Introduction

Classical logic: A brief overview

- **Logic** is the study of methods and principles of **reasoning** in all its possible forms.
- **Propositions** - statements that are required to be **true** or **false**.
- The **truth value** of a proposition is the opposite of the truth value of its **negation**.
- Instead of propositions, we use **logic variables**. Logic variable may assess one of the two truth values, if it is substituted by a particular proposition.
- **Propositional logic** studies the rules by which new logic variables can be produced from some given logic variables. The internal structure of the propositions “behind” the variables does not matter!

- Classical logic - a very brief overview
 - Chapter 8.1
- Multivalued logic
 - Chapter 8.2
Logic function assigns a truth value to a combination of truth values of its variables:

\[f : \{\text{true, false}\}^n \rightarrow \{\text{true, false}\} \]

2^n choices of n arguments \(\rightarrow\) 2^{2^n} logic functions of n variables.

• Observe, e.g.:

\[
\omega_{14}(v_1, v_2) = \omega_{15}(\omega_6(v_1, v_2), v_2) \\
\omega_{10}(v_1, v_2) = \omega_9(\omega_{14}(v_1, v_2), \omega_{12}(v_1, v_2))
\]

• A task: Express all the logic functions of n variables by using only a small number of simple logic functions, preferably of one or two variables.

• Such a set is a complete set of logic primitives.

• Examples:

\{\text{negation, conjunction, disjunction}\} = \{\omega_6, \omega_9, \omega_{15}\},
\{\text{negation, implication}\} = \{\omega_6, \omega_{14}\}.

Definition

1. If \(v\) is a logic variable, then \(v\) and \(\bar{v}\) are logic formulae;

2. If \(v_1\) and \(v_2\) are logic formulae, then \(v_1 \land v_2\) and \(v_1 \lor v_2\) are also logic formulae;

3. Logic formulae are only those defined (obtained) by the two previous rules.
Classical logic: A brief overview

Logic formulae

Each logic formula generates a unique logic function. Different logic formulae may generate the same logic function. Such are called equivalent.

Examples:

\[(v_1 \Rightarrow v_2) \iff (\neg v_1 \lor v_2)\]
\[(v_1 \Leftrightarrow v_2) \iff ((v_1 \Rightarrow v_2) \land (v_1 \Leftarrow v_2))\]

Tautology is (any) logic formula that corresponds to a logic function one. Contradiction is (any) logic formula that corresponds to a logic function zero.

Predicate logic

There are situations when the internal structure of propositions cannot be ignored in deductive reasoning.

Propositions are, in general, of the form

\[x \text{ is } P\]

where \(x\) is a symbol of a subject and \(P\) is a predicate that characterizes a property.

\(x\) is any element of universal set \(X\), while \(P\) is a function on \(X\), which for each value of \(x\) forms a proposition.

\(P(x)\) is called predicate; it becomes true or false for any particular value of \(x\).

Inference rules

Inference rules are tautologies used for making deductive inferences.

Examples:

\[(a \land (a \Rightarrow b)) \Rightarrow b\] modus ponens
\[(\neg b \land (a \Rightarrow b)) \Rightarrow \neg a\] modus tollens
\[(a \Rightarrow b) \land (b \Rightarrow c) \Rightarrow (a \Rightarrow c)\] hypothetical syllogism

Predicate logic-extensions

\(- n\text{-ary predicates } P(x_1, x_2, \ldots, x_n)\)

Quantification of applicability of a predicate with respect to the domain of its variables

Existential quantification: \((\exists x)P(x)\)

Universal quantification: \((\forall x)P(x)\)

It holds:

\[\left(\exists x\right) P(x) = \bigvee_{x \in X} P(x)\]
\[\left(\forall x\right) P(x) = \bigwedge_{x \in X} P(x)\]
Multivalued Logics

Three-valued logic

- Third truth value is allowed:
 - truth: 1
 - false: 0
 - intermediate: \(\frac{1}{2} \).
- While it is accepted to have \(\bar{p} = 1 - p \), the definitions of other primitives differ in different three-valued logics.
- For the best known three-valued logics (Łukasiewicz, Bochvar, Kleene, Heyting, Reichenbach), primitives coincide with two valued counterparts for the variables having values 0 or 1 (see Table 8.4, p.218).
- None of the mentioned logics satisfies law of excluded middle, or law of contradiction.
- quasi-tautology is a logic formula that never assumes truth value 0;
- quasi-contradiction is a logic formula that never assumes truth value 1.

Łukasiewicz \(n \)-valued logic

The set of truth values is

\[
T_n = \{0 = \frac{0}{n-1}, \frac{1}{n-1}, \frac{2}{n-1}, \ldots, \frac{n-2}{n-1}, \frac{n-1}{n-1} = 1\}.
\]

Truth values are interpreted as \textit{degrees of truth}.

Primitives in \(n \)-valued logics of Łukasiewicz, denoted by \(L_n \), are:

\[
\bar{p} = 1 - p \quad p \land q = \min[p, q] \quad p \lor q = \max[p, q] \quad p \Rightarrow q = \min[1, 1 + q - p] \quad p \iff q = 1 - |p - q|
\]

Fuzzy logic

- Fuzzy propositions
- Linguistic hedges
- Fuzzy quantifiers

Chapter 8.3
Chapter 8.5
Chapter 8.4
Fuzzy propositions

The range of truth values of fuzzy propositions is not only \(\{0, 1\} \), but \([0, 1] \).
The truth of a fuzzy proposition is a matter of degree.

Classification of fuzzy propositions:

- **Unconditional and unqualified** propositions
 “The temperature is high.”

- **Unconditional and qualified** propositions
 “The temperature is high is very true.”

- **Conditional and unqualified** propositions
 “If the temperature is high, then it is hot.”

- **Conditional and qualified** propositions
 “If the temperature is high, then it is hot is true.”

Linguistic hedges (modifiers)

For a given predicate \(F \) on \(X \) and a given linguistic hedge \(H \), a new (modified) fuzzy predicate \(HF \) is defined as:

\[
HF(x) = h(F(x)), \quad \text{for all } x \in X.
\]

A modifier \(h \) is a unary operation \(h: [0, 1] \rightarrow [0, 1] \) such that:

- \(h(0) = 0 \) and \(h(1) = 1 \):
- \(h \) is a continuous function;
- If \(h(a) < a \) for all \(a \in [0, 1] \), (i.e., if \(h \) is **strong**), then \(h^{-1}(a) > a \) for all \(a \in [0, 1] \), (i.e., then \(h^{-1} \) is **weak**).
- A composition of modifiers is also a modifier.

Strong modifier reduces the truth value of a proposition.
Weak modifier increases the truth value of a proposition (by weakening the proposition).
An identity modifier is a function \(h(a) = a \).

Linguistic hedges

- **Linguistic hedges** are linguistic terms by which other linguistic terms are modified.
 “Tina is young is true.”
 “Tina is very young is true.”
 “Tina is very young is very true.”

- Fuzzy predicates and fuzzy truth values can be modified.
 Crisp predicates cannot be modified.
- Examples of hedges: very, fairly, extremely.

Modifiers

One commonly used class of modifiers is

\[
h_{\alpha}(a) = a^\alpha, \quad \text{for } \alpha \in \mathbb{R}^+ \text{ and } a \in [0, 1].
\]

For \(\alpha < 1 \), \(h_{\alpha} \) is a weak modifier.
Example: \(H: \text{fairly} \leftrightarrow h(a) = \sqrt{a} \).

For \(\alpha > 1 \), \(h_{\alpha} \) is a strong modifier.
Example: \(H: \text{very} \leftrightarrow h(a) = a^2 \).

\(h_1 \) is the identity modifier.
Fuzzy quantifiers

To determine the truth value of a quantified proposition, we need to know

1. “how many” students in the group are high-fluent
 i.e., cardinality of a fuzzy set High-fluent

2. “how much” is that value about 3
 i.e., membership of the obtained value
to the fuzzy set About 3

or

1. “how many” students in the group are high-fluent,
 relatively to the size of the group
 i.e., cardinality of a fuzzy set High-fluent
 divided by the size of the group

2. “how much” is that value almost all
 i.e., membership of the obtained value
to the fuzzy set Almost all.

Examples:

\[p: \text{There are } 3 \text{ high-fluent students in the group.} \]
\[q: \text{Almost all students in the group are high-fluent.} \]

Fuzzy quantifiers

• **Absolute** quantifiers:
 “about 10”; “much more than 100”, ...

• **Relative** quantifiers:
 “almost all”, “about half”, ...

Group = \{ Adam, Bob, Cathy, David, Eve \}. Fluency is represented by the value from the interval \([0, 100]\). Fuzzy set \(F \) represents “High fluency” on \([0,100]\). Fuzzy set \(Q \) represents fuzzy quantifier “about 3”.

\[E = 0/\text{Adam} + 0/\text{Bob} + 0.75/\text{Cathy} + 1/\text{David} + 0.5/\text{Eve} \]

is a fuzzy set “High fluency” on the domain Group.

\[|E| = 2.25 \]
\[T(p) = Q(|E|) = Q(2.25) = 0.625. \]
\[\frac{|E|}{|\text{Group}|} = 0.45 \]
\[T(q) = Q_l(0.45) = 0. \]
Fuzzy propositions

Unconditional and unqualified propositions

The canonical form

\[p : \nu \text{ is } F \]

\(\nu \) is a variable on some universal set \(V \)
\(F \) is a fuzzy set on \(V \) that represents a fuzzy predicate (e.g., low, tall, young, expensive...)

The degree of truth of \(p \) is

\[T(p) = F(\nu), \quad \text{for } \nu \in \nu. \]

\(T \) is a fuzzy set on \(V \). Its membership function is derived from the membership function of a fuzzy predicate \(F \).

The role of a function \(T \) is to connect fuzzy sets and fuzzy propositions.

In case of unconditional and unqualified propositions, the identity function is used.

Fuzzy propositions

Unconditional and qualified propositions

The canonical form

\[p : \nu \text{ is } F \text{ is } S \quad \text{(truth qualified proposition)} \]

where \(\nu \) is a variable on some universal set \(V \),
\(F \) is a fuzzy set on \(V \) that represents a fuzzy predicate,
and \(S \) is a fuzzy truth qualifier.

To calculate the degree of truth \(T(p) \) of the proposition \(p \), we use:

\[T(p) = S(F(\nu)) \]

An illustration:

Note: The proposition can be expressed as "\(\nu \text{ is } F \text{ is true} \)."

Fuzzy propositions

Unconditional and qualified propositions

An illustration:

\[p: \text{ "Tina is young is very true". } \text{Tina is 26.} \]

\(\text{Young}(26) = 0.87 \text{, and } \text{VeryTrue}(0.87) = 0.76 \)

\[T(p) = 0.76. \]
Fuzzy propositions
Conditional and unqualified propositions

The canonical form

\[p : \text{If } X \text{ is } A, \text{ then } Y \text{ is } B, \]

where \(X, Y \) are variables on \(X, Y \) respectively, and \(A, B \) are fuzzy sets on \(X, Y \) respectively.

Alternative form:

\[\langle X, Y \rangle \text{ is } R \]

where \(R(x, y) = J(A(x), B(x)) \) is a fuzzy set on \(X \times Y \) representing a suitable fuzzy implication.

Fuzzy implications

- Fuzzy implications
- Selection of fuzzy implications

Fuzzy propositions
Conditional and qualified propositions

The canonical form

\[p : \text{If } X \text{ is } A, \text{ then } Y \text{ is } B \text{ is } S \]

where \(X, Y \) are variables on \(X, Y \) respectively, \(A, B \) are fuzzy sets on \(X, Y \) respectively, and \(S \) is a truth qualifier.

A fuzzy implication \(J \) of two fuzzy propositions \(p \) and \(q \) is a function of the form

\[J : [0, 1] \times [0, 1] \rightarrow [0, 1], \]

which for any truth values \(a = T(p) \) and \(b = T(q) \) defines the truth value \(J(a, b) \) of the conditional proposition “if \(p \), then \(q \)”.

Fuzzy implications as extensions of the classical logic implication:

\[
\begin{align*}
\text{Crisp implication} & \quad a \implies b & \text{Fuzzy implication} & \quad J(a, b) \\
(S) & \quad \bar{a} \lor b & (S) & \quad u(c(a), b) \\
(R) & \quad \max \{ x \in [0, 1] \mid a \land x \leq b \} & (R) & \quad \sup \{ x \in [0, 1] \mid i(a, x) \leq b \} \\
(QL) & \quad \bar{a} \lor (a \land b) & (QL) & \quad u(c(a), i(a, b)) \\
(QL) & \quad (\bar{a} \land \bar{b}) \lor b & (QL) & \quad u(i(c(a), c(b)), b)
\end{align*}
\]
Fuzzy implications
Axiomatic requirements

Ax1. \(a \leq b \) implies \(J(a, x) \geq J(b, x) \) monoticity in first argument

Ax2. \(a \leq b \) implies \(J(x, a) \leq J(x, b) \) monotonicity in sec. arg.

Ax3. \(J(0, a) = 1 \) dominance of falsity

Ax4. \(J(1, b) = b \) neutrality of truth

Ax5. \(J(a, a) = 1 \) identity

Ax6. \(J(a, J(b, x)) = J(b, J(a, x)) \) exchange property

Ax7. \(J(a, b) = 1 \) iff \(a \leq b \) boundary condition

Ax8. \(J(a, b) = J(c(b), c(a)) \) contraposition

Ax9. \(J \) is a continuous function continuity

Fuzzy implications
How to select fuzzy implication

Criteria related to fuzzy inference rules
modus ponens, modus tollens, hypothetical syllogism.

Idea: If reduced to crisp sets, these rules should coincide with corresponding classical inference rules.

More formally: for fuzzy sets \(A(x), B(y) \) representing truth values by membership grades in \([0,1]\)

\[
B(y) = \sup_{x \in X} i(A(x), J(A(x), B(y))) \text{ modus ponens}
\]

\[
c(A(x)) = \sup_{y \in Y} i(c(B(y)), J(A(x), B(y))) \text{ modus tollens}
\]

\[
J(A(x), C(z)) = \sup_{y \in Y} i(J(A(x), B(y)), J(B(y), C(z))) \text{ hypoth. sylog.}
\]

should hold.

Look at Table 11.2, Table 11.3, and Table 11.4 (pp. 315-317).

One good choice:

\[
J_s(a, b) = \begin{cases}
1 & a \leq b \\
0 & a > b
\end{cases}
\]

One frequently used implication: Łukasiewicz

\[
J_a(a, b) = \min[1, 1 - a + b]
\]
Binary fuzzy relations

A super-brief introduction

- Binary fuzzy relations – definition Chapter 5.3

To represent (fuzzy) binary relations, membership matrices are convenient.

\[R = [r_{xy}], \quad \text{where } r_{xy} = R(x, y). \]

An example:
Two fuzzy binary relations, \(P(X, Y) \) and \(Q(Y, Z) \) are given:

\[
\begin{align*}
P & = \begin{bmatrix}
0.3 & 0.5 & 0.8 \\
0.0 & 0.7 & 1.0 \\
0.4 & 0.6 & 0.5
\end{bmatrix} \\
Q & = \begin{bmatrix}
0.9 & 0.5 & 0.7 & 0.7 \\
0.3 & 0.2 & 0.0 & 0.9 \\
1.0 & 0.0 & 0.5 & 0.5
\end{bmatrix}.
\end{align*}
\]

We read that, e.g.,
\[\text{dom } P(x_2) = \max[0.0, 0.7, 1.0] = 1.0, \]
\[\text{ran } Q(y_3) = \max[0.7, 0.0, 0.5] = 0.7. \]
Binary fuzzy relations

A super-brief introduction

We can also determine

\[R = P \circ Q = [r_{ij}] = [p_{ik}] \circ [q_{kj}] = [\max_k \min(p_{ik}, q_{kj})] \]

\[
R =
\begin{bmatrix}
0.3 & 0.5 & 0.8 \\
0.0 & 0.7 & 1.0 \\
0.4 & 0.6 & 0.5
\end{bmatrix}
\circ
\begin{bmatrix}
0.9 & 0.5 & 0.7 & 0.7 \\
0.3 & 0.2 & 0.0 & 0.9 \\
1.0 & 0.0 & 0.5 & 0.5
\end{bmatrix}
\]

\[
=
\begin{bmatrix}
0.8 & 0.3 & 0.5 & 0.5 \\
1.0 & 0.2 & 0.5 & 0.7 \\
0.5 & 0.4 & 0.5 & 0.6
\end{bmatrix}.
\]

For example

\[t_{23} = \max[\min(0.0, 0.7), \min(0.7, 0.0), \min(1.0, 0.5)] \]
\[= \max[0.0, 0.0, 0.5] = 0.5. \]

Inference rules

Fuzzy inference rules are basis for approximate reasoning.

As an example, three classical inference rules

(Modus ponens, Modus Tollens, Hypothetical syllogism)

are generalized by using **compositional rule of inference**

For a given fuzzy relation \(R \) on \(X \times Y \), and a given fuzzy set \(A' \) on \(X \), a fuzzy set \(B' \) on \(Y \) can be derived for all \(y \in Y \), so that

\[B'(y) = \sup_{x \in X} \min[A'(x), R(x, y)]. \]

In matrix form, compositional rule of inference is

\[B' = A' \circ R \]

Approximate reasoning

- Inference rules from conditional fuzzy propositions
 Chapter 8.6
- Multiconditional approximate reasoning
 Chapter 11.4

Inference rules

Fuzzy propositions as relations

The fuzzy relation \(R \) is, e.g., given by (one or more) conditional fuzzy propositions.

For a given fuzzy proposition

\[p : \text{If } \mathcal{X} \text{ is } A, \text{ then } \mathcal{Y} \text{ is } B \]

a corresponding fuzzy relation is

\[R(x, y) = \mathcal{J}[A(x), B(y)], \quad \text{for all } x \in X, y \in Y \]

where \(\mathcal{J} \) stands for a fuzzy implication.
We conclude that

$\mathcal{Y} \text{ is } \mathcal{Y}'$.

In this case,

$$R(x, y) = \mathcal{J}[A(x), B(y)]$$

and

$$B'(y) = \sup \min_{x \in \mathcal{X}} [A'(x), R(x, y)].$$

Inference rules

Generalized modus tollens

Rule: If \mathcal{X} is A, then \mathcal{Y} is B

Fact: \mathcal{Y} is B'

Conclusion: \mathcal{X} is A'

In this case,

$$R(x, y) = \mathcal{J}[A(x), B(y)]$$

and

$$A'(x) = \sup \min_{y \in \mathcal{Y}} [B'(y), R(x, y)].$$

Example:

Let $X = \{x_1, x_2, x_3\}$ and $Y = \{y_1, y_2\}$ be the sets of values of variables \mathcal{X}, \mathcal{Y}.

Let $A = 0.5/x_1 + 1/x_2 + 0.6/x_3$ and $B = 1/y_1 + 0.4/y_2$.

Let $A' = 0.6/x_1 + 0.9/x_2 + 0.7/x_3$.

Let $R(x, y) = \mathcal{J}[A(x), B(y)] = \min[1, 1 - A(x) + B(y)]$.

By using Generalized modus tollens, derive the conclusion \mathcal{X} is A'.

We compute:

$$R = 1/x_1 + 1/x_2 + 1/x_3 + 0.4/x_2 + 0.4/x_2 + 1/x_3, y_1 + 0.8/x_3, y_2$$

$$A'(x_1) = \sup \min_{y \in \mathcal{Y}} [B'(y), R(x, y)]$$

$$= \max[\min(0.9, 1), \min(0.7, 0.9)] = \max[0.9, 0.7] = 0.9$$

$$A'(x_2) = \sup \min_{y \in \mathcal{Y}} [B'(y), R(x, y)]$$

$$= \max[\min(0.9, 1), \min(0.7, 0.4)] = \max[0.9, 0.4] = 0.9$$

$$A'(x_3) = \sup \min_{y \in \mathcal{Y}} [B'(y), R(x, y)]$$

$$= \max[\min(0.9, 1), \min(0.7, 0.8)] = \max[0.9, 0.7] = 0.9$$

We conclude that $A' = 0.9/x_1 + 0.9/x_2 + 0.9/x_3$.

Approximate Reasoning

Introduction

Fuzzy Sets and Fuzzy Techniques
Inference rules

Generalized hypothetical syllogism

For variables \(\mathcal{X}, \mathcal{Y}, \mathcal{Z} \) taking values from sets \(X, Y, Z \) respectively, and \(A, B, C \) being fuzzy sets on \(X, Y, Z \), respectively:

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule 1:</td>
<td>If (\mathcal{X}) is (A), then (\mathcal{Y}) is (B)</td>
</tr>
<tr>
<td>Rule 2:</td>
<td>If (\mathcal{Y}) is (B), then (\mathcal{Z}) is (C)</td>
</tr>
</tbody>
</table>

Conclusion: If \(\mathcal{X} \) is \(A \), then \(\mathcal{Z} \) is \(C \)

In this case, three relations are defined:

\[
R_1(x, y) = \mathcal{J}[A(x), B(y)] \\
R_2(y, z) = \mathcal{J}[B(y), C(z)] \\
R_3(x, z) = \mathcal{J}[A(x), C(z)].
\]

The generalized hypothetical syllogism holds if

\[
R_3(x, z) = \sup_{y \in Y} \min[R_1(x, y), R_2(x, y)]
\]

or, in matrix notation, if

\[
R_3 = R_1 \circ R_2.
\]

Multifocal approximate reasoning

General schema is of the form:

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule 1:</td>
<td>If (\mathcal{X}) is (A_1), then (\mathcal{Y}) is (B_1)</td>
</tr>
<tr>
<td>Rule 2:</td>
<td>If (\mathcal{X}) is (A_2), then (\mathcal{Y}) is (B_2)</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>Rule n:</td>
<td>If (\mathcal{X}) is (A_n), then (\mathcal{Y}) is (B_n)</td>
</tr>
</tbody>
</table>

Fact: \(\mathcal{X} \) is \(A' \)

If \(A', A_j \) are fuzzy sets on \(X \), \(B', B_j \) are fuzzy sets on \(Y \), for all \(j \).

Example:

Let \(X = \{x_1, x_2, x_3\} \), \(Y = \{y_1, y_2\} \), and \(Z = \{z_1, z_2\} \) be the sets of values of variables \(\mathcal{X}, \mathcal{Y}, \mathcal{Z} \).

Let \(A = 0.5/x_1 + 1/x_2 + 0.6/x_3 \), \(B = 1/y_1 + 0.4/y_2 \), \(C = 0.2/z_1 + 1/z_2 \).

Let

\[
R(x, y) = \mathcal{J}[A(x), B(y)] = \begin{cases}
1 & a \leq b \\
0 & a > b \end{cases}
\]

Check if generalized hypothetical syllogism holds.

We write

\[
R_1 = \begin{bmatrix} 1 & 0.4 \\ 1 & 0.4 \end{bmatrix}, \quad R_2 = \begin{bmatrix} 0.2 & 1 \\ 0.2 & 1 \end{bmatrix}, \quad R_3 = \begin{bmatrix} 0.2 & 1 \\ 0.2 & 1 \end{bmatrix}
\]

and we check that \(R_1 \circ R_2 = R_3 \).

Multifocal approximate reasoning

Method of interpolation

Most common way to determine \(\mathcal{B}' \) is by using method of interpolation.

Step 1. Calculate the degree of consistency between the given fact and the antecedent of each rule.

Use height of intersection of the associated sets:

\[
r'_j(A') = h(A' \land A_j) = \sup_{x \in X} \min[A'(x), A_j(x)].
\]

Step 2. Truncate each \(B_j \) by the value \(r'_j(A') \) and determine \(\mathcal{B}' \) as the union of truncated sets:

\[
\mathcal{B}'(y) = \sup_{j \in \mathbb{N}_n} \min[r'_j(A'), B_j(y)], \quad \text{for all } y \in Y.
\]

Note that interpolation method is a special case of the composition rule of inference, with

\[
R(x, y) = \sup_{j \in \mathbb{N}_n} \min[A_j(x), B_j(y)]
\]

where then \(\mathcal{B}'(y) = \sup_{x \in X} \min[A'(x), R(x, y)] = (A' \circ R)(y) \).
Multiconditional approximate reasoning

Method of interpolation-Example

An application
Region growing based on fuzzy rule based system

Fig. 7: An example for the evaluation of the fuzzy rule-based homogeneity criterion.