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Abstract

Skeletonization is a way to reduce dimensionality of digital objects. Here, we present an algorithm that computes the

curve skeleton of a surface-like object in a 3D image, i.e., an object that in one of the three dimensions is at most two-

voxel thick. A surface-like object consists of surfaces and curves crossing each other. Its curve skeleton is a 1D set

centred within the surface-like object and with preserved topological properties. It can be useful to achieve a qualitative

shape representation of the object with reduced dimensionality. The basic idea behind our algorithm is to detect the

curves and the junctions between different surfaces and prevent their removal as they retain the most significant shape

representation. � 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Skeletonization is a way to reduce dimensio-
nality of digital objects. For reduction of objects
in 2D images to 1D skeletons (see, e.g., Suen
and Wang, 1994; Sanniti di Baja and Thiel, 1996;
Svensson et al., 1999a); from 3D objects to 2D
surface skeletons (see, e.g., Bertrand, 1995; Borg-
efors et al., 1999; Sanniti di Baja and Svensson,
2000b); and from 3D objects to 1D curve skeletons
(see, e.g., Bertrand and Aktouf, 1994; Pal�aagyi and
Kuba, 1999; Saha et al., 1997). For an open sur-

face in a 3D image, skeletonization results in a
curve, as in (e.g., Nystr€oom et al., 2001a). All above
papers regard discrete approaches to skeletoniza-
tion. Alternative approaches can be found, e.g.,
in (Attali and Montanvert, 1997; Leymarie and
Kimia, 2001).

We follow the discrete approach and, here, we
deal with open surfaces or rather surface-like ob-
jects, i.e., objects that in one of the three dimen-
sions are at most two-voxel thick. Examples of
surface-like objects are the sets resulting after a
skeletonization process from 3D solid objects to
their surface skeletons. We are interested in com-
puting the curve skeletons of surface-like objects.
The curve skeleton is a 1D set centred within the
object, with the same topological properties. Of
course, the original object can not be recovered
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starting from its curve skeleton, but the curve
skeleton is still useful to achieve a qualitative, and
to a certain extent quantitative, shape representa-
tion of the object with reduced dimensionality. It is
particularly important to identify the voxels con-
stituting the curve skeleton in such a way that
shape information is retained as much as possible.
In fact, the bottleneck in the practical use of the
curve skeleton is that reduction of dimensionality
unavoidably causes loss of shape information.

A crucial point in curve skeletonization is the
detection of the end-points, i.e., the voxels that
in the obtained curve skeleton are delimiting pe-
ripheral branches. When, during curve skeleton-
ization, part of the surface is transformed into a
1D set, the voxels delimiting this 1D set could be
removed without altering topology. However,
their removal would cause unwanted shortening
and thereby important shape information would
be lost. End-point detection criteria based on the
number (and possibly the position) of neighbour-
ing voxels are blind in the sense that it is not
known a priori which end-points (and, hence,
which branches) the curve skeleton will have. In
fact, peripheral parts of the surface could consist
of identical local configurations of object voxels
that are differently oriented. Thus, depending on
the order in which voxels are checked for removal,
some of these configurations may originate end-
points and, hence, skeleton branches, while other
configurations may be completely removed. More

reliable end-point detection criteria are based on
geometrical properties, e.g., end-points could be
detected in correspondence with convexities on the
border of the object.

We present an algorithm to compute the curve
skeleton from a surface-like object and use geo-
metrical information to automatically ascribe to
the curve skeleton the voxels that will play the role
of end-points in the curve skeleton.

A surface-like object consists of surfaces and
curves crossing each other. The basic idea be-
hind our algorithm is to detect the curves and the
junctions between different surfaces and prevent
their removal as they retain the most significant
shape representation. This would avoid unwanted
shortening of future skeletal branches without
need of any specific end-point detection crite-
rion. To implement our idea, a classification of
the voxels belonging to the surface-like object is
necessary to distinguish junction, inner, edge, and
curve voxels, see Section 2. In Fig. 1, a surface-like
object, top, and its resulting classes, bottom, are
shown. All curve voxels have to be ascribed to the
curve skeleton. Among junctions, we distinguish
branches, i.e., junctions having at least one free
tip, and loops. All branches that are peripheral
junctions carry shape information and have to be
ascribed to the curve skeleton. In the example
shown in Fig. 1, the only branch that has not to be
ascribed to the curve skeleton is the non-peripheral
junction pointed out by the arrow. The junctions

Fig. 1. A surface-like object, top, with its classification, bottom.
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constituting a loop, i.e., delimiting a surface part,
will, if not removed, prevent the skeletonization
process to produce a curve skeleton.

Our algorithm computes the curve skeleton in
two steps, both based on iterated edge voxel re-
moval. During the first step, all curve and junction
voxels found in the original surface-like object
are prevented from being removed. During the
second step, also voxels initially classified as junc-
tion voxels are candidate for removal, if they are
now classified as edge voxels (see Section 4 for
details).

The algorithm has been introduced and out-
lined in (Nystr€oom et al., 2001a). The aspects we
have investigated in more detail in this paper are
the description of the classification algorithm used
to distinguish the various kinds of voxels in the
surface-like object (Sanniti di Baja and Svensson,
2000a), and the use of a simplification technique to
remove noisy branches from the surface-like object
before applying skeletonization (Borgefors et al.,
2000). A brief description of the simplification
is given in Section 3. The performance of our
curve skeletonization algorithm can be found in
Section 5.

2. Classification

We refer to digital volume images consisting of
surface-like objects and background. The 26-con-
nectedness is chosen for the surface-like object S
and the 6-connectedness for the background.

Classification of the voxels in a surface was
suggested in (Malandain et al., 1993; Saha and
Chaudhuri, 1994). A voxel is classified after in-
vestigating its 3 � 3 � 3 neighbourhood. That
classification works for an ‘‘ideal’’ surface, i.e., a
surface which is one-voxel thick everywhere.
However, even ideal surfaces may cross each other
in such a way that they produce a two-voxel thick
junction whose voxels could not be identified as
junction voxels by the criteria suggested by
Malandain et al. (1993) or Saha and Chaudhuri
(1994). In general, that classification fails when
applied to surface-like objects that are two-voxel
thick, e.g., surface skeletons of 3D objects having
regions that are an even number of voxels thick.

The 26-neighbours of any voxel v are called
face, edge, and point neighbours, depending on
whether they share a face, an edge, or a point with
v. The 3 � 3 � 3 set centred on v is called the 26-
neighbourhood, to take into account that this set
includes, besides v, all the 26-neighbours of v. If
the eight point neighbours of v are disregarded
in the 26-neighbourhood, the obtained set is called
the 18-neighbourhood. Since we are dealing with
surface-like objects, i.e, objects that can be two-
voxel thick, we also consider 4 � 3 � 3, 3 � 4 � 3,
and 3 � 3 � 4 sets. In particular, if the eight vox-
els in the corners of the 4 � 3 � 3 ð3 � 4 � 3;
3 � 3 � 4Þ set are disregarded, the obtained set is
called the 27-neighbourhoodx (27-neighbour-
hoody , 27-neighbourhoodz). See Fig. 2, where the
27-neighbourhoody of v is shown, and the two
voxels v and u are face neighbours in the y-direc-
tion. We call u the face neighbour of v in the x-, y-,
or z-direction.

For any voxel v,

• N 26 denotes the number of 26-connected object
components in the 26-neighbourhood of v,

• N
18

f denotes the number of 6-connected back-
ground components in the 18-neighbourhood
of v, having v as a face neighbour,

• bNN 27
f denotes the number of 6-connected back-

ground components in the 27-neighbour-
hoodx;y;z of v, having v or u as a face neighbour.

We use the computationally convenient algo-
rithm introduced by Borgefors et al. (1997) for
computing N 26 and N

18

f , suitably extended to deal
also with a larger neighbourhood necessary for the
computation of bNN 27

f .
A saddlex;y;z is a set of four voxels aligned along

the x-, y-, or z-direction, where the two internal
voxels belong to S and the two external voxels to
the background.

Fig. 2. The 27-neighbourhoody of v.
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When working with surface-like objects, to
compute the curve skeleton we need to distinguish
the following classes: inner, curve, edge, and
junction voxels. We define the border of S as the
set including all curve and edge voxels. The fol-
lowing criteria are used to obtain the classification.

Voxels for which

(1) N 26 P 2 and N
18

f P 1 are classified as curve
voxels.

(2) N 26 ¼ 1 and N
18

f > 2 are classified as junction
voxels.

(3) N 26 ¼ 1 and N
18

f ¼ 0 are classified as junction
voxels.

(4) N 26 ¼ 1 and N
18

f ¼ 2 can be one-voxel thick
inner voxels, or two-voxel thick junction voxels.

(5) N 26 ¼ 1 and N
18

f ¼ 1 can be border voxels,
two-voxel thick inner voxels, or two-voxel
thick junction voxels.

For any voxel v satisfying condition (4) (con-
dition (5)) further processing is necessary. The
voxel v is checked to see whether it is in a saddlex;y;z
with a voxel, u, also satisfying condition (4) (con-
dition (5)). Each voxel, v, in a saddlex;y;z is there-
after checked in the 27-neighbourhoodx;y;z. Voxels
for which

(6) bNN 27
f ¼ 2 are classified as inner voxels.

(7) bNN 27
f > 2 are classified as junction voxels.

(8) bNN 27
f ¼ 1 are classified as border voxels (and

can as such be either edge voxels or curve vox-
els).

The voxels satisfying condition (4) that are not
in a saddlex;y;z are classified as inner voxels.

The voxels satisfying condition (5) that are not
in a saddlex;y;z are classified as border voxels.

Finally, for all border voxels, i.e., voxels satis-
fying conditions (5) or (8), a decision can be taken
on whether they are edge or curve voxels. Any
border voxel v is classified as a curve voxel if

(9) it has all its neighbours in S classified as bor-
der voxels, or

(10) it has a neighbouring voxel, u, that is curve
voxel, such that u does not have a neighbour
that is an inner voxel.

The remaining border voxels are classified as edge
voxels.

For the sake of completeness, we point out that
a few number of special cases occurring in pres-
ence of junctions thicker than two voxels in the x-,
y-, or z-direction have to be treated separately to
get a classification consistent with the classification
that would be achieved in case of an ‘‘ideal’’ sur-
face. These cases have been exhaustively consid-
ered in (Sanniti di Baja and Svensson, 2000a).
After the classification process, each voxel is iden-
tified as belonging to only one of the classes and
there are no unclassified voxels.

3. Surface simplification

A surface-like object, S, with jagged borders
might cause problems when computing the curve
skeleton as the jaggedness causes the creation of a
number of unnecessary curves. This is particularly
true when S is the result of a surface skeletoniza-
tion algorithm applied to 3D solid objects. The
goal of surface simplification is to remove the
jaggedness of the border of S while preserving
the topology and without significantly altering its
shape.

The border of S can be rather jagged due to the
presence of a number of short curves, possibly
two-voxel thick. The idea behind the simplification
is to detect (peripheral) curves and remove them if
they are shorter than a chosen threshold, without
affecting the remaining curves. The threshold is set
equal to the length of the longest curve we accept
to remove. Obviously, a classification of the voxels
of S is necessary before simplification. We base
our simplification on the algorithm introduced in
(Borgefors et al., 2000), but using the current,
improved, classification.

After the voxels of S have been classified, to
identify curves shorter than the threshold, we
propagate along each curve a marker starting from
the curve voxel(s) having inner neighbours. For
simplicity, we denote as connecting voxels the vox-
els of the curve from which the marker is propa-
gated. Each curve has from one to four connecting
voxels, depending on the thickness of the curve.
Propagation is done parallelwise, for a number
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of steps equal to the threshold. In this way,
the voxels that are reached by the marker are ex-
actly those at distance from the connecting voxels
less than or equal to the maximal length a curve
can have to be removed. Propagation according to
the 26-connectedness is chosen since the object is
26-connected. At the end of propagation, curves
whose voxels are all marked can be sequentially
removed, provided that topology is not altered,
i.e., provided that each curve voxel has N 26 ¼ 1
and N

18

f ¼ 1 when visited. Removal is repeated
until no further changes occur. In turn, curves
whose voxels are not all marked are longer
than the simplification threshold. Thus, they are
kept.

We remark that also two-voxel thick short
curves linking distinct parts of S are thinned to
one-voxel thickness during simplification. Thus, to
remove only peripheral short curves, while leaving
all other curves untouched, a curve recovery pro-
cess is performed. This restores all possibly deleted
voxels in two-voxel thick linking curves, provided
that they have a non-deleted curve voxel among
their neighbours.

An example of the simplification of a surface-
like object is shown in Fig. 3. All curves of length
at most three voxels have been removed provided
that the topology is not altered.

4. Curve skeletonization

The curve skeleton is computed in two steps
using an iterative algorithm. For both steps, each
iteration is divided into two subiterations respec-
tively dealing with (i) detection of edge voxels and
(ii) voxel removal by means of topology preserving
removal operations. The only difference between

the two steps regards the voxels that, at each it-
eration, are candidate for removal, i.e., the edge
voxels.

In the first step, only voxels initially (i.e., on the
surface-like object, S) classified as inner (or edge)
voxels are checked when identifying the edge vox-
els. Voxels initially classified as inner voxels may,
during the process, become edge voxels, if their
neighbourhood has been suitably modified due to
removal of neighbouring voxels.

We do not need any end-point detection crite-
rion because (curve and) junction voxels are never
checked to establishwhether they have become edge
voxels, iteration after iteration, so that no unde-
sirable branch shortening is caused. On the con-
trary, this would have been the case if also the
voxels initially classified as junction voxels were
checked. In fact, voxels placed on the free tips of
junctions could be classified as edge voxels and, as
such, could be removed.

In the second step, also voxels initially classified
as junction voxels are checked when identifying the
edge voxels. Edge voxels that have been trans-
formed into curves during the first step are auto-
matically preserved from removal. The remaining
voxels initially classified as junction voxels are in-
terpreted as edge voxels, if their neighbourhood
has been modified due to removal of neighbouring
voxels.

Standard topology preserving removal opera-
tions, e.g., those described in (Svensson et al.,
1999b), are sequentially applied in both steps. At
the beginning of each iteration, the set of edge
voxels is determined on which to perform removal.
Edge detection and voxel removal are iterated
until no more edge voxels are identified and pos-
sibly removed.

If the set of junctions of S does not include any
loop, the curve skeleton is obtained directly after
the first step. In this case, the second step termi-
nates after the first subiteration, when the classi-
fication shows that no edge voxels can be found.
The curve skeleton consists of the initial curve and
junction voxels, as well as voxels necessary for
connectedness among curves and junctions. In
presence of loops in the set of junctions, the second
step is effective as the first step has caused some
junctions initially forming loops (see Fig. 1) to

Fig. 3. A surface-like object, left, and the result after simplifi-

cation, right.

S. Svensson et al. / Pattern Recognition Letters 23 (2002) 1419–1426 1423



become edge voxels. (Of course, the first step may
have caused some junctions to be transformed into
inner voxels, e.g., the junction voxels pointed out
by the arrow in Fig. 1). In this way, the skeleton-
ization can continue towards the innermost part of
S.

Note that loops in the set of junctions do not
necessarily correspond to tunnels in S, see again
Fig. 1. Hence, their presence in the curve skeleton
is not permitted as skeletonization is requested to
be topology preserving. Thus, it is not possible to
simply take all curves and junctions together with
voxels necessary for connectedness to obtain a
topologically correct curve skeleton.

The obtained curve skeleton is not necessarily
one-voxel thick everywhere. Analogously to the
term surface-like object the obtained set could be
referred to as a curve-like object. Final reduction to
one-voxel thickness could be achieved by resorting
to standard thinning.

For the sake of completeness, we point out that
S could have been reduced to one-voxel thickness
before extracting the curve skeleton. One reason
why we prefer not to do so, is that the resulting
curve skeleton could be more than one-voxel thick
anyway. This is the case, for instance, when com-
puting the curve skeleton of a rectangle, one-voxel
thick in one direction, but with its shortest side
consisting of an even number of voxels. Hence,
final thinning would be necessary in any case, if
one-voxel thickness is considered of interest.

The result of curve skeletonization on the small
example in Fig. 1 is shown in Fig. 4. The set ob-
tained after the first step is shown to the left. It can
be noted that some of the voxels classified as
junction voxels in S are skeleton branches, while
other junction voxels, e.g., those constituting the
loop, prevent skeletonization to continue. In fact,

voxels classified as junction voxels in S are
not checked to verify if they have become edge
voxels. Hence, they cannot be removed during the
first step. During the second step, all voxels are
checked to verify if they have become edge voxels,
including those classified as junction voxels in S.
Among those, the peripheral branches are classi-
fied as curve voxels and, hence, ascribed to the
curve skeleton; those in the loop are classified as
edge voxels and, hence, possibly removed; and
those in the non-peripheral branch are classified as
inner voxels. The set resulting after the second step
is shown to the right.

5. Performance

Projections of thin complex structures are hard
to visualize in a descriptive way. In order to ap-
preciate the performance at voxel level, we are
showing the results of our algorithm on rather
small synthetic objects.

The algorithm is first illustrated on two exam-
ples showing the importance of the simplification
process. For both examples, the threshold for
curve length is set to 3. In Fig. 5, top left, the

Fig. 4. Results after the first step, left and the second step,

right, of curve skeletonization applied to the surface-like object

shown in Fig. 1.

Fig. 5. Surface-like object before and after simplification, top.

The corresponding curve skeletons, bottom.
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surface skeleton resulting from a toy object, a dog,
is shown. Some peripheral short curves have been
created by the surface skeletonization method or
by some noise on the border of the original object.
If curve skeletonization is directly applied to this
surface-like object, the set shown in Fig. 5, bottom
left, is obtained. In turn, if a simplification of the
surface-like object is computed before curve skel-
etonization, see Fig. 5, top right, a simpler curve
skeleton, still reflecting the shape of the surface-
like object, is obtained, see Fig. 5, bottom right.

In the same way as for the previous example,
Fig. 6, top, shows the surface-like object before
and after the simplification, while Fig. 6, bottom,
the corresponding curve skeletons. This example is
also interesting to point out that curve skeleton
branches originate also from convexities on the
border of the surface-like object. In fact, convexi-
ties like the ones in the example (angle less than
90�) during iterated voxel removal are shrunk to
curves. Although these curves are very short as
they consist of one or two voxels, they are pre-
vented from removal since all curves are preserved
by our algorithm.

Two other examples, Fig. 7, top, are surface-
like objects, representing a chair and a cupboard, respectively. Both these objects are not everywhere

one-voxel thick. In these cases, simplification is not
applied since these surfaces are synthetic ob-
jects directly created and all the details have to
be considered as significant. The resulting curve
skeletons are shown in Fig. 7, bottom.

6. Conclusion

In this paper, we have presented an algorithm
that computes the curve skeleton of a surface-like
object in a 3D image. The algorithm is based on
the classification of the surface-like object and in
particular on the detection of curve and junction
voxels. A simplification step, essential when work-
ing with real images, is also included to remove
from the surface-like object short noisy peripheral
curves that would otherwise lead to a curve skel-
eton with a complex structure so preventing its
actual utilization. If desired, a final thinning can be
applied to the curve skeleton to have one-voxel
thickness everywhere.

Fig. 6. Surface-like object before and after simplification, top.

The corresponding curve skeletons, bottom.

Fig. 7. Two surface-like objects, top, and their curve skeletons,

bottom.
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A remarkable feature of the algorithm is that
the end-points are automatically identified by
preventing from removal curve and (some of the)
junction voxels. Another important feature, par-
ticularly of interest when the surface-like object is
the result from a surface skeletonization algorithm
applied to a 3D solid object, is that our curve
skeletonization algorithm equally works on one-
voxel and two-voxel thick surfaces.

The computational cost of the curve skeleton-
ization algorithm is a couple of minutes for com-
plex real objects in images of size 128 � 128 � 128
voxels. The main cost is due to the (non-opti-
mized) classification process that is repeatedly used
during curve skeletonization. A first use in a
medical application is presented in (Nystr€oom et al.,
2001b).
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