Fuzzy Sets and Fuzzy Techniques
Lecture 13 – Defuzzification

Nataša Sladoje
Centre for Image Analysis
Uppsala University
March 8, 2010

Literature

Definition

Defuzzification is a process that maps a fuzzy set to a crisp set.

Defuzzification has attracted far less attention than other processes involved in fuzzy systems and technologies.

- Defuzzification is sometimes not seen as a part of the core of a fuzzy system; fuzzy system “ends” where uncertainty and imprecision end.
- Defuzzification is “just the last step”; it is an interface with crisp models of the world.
- Defuzzification is a model of synthesis, therefore it is completely opposite to the main concept of fuzzy set theory.
Approaches

- Defuzzification to a point.
- Defuzzification to a set.
- Generating a good representative of a fuzzy set.
- Recovering a crisp original set.

Criteria

Defuzzification to a point

- Arbitrary universes
 - Core selection criterion
 - Scale invariance (ordinal, interval, ratio, relative, absolute)
- Ordered universes
 - Monotony
 - \(t \)-conorm criterion
- The set of real numbers
 - \(x \)-Translation
 - \(x \)-Scaling
 - Continuity

Defuzzification to a set

- Defuzzification should contain the kernel of a fuzzy set.
- Defuzzification should be consistent with affine transformations.
- Defuzzification should preserve a natural order in the set of fuzzy sets.

 If \(F \leq G \), then \(D(F) \subseteq D(G) \), for fuzzy sets \(F, G \) and their averagings \(D(F) \) and \(D(G) \).

A list of methods

- Maxima methods and derivatives
 Selection of an element from the core of a fuzzy set as defuzzification value. Main advantage is simplicity.
- Distribution methods and derivatives
 Conversion of the membership function into a probability distribution, and computation of the expected value. Main advantage is continuity property.
- Area methods
 The defuzzification value divides the area under the membership function in two (more or less) equal parts.
Defuzzification to a point
A list of methods – Maxima methods

- Random choice of maxima

\[\text{Prob}(D(A) = x_0) = \begin{cases} \frac{1}{|\text{core}(A)|} & x_0 \in \text{core}(A), \\ 0 & \text{otherwise} \end{cases} \]

- First of maxima, Last of maxima, Middle of maxima

\[
\begin{align*}
FOM(A) &= \min \text{core}(A) \\
LOM(A) &= \max \text{core}(A)
\end{align*}
\]

For \(\text{MOM}(A) \) it holds that

\[
|\text{core}(A)_{< \text{MOM}(A)}| = |\text{core}(A)_{> \text{MOM}(A)}| \quad \text{if} \quad |\text{core}(A)| \quad \text{is odd}
\]

\[
|\text{core}(A)_{< \text{MOM}(A)}| = |\text{core}(A)_{> \text{MOM}(A)}| \pm 1 \quad \text{if} \quad |\text{core}(A)| \quad \text{is even.}
\]

Defuzzification to a point
A list of methods – Distribution methods (1)

- Centre of gravity (Set of real numbers)

\[
\text{COG}(A) = \frac{\sum_{x_{\text{max}}} x \cdot A(x)}{\sum_{x_{\text{max}}} A(x)}
\]

- Mean of maxima (Set of real numbers)

\[
\text{MeOM}(A) = \frac{\sum_{x \in \text{core}(A)} x}{|\text{core}(A)|}.
\]

- Basic defuzzification distribution

\[
\text{BADD}(A, \gamma) = \frac{\sum_{x_{\text{max}}} x \cdot A(x)^{\gamma}}{\sum_{x_{\text{max}}} A(x)^{\gamma}}
\]

where \(\gamma \in [0, \infty) \) reflects the confidence in the system.

Defuzzification to a point
A list of methods – Distribution methods (2)

- Generalized level set defuzzification

\[
\text{GLSD}(A, \gamma) = \frac{\sum_{i=1}^{N} c_i m_i \gamma^i}{\sum_{i=1}^{N} c_i \gamma^i}
\]

where \(\gamma \in (0, \infty) \) is the confidence to the system, \(N \) is the number of \(\alpha \)-cuts, \(c_i = |A_{\alpha_i}| \), and \(m_i \) is the average value of the \(i \)-th \(\alpha \)-cut.

- Indexed centre of gravity

\[
\text{ICOG}(A) = \frac{\sum_{x \in A_{\alpha}} x \cdot A(x)}{\sum_{x \in A_{\alpha}} A(x)}
\]

where \(\alpha \) is a selected threshold below which all membership values are set to zero.

- Fuzzy mean (combines aggregation and defuzzification)

\[
\text{FM}(A) = \frac{\sum_{i=1}^{N} \alpha_i |A_{\alpha_i}|}{\sum_{i=1}^{N} \alpha_i}
\]

where \(N_{\alpha} \) is the number of fuzzy output sets, \(\alpha_i \) is the degree of consistency obtained by inference rules, and \(\alpha_i \) is some numerical value associated with the output fuzzy sets \(A_i \) (often \(\alpha_i = \text{MOM}(A_i) \)).
Defuzzification to a point
Criteria fulfilment

<table>
<thead>
<tr>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOM/LOM</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>max</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>MOM</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>COG</td>
<td>–</td>
<td>–</td>
<td>yes</td>
<td>–</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>COA</td>
<td>–</td>
<td>–</td>
<td>yes</td>
<td>–</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Defuzzification to a set
Averaging procedures

- \(\alpha \)-cuts chosen at various levels \(\alpha \).
- Average \(\alpha \)-cuts based on an integration of set-valued function, called Kudo-Aumann integration.

Example:
The separating power of a fuzzy set \(F \) is a set \(Z \subset \text{supp}(F) \), with a compact support and non-zero Lebesgue measure \((\mu(\text{supp}(Z)) \neq 0) \), such that the function

\[
\Theta_F(Z) = \frac{\int_Z F(v) dv}{\mu(Z)} - \frac{\int_Z F(v) dv}{\mu(Z)}
\]

attains its supremum for it. \(\bar{Z} \) denotes the complement of \(Z \) with respect to the support of \(F \).

\(SP(F) \) is an averaging procedure.
Defuzzification to a set
Averaging procedures

Possibly better choice is shown below: $M(F) = \frac{1}{2}(A_1 + A_\frac{1}{2})$.

Defuzzification to a set
Average α-cuts

Let a fuzzy set A be given by a membership function $\mu : R \rightarrow [0, 1]$.
- Sets $F(w)$ are α-cuts, A_α, of the fuzzy set A, for $\alpha \in [0, 1]$;
- Selectors are $\varphi(\alpha) = \inf A_\alpha$ and $\phi(\alpha) = \sup A_\alpha$.

Then, the average α-cut of A is

$$A_\mu = \left[\int_{[0,1]} \inf A_\alpha \, d\alpha, \int_{[0,1]} \sup A_\alpha \, d\alpha\right].$$

Defuzzification to a set
Average α-cuts

For a set valued function $F : \Omega \rightarrow \mathcal{P}(R^n)$, Kudo-Aumann integral is defined as

$$\int_{\Omega} F \, dm = \left\{ \int_{\Omega} f \, dm \mid f \in S(F) \right\}$$

where

$$S(F) = \{ f \mid f(w) \in F(w) \ a.e., f \text{ is integrable} \}$$

is the space of integrable selectors of F.

Note that the integral of a set-valued function is a set.

Defuzzification to a set
Average α-cuts

Often, $A_\mu = A_{0.5}$.

Not always.

Example:

$$\mu(x) = \begin{cases} 4(x - x^2), & x \in [0, 1] \\ 0, & \text{otherwise} \end{cases}$$

In this case, $A_\mu = [\frac{1}{4}, \frac{1}{2}]$.

A_μ is not always an α-cut of A, for any α.

Example:

$$\mu(x) = \begin{cases} 2x, & x \in [0, \frac{1}{2}] \\ 4(x - x^2), & x \in (\frac{1}{2}, 1] \\ 0, & \text{otherwise} \end{cases}$$

In this case, $A_\mu = [\frac{1}{4}, \frac{1}{2}]$. Since $\mu(\frac{1}{2}) \neq \mu(\frac{5}{8})$, $A_\mu \neq A_\alpha$ for every $\alpha \in [0, 1]$.
Defuzzification respecting the fuzzification

What is the idea?

Assume:
- universal set being the set of real numbers;
- all parameters of the fuzzification are known;
- a value \(y \in R \) is fuzzified and a vector \(v \), characterizing \(y \) by fuzzy membership values corresponding to each of the linguistic terms used, is known.

Define defuzzification so that \(y \) is recovered from \(v \).

Defuzzification respecting the fuzzification

How does it look in reality?

Constraints:
- All the parameters of the fuzzification are known.
- The value \(v \) is such that \(F(y_0) = v \) for some \(y_0 \).

In reality, given \(v \) is rarely such, i.e., there is no \(y_0 \) fulfilling \(F(y_0) = v \).

Instead, the fuzzy representation of a “candidate” for \(y_0 \) is generated, using \(v \) and fuzzy sets representing linguistic terms (i.e., using knowledge about fuzzification).

To obtain a crisp solution \(y_0 \), defuzzification (to a point) of its fuzzy representation is performed.

Example:

Let 4 linguistic terms be represented by fuzzy sets \(f_i \) as shown:

\[\nu = (0; 0.2; 0.8; 0) \]

is the vector of fuzzy membership values corresponding to \(y \).

Partial solutions of the problem are the sets \(Y_i \), containing elements \(y_0 \) such that \(f_i(y_0) = \nu_i \), for each \(i = 1, 2, 3, 4 \).

In this case, \(Y_1 = [1, 3] \), \(Y_2 = \{0.2, 1.8\} \), \(Y_3 = \{1.8, 2.2\} \), \(Y_4 = [0, 2] \).

The solution is defined as the intersection of all partial solutions:

\[Y_f = \bigcap_{i=1}^4 Y_i \]

and in this case \(Y_f = 1.8 \) is obtained.

A bit more general approach

In case when for a given \(v \)

\[v \neq F(y), \quad \text{for all } y, \]

a “candidate” for \(y \) is found by an optimization (minimization) of the function:

\[J = \frac{1}{2} \sum_{i=1}^n (\nu_i - f_i(y))^2. \]
Assume:

- Functions f_i (used for fuzzification) are triangular. The core of each f_i is a singleton, denoted by C_i.
- For a given $v = (v_1, v_2, \ldots, v_n)$, and known (C_1, C_2, \ldots, C_n), we look for y_0 such that y_0 is equal to C_i with a weight of v_i.

In other words, y_0 minimizes

$$J = \sum_{i=1}^{n} v_i \cdot D(y_0, C_i) = \sum_{i=1}^{n} v_i (y_0 - C_i)^2.$$

Constraints on fuzzification:

- For all y, there are at most two f_i (linguistic terms) such that $f_i(y) > 0$.
- The kernel C_i of each f_i is a singleton.
- f_i are monotonically increasing for $x < C_i$ and monotonically decreasing for $x > C_i$.
- The sum of membership values of each element y to all the fuzzy sets f_i is equal to 1.
- All f_i have the same shape (are defined by the same monotonically increasing function f, s.t. $f(0) = 0$ and $f(1) = 1$).

Analytical solution leads to defuzzification by the **height method**, which computes the barycentre of membership function kernels, weighted by the corresponding membership degrees:

$$y_0 = \frac{\sum_{i=1}^{n} v_i C_i}{\sum_{i=1}^{n} v_i}.$$

Recall that the fuzzification assumed is based on triangular membership functions.

The aim is to find y_0 such that

$$J = \sum_{i=1}^{n} H(v_i) \cdot D(y_0, C_i) = \sum_{i=1}^{n} H(v_i)(y_0 - C_i)^2,$$

where the function $H : [0, 1] \rightarrow [0, 1]$ appropriately adjusts the weights v_i in the case when non-linear fuzzification is applied, and is, under the assumptions above, shown to be equal to f^{-1}.

The defuzzification method that is in this way developed is

$$y = \frac{\sum_{i=1}^{n} f^{-1}(v_i) C_i}{\sum_{i=1}^{n} f^{-1}(v_i)}.$$
Defuzzification by feature distance minimization

Literature: