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1 Introduction

Digital geometry is a branch of geometry which is inspired by the use of com-
puters in creating images and of importance for the proper understanding and
creation of many algorithms in image processing. In Euclidean geometry con-
vex sets play an important role, and convex functions of real variables are of
importance in several branches of mathematics, especially in optimization.

All this forms the background of the present paper, where we will propose
definitions of convex sets (Definition 3.1) and convex functions (Definition 4.1)
in a digital setting, definitions that have many desirable properties. They are in
fact very simple—some may call them naive—but it seems to be necessary to
investigate them first before one can go on to more sophisticated definitions. We
shall show that functions which are both convex and concave have interesting
relations to a refined definition of digital hyperplanes.

The notion of a digital straight line received a satisfying definition in Rosen-
feld’s seminal paper (1974), where he explained how to digitize a real straight line
segment. Since then, variants of this digitization have been introduced, among
them digitizations which respect the Khalimsky topology; see Melin (2003). Here
we shall not consider the Khalimsky topology, however. Instead, we shall look
at definitions of digital hyperplanes, in particular that of Reveillès (1991), and
compare them with the notion of digitally convex and concave functions.

We cannot mention here all the work done on convex sets and digital planes;
we refer the reader to the surveys by Eckhardt (2001) and Rosenfeld & Klette
(2001) and the many papers referred to there. Eckhardt studies no less than five
different notions of convexity; one of them he calls H-convexity (2001:218)—this
is the notion studied in the present paper.

We write Z for the ring of integers and R for the field of real numbers.
When defining functions with integer values, we shall often use the floor and
ceiling functions R � t �→ �t�, �t� ∈ Z. They are uniquely determined by the
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requirement that �t� and �t� be integers for every real number t and by the
inequalities

t − 1 < �t� � t < �t� + 1; �t� − 1 < t � �t� < t + 1, t ∈ R. (1.1)

2 The Real Case

Let E be a vector space over the field of real numbers. A subset A of E is said
to be convex if the segment [a, b] = {(1 − t)a + tb; 0 � t � 1} is contained in
A for every choice of a, b ∈ A; in other words if {a, b} ⊂ A implies [a, b] ⊂ A.
And convex functions are most conveniently defined in terms of convex sets: a
function u:E → [−∞,+∞] = R∪{+∞,−∞} is said to be convex if its epigraph

epi u = {(x, t) ∈ E × R;u(x) � t}
is a convex set in E × R. For functions f :P → [−∞,+∞]Z = Z ∪ {+∞,−∞},
where P is a subset of E, we define the epigraph as a subset of P × Z:

epi f = {(p, q) ∈ P × Z; f(p) � q}.
We shall also need the strict epigraph of u, which is the set

episu = {(x, t) ∈ E × R;u(x) < t}.
It is convex if and only if u is convex.
Related to these notions are the graph and hypograph of a function, defined by

graphu = {(x, t) ∈ E × R;u(x) = t} and hypou = {(x, t) ∈ E × R;u(x) � t},
respectively.

It is also possible to go in the other direction and define convex sets in terms
of convex functions: a set A in E is convex if and only if its indicator function
iA is convex, where we define iA(x) = 0 if x ∈ A and iA(x) = +∞ otherwise.
Naturally we would like to keep these equivalences in the digital case.

Important properties of the family of convex sets in a vector space are the
following.

Proposition 2.1. If Cj, j ∈ J , are convex sets, then the intersection
⋂

Cj is
convex. If the index set J is ordered and filtering to the right, and if (Cj)j∈J is
an increasing family of convex sets, then its union

⋃
Cj is convex.

Because of this result, the intersection

cvxA =
⋂ (

C ∈ P(E);C is convex and C ⊃ A
)
, A ∈ P(E),

of all convex sets containing a given subset A of E is itself convex; it is called
the convex hull of A.

Proposition 2.2. If uj, j ∈ J , are convex functions on a vector space, then
supuj is convex. If the index set J is ordered and filtering to the right, and if
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(uj)j∈J is a decreasing family of convex functions, then its infimum inf uj is
convex.

To a given function u:E → [−∞,+∞] we associate two convex functions,
viz. the supremum v of all convex minorants of u and the supremum w of all
affine minorants of u. According to Proposition 2.2 these functions are them-
selves convex, and of course w � v � u. We shall denote v by cvxu, and w

by ˜̃u, a notation which will become clear when we have introduced the Fenchel
transformation below. The function v = cvxu will be called the convex hull of u.
For functions f :P → [−∞,+∞], P being a subset of E, we shall use the same
notation. Such a function can be extended to a function u defined in all of E
simply by taking u = +∞ in the complement of P (then u and f have the same
epigraph), and we define cvx f = cvxu.

In many cases, but not always, ˜̃u is equal to cvxu (see Examples 2.3 and 2.4
below). To understand this, we note that ˜̃u has two extra properties in addition
to being convex, properties that are not always shared by cvxu. The first is that˜̃u is lower semicontinuous for any topology for which the affine functions are
continuous. The second is that if u takes the value −∞ at a point, then ˜̃u must
be identically equal to −∞ (there are no affine minorants), whereas cvxu may
take also finite values or +∞.

Example 2.3. Let P ⊂ R2 be the set of all points (p1, 1/(1+ p2
1)), p1 ∈ Z. Define

a function f :P → [0,+∞] by f(p) = 0 for p ∈ P . Then cvx f takes the value

0 when 0 < x2 < 1 or x = (0, 1). On the other hand ˜̃
f takes the value 0 in the

closed strip 0 � x2 � 1 and +∞ elsewhere, so the two functions differ when
x2 = 0 or x2 = 1, x1 = 0.

Example 2.4. Let α be an irrational number and define f :Z2 → [0,+∞] by
f(p) = 0 if p2 = �αp1�, p1 = 0; f(0) = 3; and f(p) = +∞ otherwise. Then
(cvx f)(x) = 0 if x is in the open strip αx1 < x2 < αx1 + 1; (cvx f)(0) = 3;

and (cvx f)(x) = +∞ elsewhere. On the other hand ˜̃
f(x) = 0 when αx1 � x2 �

αx1 + 1 and +∞ outside this closed strip.

We thus have
w = ˜̃u � v = cvxu � u. (2.1)

However, in our research it will not be enough to study these functions: it is
necessary to look at their epigraphs.

The epigraph epiu of u is a subset of E×R and its convex hull C = cvx (epi u)
is easily seen to have the property

(x, s) ∈ C, s � t implies (x, t) ∈ C. (2.2)

The function VC(x) = inf
(
t; (x, t) ∈ C

)
satisfies

episVC ⊂ cvx (epiu) ⊂ epi VC . (2.3)

It is clear that VC is convex and equal to the largest convex minorant v = cvxu
of u already introduced. Thus cvxu can be retrieved from cvx (epi u) but not
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conversely. The inequality (2.1) and the inclusion relation (2.3) can be com-
bined to

episu ⊂ epis(cvxu) ⊂ epis(cvxu) ∪ epi u ⊂ cvx (epiu) ⊂ epi (cvxu) ⊂ epi ˜̃u,
(2.4)

and in general we cannot claim that cvx (epiu) is an epigraph (see Examples 4.2
and 4.3).

In this paper, convex sets which are squeezed in between the epigraph and
the strict epigraph of a function will play an important role. Such sets C satisfy
episu ⊂ C ⊂ epi u for some function u. This means that C is obtained from the
strict epigraph by adding some points in the graph:

C = episu ∪ {(x, u(x));x ∈ A} ⊂ episu ∪ graphu = epi u.

Extreme examples are the following. If u is strictly convex, like u(x) = ‖x‖p
2,

x ∈ Rn, with 1 < p < +∞, then any such set is convex, even though A may be
very irregular. If on the other hand u = 0, then such a set is convex if and only
if A itself is convex.

Definition 2.5. Let E be a real vector space and denote by E� its algebraic dual
(the set of all real-valued linear forms on E). For any function u:E → [−∞,+∞]
we define its Fenchel transform ũ by

ũ(ξ) = sup
x∈E

(
ξ(x) − u(x)

)
, ξ ∈ E�.

For any function v:F → [−∞,+∞] defined on a vector subspace F of E� we
define its Fenchel transform by

ṽ(x) = sup
ξ∈F

(
ξ(x) − v(ξ)

)
, x ∈ E.

The second Fenchel transform ˜̃u of u is well-defined if we fix a subspace F of
E�. This subspace can be anything between {0} and all of E�, in particular we
can take F as the topological dual E′ of E if E is equipped with a vector space
topology.

The restriction ũ
∣∣
F

of the Fenchel transform to a subspace F of E� describes
all affine minorants of u with linear part in F : a pair (ξ, β) ∈ F × R belongs to
epi ũ if and only if x �→ ξ(x) − β is a minorant of u. This implies that ˜̃u is the
supremum of all affine minorants of u with linear part in F . This function is a
convex minorant of u, but it has the additional properties that it cannot take
the value −∞ unless it is the constant −∞, and it is lower semicontinuous with
respect to the topology σ(E,F ), the weakest topology on E for which all linear
forms in F are continuous. One can prove that ˜̃u is the largest convex minorant
of u with these properties. General references for the Fenchel transformation are
Hörmander (1994), Singer (1997) and Hiriart-Urruty & Lemaréchal (2001).
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3 Convex Sets

Definition 3.1. Let E be a real vector space and fix a subset P of E. A subset
A of P is said to be P -convex if there exists a convex set C in E such that
A = C ∩ P .

We are mostly interested in the case E = Rn, P = Zn.
For digitizations of convex sets the mapping C �→ C ∩ Zn is not always

satisfactory, because it yields the empty set for some long and narrow convex
sets C. One might then want to replace it by a mapping like C �→ (C +B)∩Zn,
where B is some fixed set which guarantees that the image is nonempty when
C is nonempty, e.g., B = B�(0, r), where r = 1/2 if we use the l∞ norm in Rn,
r =

√
n/2 if we use the l2 norm, or r = n/2 if we use the l1 norm. However,

for our purpose, when we apply this operation to the epigraph of a function,
this phenomenon will not appear: the epigraph of a function with finite values
always intersects Zn × Z in a nonempty set.

Lemma 3.2. Given a vector space E and a subset P of E, the following prop-
erties are equivalent for any subset A of P .

1. A is P -convex;
2. A = (cvxA) ∩ P ;
3. A ⊃ (cvxA) ∩ P .
4. For all n, all a0, . . . , an ∈ A, and for all nonnegative numbers λ0, . . . , λn with∑n

0 λj = 1, if
∑n

0 λjaj ∈ P , then
∑n

0 λjaj ∈ A.

Proof. This is easy. As far as property 4 is concerned, we can, in view of Cara-
théodory’s theorem, let n be the dimension of E if the space is finite dimensional;
otherwise we must use all n.

Definition 3.3. Fix two subsets P and Q of a vector space E and define an
operator γ = γP,Q:P(E) → P(P ) by γ(A) = cvx (A ∩ Q) ∩ P .

We can think of E = Rn, P = mZn, m = 1, 2, . . ., and Q = Zn. We note
that γ(C) is P -convex if C is convex in Rn.

Lemma 3.4. The mapping γ is increasing; it satisfies γ(γ(A)) ⊂ γ(A); and it
satisfies A ⊂ γ(A) if A ⊂ P ∩ Q. Thus γ

∣∣
P(P )

is a closure operator in P(P )
if Q ⊃ P .

Proof. The mapping γ = jP ◦ cvx ◦ jQ is a composition of three increasing
mappings, viz. jQ (intersection with Q), cvx (taking the convex hull), and jP

(intersection with P ), and as such itself increasing. The composition γ ◦ γ is
equal to jP ◦ cvx ◦ jQ ◦ jP ◦ cvx ◦ jQ, which is smaller than jP ◦ cvx ◦ cvx ◦ jQ =
jP ◦ cvx ◦ jQ = γ. Finally, it is clear that γ(A) contains A if A is contained in
P ∩ Q. If Q ⊃ P , then γ is increasing, idempotent and extensive, thus a closure
operator in P(P ).
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Proposition 3.5. Let E be a real vector space and P any subset of E. Then A
is P -convex iff A = γ(A) for all Q ⊃ P iff A = γ(A) for some Q ⊃ P .

Proof. If A is P -convex, A = C∩P , then γ(A) = γ(C∩P ) = cvx (C∩P∩Q)∩P =
C ∩ P = A for all Q ⊃ P .

If A = γ(A) for some choice of Q ⊃ P , then A = cvx (A ∩Q) ∩ P = C ∩ P if
we define C = cvx (A ∩ Q), so that A is P -convex.

Corollary 3.6. If A = C ∩ P , then C ⊃ γ(A) for any Q.

Thus in the definition of P -convex sets we may always take C = γ(A) = cvxA
provided Q ⊃ P .

It is now easy to prove the following result.

Proposition 3.7. Let E be a vector space and P any subset of E. If Aj, j ∈ J ,
are P -convex sets, then the intersection

⋂
Aj is P -convex. If the index set J

is ordered and filtering to the right, and if (Aj)j∈J is an increasing family of
P -convex sets, then its union

⋃
Aj is also P -convex.

Proof. For each Aj we have Aj = Cj ∩ P , where Cj = cvxAj is a convex set in
E. Then

⋂
Aj =

⋂
(Cj ∩ P ) =

( ⋂
Cj

) ∩ P . The last set is P -convex in view of
Proposition 2.1.

For the union we have
⋃

Aj =
⋃

(Cj ∩ P ) =
( ⋃

Cj

) ∩ P , so Proposition 2.1
gives also the second statement—the family (Cj) = (cvxAj) is increasing since
(Aj) is.

While the intersection of two P -convex epigraphs gives a reasonable result,
the intersection of an epigraph and a hypograph may consist of two points quite
far from each other:

Example 3.8. Let A = {p ∈ Z2; p2 � p1/m} and B = {p ∈ Z2; p2 � p1/m},
where m ∈ N�{0}. Then A and B are Z2-convex and their intersection consists
of all points (mp2, p2), p2 ∈ Z. We can easily modify the example so that the
intersection consists of exactly two points, (0, 0) and (m, 1), where m is as large
as we please.

4 Convex Functions

Definition 4.1. Let E be a vector space and P any of its subsets. A function
f :P → [−∞,+∞]Z is said to be (P × Z)-convex if its epigraph

epi f = {(p, t) ∈ P × Z; f(p) � t}

is a (P × Z)-convex subset of E × R.

We have mainly the case E = Rn and P = Zn in mind.
If f :P → [−∞,+∞]Z is a P -convex function, then there is a convex set C

in E×R such that C∩(P×Z) = epi f . In view of Corollary 3.6, the smallest such
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set C is the convex hull of epi f . However, a set C such that C ∩ (P ×Z) = epi f
does not necessarily have the property (2.2), so we introduce

C+ = {(x, t) ∈ E × R;∃s � t with (x, s) ∈ C}.

There is a function VC+ :E → [−∞,+∞] such that

episVC+ ⊂ C+ ⊂ epi VC+ .

It would perhaps seem natural to require that C+ be closed or open so that one
could always take either the epigraph or the strict epigraph of VC+ , but simple
examples (see below) show that this is not possible. We note that when we take
C = cvx (epi f), then C+ = C.

Some care is needed, because even if epi f is closed, its convex hull need not
be closed:

Example 4.2. Let f0(p) = �αp�, p ∈ Z, where α is irrational. We also define
f1(p) = f0(p) for p ∈ Z�{0} and f1(0) = 1. These functions are easily seen to be
(Z×Z)-convex. Indeed, cvx (epi f1) is the open half plane C1 = {(x, t); t > αx},
a strict epigraph, and cvx (epi f0) is the convex set C0 = C1 ∪ {(0, 0)}, which is
neither an epigraph nor a strict epigraph. (However, also the closed half plane
{(x, t); t � αx} intersects Z2 in epi f0.) We finally note that the functions −f0

and −f1 are (Z × Z)-convex as well.

A convex function need not be determined by its restriction to the comple-
ment of a point: in Example 4.2 above, f0 and f1 agree on Z � {0}. This kind
of ambiguity is, however, something we have to live with if we want results like
Proposition 2.2 to hold. In the example f0 is a supremum of convex functions
without this ambiguity, and f1 is the limit of a decreasing sequence of convex
functions without the ambiguity. To make this precise, define gs(p) = �αp + s�,
p ∈ Z, where s is a real parameter. Then gs → f1 as s tends to zero through
positive values, and gs → f0 as s tends to zero through negative values. We have
gs(0) = 1 for 0 < s < 1, and we claim that gs(0) is determined by the restriction
of gs to the complement of the origin when 0 < s < 1. Indeed, let an extension
take the value c ∈ Z at the origin. Then c � 0 is impossible for s > 0, and
c � 2 is impossible for all s such that 0 < s < 1. Similarly gs with s negative is
determined from its restriction to Z � {0}. So the functions gs with s small and
nonzero do not have this kind of ambiguity, whereas their limits as s → 0± do.

Example 4.3. Let a set A of even integers be given and define gA(p) = � 1
2p� =

1
2p+ 1

2 , p ∈ Z, p odd, and gA(p) = 1
2p when p is even, p ∈ A, and gA(p) = 1

2p+1
when p is even and p /∈ A. This function is (Z×Z)-convex if and only if A is an
interval in 2Z. To see this, we note that cvx (epi gA) is the convex set

CI = {(x, t) ∈ R × R; t > 1
2x} ∪ {(x, 1

2x) ∈ I × R},

where I is the convex hull of A. Then CI ∩(Z×Z) is equal to epi gA if and only if
A is an interval of even integers. We thus easily get examples of functions which
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are (Z × Z)-convex as well as examples of functions which are not. The set CI

is in general neither an epigraph nor a strict epigraph.

Proposition 4.4. Let u:E → [−∞,+∞] be a convex function on a vector space
E. Let P be a subset of E. Then the restrictions �u�∣∣

P
and �u�∣∣

P
are (P × Z)-

convex. In particular �cvx g�∣∣
P

and
⌈˜̃g⌉ ∣∣∣

P
are (P ×Z)-convex for any function

g:P → [−∞,+∞]Z.

Proof. Writing f = �u�∣∣
P

and g = �u�∣∣
P

we have (cf. (1.1))

u − 1 < f � u and u � g < u + 1 in P,

which implies that epis(u − 1) ∩ (P × Z) = epi f and epiu ∩ (P × Z) = epi g.
Hence the functions f and g are (P × Z)-convex.

Theorem 4.5. Let E be a vector space and P one of its subsets. For any (P×Z)-
convex function f :P → Z we have cvx f � �cvx f� � f � cvx f + 1 in P .

Proof. The inequality cvx f � f holds for any function. Hence cvx f � �cvx f� �
�f� = f .

For the last inequality we argue as follows. Let C = cvx (epi f) and v = cvx f .
Then C ∩ (P × Z) = epi f and episv ⊂ C ⊂ epi v. If v(p) < q, then (p, q) ∈ C,
which implies that (p, q) ∈ epi f , i.e., f(p) � q. Take now q = �v(p) + ε�, where
ε > 0. Then v(p) < q, so that f(p) � �v(p) + ε� < v(p) + 1 + ε. Letting ε tend
to zero we see that f(p) � v(p) + 1 = (cvx f)(p) + 1. This completes the proof
of the theorem.

We define

P j = {p ∈ P ; f(p) = �(cvx f)(p)� + j}, j = 0, 1.

In view of the last theorem we have P = P 0 ∪ P 1. We also define

Aj = {p ∈ P ; f(p) = (cvx f)(p) + j}, j = 0, 1.

Corollary 4.6. With f as in the theorem, P can be divided into three disjoint
sets: P 0

� A0, A0, and A1 = P 1. The first set is precisely the set of points p
such that (cvx f)(p) is not an integer.

Proof. It is clear that the three sets P 0
� A0, A0 and P1 are pairwise disjoint.

It is also easy to see that p ∈ A0 ∪ A1 if and only if (cvxf)(p) is an integer.
It follows that Aj ⊂ P j . Finally, we shall prove that P 1 ⊂ A1. If p ∈ P 1, then
�(cvx f)(p)� is equal to f(p) − 1. But we always have (cvx f)(p) � f(p) − 1, so
that (cvx f)(p) = �(cvx f)(p)� and p belongs to A1.

Let us say that a function u:Rn → [−∞,+∞] is of fast growth if for any
constant c the set {x ∈ Rn;u(x) � c‖x‖2} is bounded. The same terminology
applies to a function defined in a subset P of Rn; we understand that it takes
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the value +∞ outside P . In particular, if f is equal to plus infinity outside a
bounded set, it is of fast growth.

Theorem 4.7. Let P be a discrete subset of Rn and let f :P → [−∞,+∞]Z be
a function of fast growth. Then f is (P × Z)-convex if and only if f = �cvx f�,
in other words the set P 1 is empty, and we have

(cvx f)(p) � f(p) < (cvx f)(p) + 1, p ∈ P. (4.1)

It is equivalent to say that there exists a convex function u such that f = �u�.

Proof. We already know from Proposition 4.4 that the condition is sufficient.
To prove necessity, assume that f is (P × Z)-convex. Then C = cvx (epi f)

is a convex subset of Rn × R such that C ∩ (P × Z) = epi f . However, we now
know that C is closed, so that actually C = epi cvx f . We also know from the
previous theorem that cvx f � f � cvx f + 1 in P . A point (p, f(p) − 1) does
not belong to epi f and hence not to C. Since C is closed and its boundary is
defined by cvx f , we must have f(p) − 1 < (cvx f)(p), which was to be proved.

We can now take a look again at Examples 4.2 and 4.3.

Example 4.8. In Example 4.2 we find that

(cvx f0)(x) = ˜̃
f0(x) = (cvx f1)(x) = ˜̃

f1(x) = αx, x ∈ R.

Thus cvx f0 � f0 < cvx f0 + 1, but (cvx f0)(0) = 0 = 1 = f1(0), so that
f1(0) = (cvx f1)(0) + 1. This shows that some condition is necessary in the
theorem.

Example 4.9. In Example 4.3 we also have that ˜̃gA = cvx gA. We find that
(cvx gA)(x) = 1

2x for all x ∈ R when A is nonempty. Therefore �cvx gA� = gA if
A is nonempty but not equal to all of 2Z. In fact, we then have �(cvx gA)(p)� =
1
2p < gA(p) = 1

2p + 1 when p ∈ 2Z � A. Still gA is convex if A is an interval of
2Z. When A is empty we have (cvx gØ)(x) = 1

2x + 1
2 .

Given u:Rn → [−∞,+∞] we define ur(x) = u(x) if ‖x‖2 � r and ur(x) =
+∞ otherwise. We also define u[r](x) = max(u(x), ‖x‖2

2−r). Then ur and u[r] are
of fast growth, and we note that u is convex if and only if all the ur are convex,
or, equivalently, all the u[r] are convex. The functions ur and u[r] decrease to u
as r tends to plus infinity. The same applies to functions f :P → [−∞,+∞] or
f :P → [−∞,+∞]Z.

Corollary 4.10. Let P be a discrete subset of Rn and let a function f :P →
[−∞,+∞]Z be given. Then f is (Zn ×Z)-convex if and only if fr = �cvx fr� for
all r ∈ ]0,+∞[, equivalently if and only if f[r] = �cvx f[r]� for all r ∈ N, where
fr and f[r] are defined as before the statement of the corollary.

Proposition 4.11. Let E be a vector space and P any of its subsets. If fj,
j ∈ J , are (P ×Z)-convex functions, then sup fj is (P ×Z)-convex. If the index
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set J is ordered and filtering to the right, and if (fj)j∈J is a decreasing family
of (P × Z)-convex functions, then its infimum inf fj is (P × Z)-convex as well.

Proof. We note that epi (supj fj) =
⋂

j epi fj . The latter set is (P × Z)-convex
according to Proposition 3.7. Hence supj fj is (P × Z)-convex.

For the second part we note that epis(infj fj) =
⋃

j episfj . Now episu and
epi u are convex at the same time, so it follows from Proposition 3.7 that the
latter set is (P × Z)-convex. Hence epis(infj fj) is (P × Z)-convex.

5 Functions Which Are Both Convex and Concave

A function u such that −u is convex is called concave. A real-valued function
on Rn which is both convex and concave is necessarily affine, i.e., of the form
u(x) = α ·x+β for some α ∈ Rn and β ∈ R. In this section we shall investigate
such functions in the discrete case.

Proposition 5.1. Let P be a nonempty subset of a vector space E and f :P → R
a real-valued function. Given a linear form α ∈ E� and a real number β we let
hα,β be the smallest constant h ∈ [0,+∞] such that

0 � α(p) + β � f(p) � α(p) + β + h, p ∈ P. (5.1)

We let hα = infβ∈R hα,β be the smallest constant h such that (5.1) holds for
some β ∈ R. Then hα = f̃(α) + g̃(−α), where for ease in notation we have
written g for −f . Moreover, hα = hα,β for a unique β, viz. β = −f̃(α).

Proof. The inequality α(p) + β � f(p) for all p ∈ P is equivalent to f̃(α) � −β,
and the inequality f(p) = −g(p) � α(p) + β + h for all p ∈ P is equivalent to
g̃(−α) � β + h. Therefore (5.1) implies that f̃(α) + g̃(−α) � −β + (β + h) = h.

Conversely, if h is a real number and f̃(α) + g̃(−α) � h, then f̃(α) is a real
number: f̃(α) = −∞ would imply that f is identically equal to +∞, which is
excluded by hypothesis, and g̃(−α) = −∞ would imply that f is identically −∞,
which is also excluded by hypothesis; finally, the inequality excludes that f̃(α)
is equal to +∞. Therefore β = −f̃(α) (obviously the best choice of β) yields
f̃(α) � −β and g̃(−α) � β + h, which, as already noted, is equivalent to (5.1).
The infimum of all real h satisfying (5.1) is equal to the infimum of all real h

satisfying f̃(α) + g̃(−α) � h, which completes the proof.

Proposition 5.2. Let E be a vector space and P a subset such that cvxP = E.
Let a real-valued function f :P → R be given, and let h∗ = infα∈E� hα be the
smallest constant such that (5.1) holds for some α ∈ E� and some β ∈ R.
Assume that h∗ is finite. Then −cvx f − cvx (−f) is constant and equal to h∗.
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Proof. Let h be a number such that α+β � f � α+β +h in P for some α ∈ E�

and some β ∈ R. Then

α + β � u � f � −v � α + β + h in P,

where u = cvx f and v = cvx (−f). Adding v to all members we obtain

α + β + v � u + v � f + v � 0 � α + β + h + v in P. (5.2)

We see that u + v is a convex function which is nonpositive in all of P , thus
also in cvxP , which by hypothesis is equal to E. But such a function must be
constant; let us define ω = −(u + v) � 0. By the same argument, v + α is a
constant γ. We now have γ + β � −ω � 0 � γ + β + h, which shows that h � ω,
and, by taking the infimum over all such h, that h∗ � ω.

Conversely, we note that −ω � f + γ − α � 0, thus α − γ − ω � f � α − γ,
which shows that ω � hα � h∗. We conclude that ω = h∗.

Theorem 5.3. Let E be a vector space and P a subset of E such that cvxP = E.
If both functions f :P → Z and −f are (P ×Z)-convex, then f deviates at most
by 1

2 from an affine function: there exist a linear form α ∈ E� and constants
β, ω ∈ R such that

0 � f(p) − α(p) − β � ω � 1, p ∈ P. (5.3)

The best constant ω is equal to the constant −cvx f−cvx (−f). Also (cvx f)(x) =
α(x)+β and cvx (−f)(x) = −α(x)−β−ω if ω is chosen as the smallest possible
constant.

Proof. We know from Theorem 4.5 that the two convex functions u = cvx f and
v = cvx (−f) satisfy

u � f � u + 1 and v � −f � v + 1 in P. (5.4)

The functions u and v are real-valued convex functions and possess affine mi-
norants. This implies that f satisfies (5.1) with some finite h. From Proposition
5.2 and (5.2) we know that u + v is a constant −ω and that h∗ = ω is the best
constant in (5.1) when we are allowed to vary both α and β.

It remains to be seen that ω � 1. The first inequality in (5.4) can be rewritten
in the notation of the previous proof as

−ω − γ � f − α � −ω − γ + 1,

which shows that h = 1 is an admissible choice; thus the infimum h∗ of all such
h cannot exceed 1.

The last statement follows from the inequality

α(p) + β � u � −v � α(p) + β + ω, p ∈ P,

where we now know that u + v = −ω, so that
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α(p) + β + v � −ω � 0 � α(p) + β + ω + v,

which forces α(p) + β + ω + v to be equal to 0. The proof is complete.

We rewrite the theorem in the most common situation:

Corollary 5.4. If both f :Zn → Z and −f are (Zn ×Z)-convex, then there exist
α ∈ Rn and β ∈ R such that

0 � f(p) − α · p − β � ω, p ∈ Zn, (5.5)

where ω is the constant −cvx f − cvx (−f) � 1.

Is it possible to take one of the inequalities in (5.5) strict, like in (4.1)? We
shall see that this is not always so.

Example 5.5. In Example 4.2 we see that αp � f0(p) < αp + 1, whereas αp <
f1(p) � αp + 1. In each case we have one strict inequality. Both inequalities are
optimal (ω = 1).

Example 5.6. In Example 4.3 we see that

1
2p � gA(p) � 1

2p + 1, p ∈ Z. (5.6)

If A is empty this can be improved to 1
2p + 1

2 � gØ(p) � 1
2p + 1. If A is equal

to all of 2Z, then we have 1
2p � g2Z(p) � 1

2p + 1
2 . Thus in these two cases the

graph of gA is contained in a strip of height ω = 1
2 . In all other cases we see

that none of the inequalities in (5.6) can be replaced by a strict inequality. We
already remarked above that gA is (Z×Z)-convex if and only if A is an interval
of even numbers. We note that both gA and −gA are (Z×Z)-convex if and only
if A = Ø or A = 2Z or A is a semi-infinite interval.

The example shows that there is a choice between the intervals [0, ω[ and
]0, ω] in the inequality (5.3) for different values of p. This choice is made precise
in the following result.

Theorem 5.7. Let f :Zn → Z and −f be (Zn × Z)-convex and let α ∈ Rn and
β ∈ R be such that (5.3) holds with ω = h∗, i.e., with the smallest h possible.
Define

Dj = {(p, f(p)) ∈ Zn × Z; f(p) = α · p + β + jω}, j = 0, 1,

and

Aj = πn+1(Dj) = {p ∈ Zn; f(p) = α · p + β + jω}, j = 0, 1,

where πn+1:Zn×Z → Zn denotes the projection which forgets the last coordinate.
Assume that ω > 0. Then A0 and A1 are disjoint, and D0 and D1 are (Zn ×Z)-
convex.
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Proof. That A0 and A1 are disjoint follows from the fact that f takes different
values in them: f(p) = α ·p+β when p ∈ A0 while f(p) = α ·p+β +ω if p ∈ A1.

The sets T j = {(p, q) ∈ Zn × Z; q = α · p + β + jω} are (Zn × Z)-convex,
as are epi f and hypo f . Therefore so are the intersections D0 = T 0 ∩ epi f and
D1 = T 1 ∩ hypo f .

6 Digital Hyperplanes

The concept of naive discrete line was introduced by Reveillès (1991:48). Such
a line is defined to be the set of all integer points p ∈ Z2 such that 0 �
α1p1 + α2p2 < max (|α1|, |α2|), where α1 and α2 are relatively prime integers.
Generalizing this slightly, we define a naive digital hyperplane as the set of all
points p ∈ Zn which satisfy the double inequality

0 � α · p + β < h,

for some α ∈ Rn
� {0} and some β ∈ R, where h = ‖α‖∞. We remark that

one can always interchange the strict and the non-strict inequalities: the set just
defined can equally well be defined by

0 < (−α) · p − β − ω � h.

The precise size of h is important for the representation of the hyperplane as the
graph of a function of n − 1 variables as shown by the following result.

Theorem 6.1. Define

T = {p ∈ Zn; 0 � α · p + β � h} and Ts = {p ∈ Zn; 0 < α · p + β < h}, (6.1)

where α ∈ Rn
� {0}, β ∈ R and h > 0, and let

T j = {p ∈ Zn;α · p + β = jh}, j = 0, 1. (6.2)

Let D be a subset of Zn which is contained in T and contains Ts and define
Ds = D ∩ Ts and Dj = D ∩ T j. Fix an integer k = 1, . . . , n and let πk:Zn →
Zn−1 be the projection which forgets the kth coordinate. Then πk

∣∣
D

is injective
if h < |αk|, and πk

∣∣
D

is surjective if h > |αk|. If h = |αk|, then πk

∣∣
D

is injective
if and only if πk(D0) and πk(D1) are disjoint, and πk

∣∣
D

is surjective if and only
if πk(D0 ∪ D1) = πk(T 0 ∪ T 1).

Proof. For ease in notation we let k = n and write p′ = (p1, . . . , pn−1) and
similarly for α. Then p belongs to T if and only if

−α′ · p′ − β � αnpn � −α′ · p′ − β + h, (6.3)

and p belongs to Ts if and only if

−α′ · p′ − β < αnpn < −α′ · p′ − β + h. (6.4)
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Clearly for every p′ there is at most one pn which satisfies the inequalities if
h < |αn| or if h = |αn| and (α′ · p′ + β)/h is not an integer. Also there is at least
one pn if h > |αn| or if h = |αn| and (α′ ·p′ +β)/h is not an integer. Here it does
not matter whether we use (6.3) or (6.4), so the conclusion holds also for D.

The case when h = |αn| and (α′ · p′ + β)/h is an integer remains to be
considered. Then we see that there are two values of pn which satisfy (6.3) and
none that satisfies (6.4). Hence there is at most one pn such that (p′, pn) belongs
to D = D0 ∪Ds ∪D1 if and only if πk(D0) and πk(D1) are disjoint. There is at
least one pn such that (p′, pn) belongs to D if and only if πk(D0 ∪ D1) contains
every point in the projection of T 0 ∪ T 1. This completes the proof.

We do not suppose here that h = ‖α‖∞. However, this is the most natural
case: we then know that πk

∣∣
D

is a bijection for any k such that |αk| = ‖α‖∞
and the conditions on the Dj are satisfied, and that πj

∣∣
D

is surjective for all j
such that |αj | < ‖α‖∞.

In view of Theorems 5.7 and 6.1 it seems reasonable to propose the following
definition.

Definition 6.2. A refined digital hyperplane is a Zn-convex subset D of Zn

which is contained in T and contains Ts, where T and Ts are the slabs defined
by (6.1) for some α ∈ Rn

� {0}, β ∈ R, and h > 0; and in addition is such
that, for at least one k such that |αk| = h, the sets Dj = D ∩ T j have disjoint
projections πk(Dj), and πk(D0 ∪ D1) = πk(T 0 ∪ T 1).

The naive hyperplanes now appear as a special case, viz. when D0 = T 0, and
D1 is empty, or conversely, and |αk| = ‖α‖∞.

Example 6.3. Define D = (D0 × {0}) ∪ (D1 × {1}), where Dj , j = 0, 1, are
two subsets of Zn−1 such that D1 = Zn−1

� D0. Then D is a refined digital
hyperplane if and only if both D0 and D1 are Zn−1-convex.

Example 6.4. Define D = {(p1, p1) ∈ Z2; p1 � 0} ∪ {(p1, p1 + 1) ∈ Z2; p1 � 0}.
This is a refined digital hyperplane with |α1| = |α2| = ‖α‖∞ = 1. The projection
π1 satisfies the requirements in the definition, but π2 does not.

The following result motivates the definition just given and relates it to the
digitally convex functions we have introduced.

Theorem 6.5. A subset D of Zn is a refined digital hyperplane if and only if it
is the graph of a function f :Zn−1 → Z such that both f and −f are (Zn−1×Z)-
convex.

Proof. Let f be a (Zn−1 ×Z)-convex function such that also −f is (Zn−1 ×Z)-
convex. Then D = graph f is a refined digital hyperplane according to Theorem
5.7.

Conversely, if D is a refined digital hyperplane and h = |αn|, then the pro-
jection πn

∣∣
D

is bijective, and this allows us to define a function f :Zn−1 → Z,
f(p′) = −α′ · p′ − β + jh as in the proof of Theorem 6.1 with j = 0 or 1 be-
ing uniquely determined by the requirements on the Dj . This function as well
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as its negative are (Zn−1 × Z)-convex, since both its epigraph and its hypo-
graph are Zn-convex. To wit, assuming αn to be positive, its epigraph is equal
to D + ({0} × N), and its hypograph is equal to D + ({0} × (−N)).

7 Conclusions

In this paper we have studied a simple definition of convex sets in Zn and of
convex functions defined on Zn and having integer values. The definitions are
actually given not only for functions defined on Zn but for other subsets of Rn

as well.
We have shown that the functions so defined share important properties of

convex functions defined on vector spaces, viz. concerning the relation between
convex sets and convex functions, and suprema and infima of families of func-
tions. We have also clarified how much a convex digital function can deviate
from a convex function of real variables.

From several points of view the definitions seem to be satisfying. They are
extremely simple and easy to grasp; nevertheless, there are nontrivial difficulties
in checking whether a given function is convex.

A kind of ambiguity in the values of a convex function is shown to be in-
evitable: in general a convex function is not determined by its restriction to the
complement of a point.

Functions that are both convex and concave are of interest as candidates for
defining digital hyperplanes; in fact we have shown that they define sets which
are precisely the sets satisfying a refined definition of digital hyperplanes.
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