly for |z| < R; < R and |w| < 1 <
r if ||P;||R(r/e)™ — 0. Substituting the expression for m; we see that this is true if
(logr — 1)log j! — p(j) logr + jlog R — —oo. Now this holds for all positive R if

(logr —1)log j! — p(j) log r
J

— —0OQ.

Using finally the estimate (3.8.5) for p and the inequality j! < j7 for the factorial function
we see that this follows if

1 .
(logr —1)logj — a(log% — 1) logr — —o0,

which in turn is true if log7r < a/(a — 1). Here the only condition is that a > p, so the series
defining H converges locally uniformly in the set log |w| < p/(p — 1).

We now replace the exponential function in Theorem 3.8.1 to obtain the follwong result.

Theorem 3.8.2. Let two transcendental entire functions F,G € O(C™) be given, and let
1< p<+oo. We define an open set () in the space of n + 1 variables as

Q={(z,w) € C" x C; |w| < €'},
where p' = p/(p — 1) (thus 1 < p’ < +00). For a holomorphic function H in Q we denote

by hy the growth function of the partial function z — H(z,w). Let K denote the function
defined by (3.6.4). Then the following five conditions are equivalent.

(a) order(F : G) < p.
(b) There exists a holomorphic function H € O(Q) satisfying

hy <gOK when |w| =1, and f<h,OK when|w| =e.
(b") There exists a holomorphic function H € O(Q) satisfying H(z,1) = G(z),

g<h,OK, and h, <gOK when |w| =1,
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and
f<hy,OK when |w|=e.

(¢) There exists a holomorphic function H € O(2) satisfying H(z,e) = F(z) and

hy <gOK  when |w| = 1.

(¢") There exists a holomorphic function H € O(2) satisfying H(z,e) = F(z),
f<hy,OK and hy, <fOK when|w|=e,

and
hy <gOK  when |w| = 1.

In particular, order(H(-,w) : G) <1 for |w| =1 and order(F' : H(-,w)) < 1 for |w| =eif H
is the holomorphic function whose existence is guaranteed by (b), (b’) or (¢’).

Proof. The proof that (b) implies (a) and that (c) implies (a) is just like the easy direction
in the proof of Theorem 3.8.1. If H is a holomorphic function satisfying (b) or (c) we let h
be the growth function of two real variables defined by (3.8.3); it is related to the h,, by the
formula h(s,?) = sup|,|=ct hw(s). By submultiplicativity we then have

order(f : g) <order(f :h(-,1)) order(h(-,1):h(-,0))-order(h(-,0):g) < p.

It is also clear that (b’) implies (b) and that (¢’) implies (c).

For the proof of (a) implies (b") we expand G and F' in terms of homogeneous polyno-
mials:

F(z)=) Pi(z), G(z)=) Q)
JEN JEN
and define
H(z,w) = Qi(z)w™ + (w—1))_ Q}(z)w™,
JEN J¢d
where J is the set of all j € N such that ¢(j) < 5(;) + log 3, ¢ being the coefficient function
of G defined by (3.6.2). Moreover n; are suitable integers and @7 homogeneous polynomials

of degree j and norm [Q%|| = %exp(—g(j)) > ||Q;||. Let p,, denote the coefficient function
of the entire function H(-,w). Consider first |w| = 1: when j € J we have p,,(j) = ¢q(j), and
when j ¢ J we can estimate as follows:

1Qjw" + (w = 1)Q5u™ || < Qs +21Q5 | < 31Q; ]l = exp(—a(4)),

so that p,,(j) = ;JNV(]) when j ¢ J. Therefore we have p,, > geverywhere, and p, = ¢ in J,
which implies p,, = ¢ for |w| = 1. Thus in view of Theorem 3.6.1,

he <poOK=¢qOK<gOK aswellas ¢g<¢qO0K=p, 0K <h, OK.
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This far the numbers n; play no role; we shall now choose them to get the right kind of growth

of H(-,w) for lw| = e. When |w| = e and j € J we have p,,(j) = q(j) —n; < q(j)—n;+log3.
The homogeneous part of degree j ¢ J in H(z,w) can be estimated as

1Qjw™ + (w —1DQjuw™ | = e (|| (w — DQJIl = [1Q51])

-2 =, .
> ¢ (e = 2)]|Q} || = 5= exp(n; — 4(1)).

which gives
pw(i) = q(j) —n; <qj) —n; +1og3 < qlj) —n; +2,  jeJ,

pu (i) < 4(5) —n; —log (%) <4U) = n+2, J#

We shall now choose the integers n; as follows. If q:(j) = 400 (this can happen for finitely

many numbers j only), then also p(j) = +oo and we choose n; = 0. If g(j) < 400, we choose

n; as the smallest non-negative integer which is > ¢(j) — p(j) + 2. Thus in all cases p,, < p
for every w with |w| = e, so that p < p,, and we get

F<POK<p,O0K<h,0K,  |u=e

Finally we have to make sure that H is holomorphic in all of €. To prove this it is
enough to prove that

IQ/IRIr™ —0  and QIR — 0
as j — oo for all R and all r < e?’. This in turn follows if we can prove that

njlogr—q(y) 4 @ Tulogr—d'()

— —c0. (3.8.6)
j j

We shall use the fact that type(gz 5) = order(f : g) < p, which yields an inequality q <
ap + C, for every a > p. If n; = 0, the first expression in (3.8.6) is at most —g(j)/j which
certainly tends to —oo. If n; > 0, it can be estimated by (it suffices to consider r > 1)

nglogr —q(j) _ (a(j) = pU) +3)logr — qlj) _ plj)(alogr —logr — a) + O(1)

J h J J

)

which tends to —oo if logr < a/(a — 1).

If nj = 0, the second expression in (3.8.6) is —¢*(j)/j = —(E]NV(]) —log 3)/j which tends
to —oo; if m; > 0, it can be estimated by

(4(j) = plj) +3)log 7 — q(j) +log3

njlogr — q*(j)

<
J J
o p(j)(alogr —logr —a) + O(1)

J
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which tends to —oo as soon as logr < a/(a — 1); here again a is any number greater than p.
This proves that the series defining H converges locally uniformly in £2 and finishes the proof
of (b’).
The proof that (a) implies (¢’) is similar to that of Theorem 3.8.1. As in that proof we
define H by (3.8.4):
Z Pj(z)(w/e)™

JEN

where we shall choose integers m;. Then obviously H(z,e) = F(z). For |w| = e we have
pw(j) = p(j). This gives p,, = p and therefore, for all w with |w| = e,

hy <po OK=pOK<L fOK aswellas f<pOK=p,0K<h,OK.

For |w| = 1, on the other hand, we obtain

1P; (w/e)™ || = exp(—m; — p(j)) < exp(—=m; — p(j))-

Thus, when |w| = 1 we have p,,(j) = p(j) + m; > 5(]) + m;. We now choose m; so that
Pw = ¢, which implies p,, < ¢ and yields the estimate

hy <po OK<qODK<gOK.

To be explicit, if q:(j) +00, then p( j) = 400 and we take m; = 0; if q( ) < +o0, we take
m; as the smallest non-negative integer greater than or equal to q(]) p( /). This guarantees
that p, > gand gives the estimate above. On the other hand, m; is not too large, which will
ensure that || P;||R7(r/e)™ tends to zero for every R and every r < e” and hence that H is
holomorphic in €2. The calculation is very similar to the one we just carried out in the case
of (b') and is omitted.
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