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Abstract  

Efficient shape representations are important for many image processing appfications. Distance transform based algorithms 
can be used to compute the set of centres of maximal discs/spheres, that represents a shape. This paper describes a method 
that reduces this set, under the constraint that the shape can be exactly reconstructed using the reverse distance transformation. 
The reduced set can be used in the same ways as the "standard" set, e.g. for efficient storage, segmentation into parts of 
different thickness, shape manipulation, and skeletonization, all in 2D and 3D. © 1997 Elsevier Science B.V. 
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1. I n t r o d u c t i o n  

In Fig. 1 a shape constructed by overlapping two 
digital discs (in the chessboard metric) is shown to 
the left. In the middle the same shape is shown with its 
two necessary and sufficient 6entres of maximal discs. 
If  the centres are labelled with the respective radii, 
this is an efficient representation of the shape. This is, 
however, not the set of centres of maximal discs result- 
ing from thinning, which is shown to the right. Here 
we present a reduction algorithm for the standard set 
of  Centres of Maximal Discs/Spheres (CMD/CMS),  
which is a promising approach for quantification and 
manipulation of shape. It also promises to decrease the 
storage requirements significantly, which is important 
in 3D. The original shape can still be exactly recon- 
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structed. In the case in Fig. 1, our method will result 
in the desired set of CMD in the middle image. 

Our approach to obtain a reduced set of pix- 
els/voxels is to compute the set of CMD/CMS 
from the distance transform of a binary image (Ar- 
celli and Sanniti di Baja, 1988; Borgefors et al., 
1991; Borgefors, 1993). While it is true that no max- 
imal disc/sphere is completely covered by a single 
other maximal disc/sphere (this is in fact the defini- 
tion of CMD/CMS),  it is common that a maximal 
disc/sphere is covered by a set of other maximal 
discs/spheres. Thus, the standard set of CMD/CMS 
contains a lot of unnecessary data. Our algorithm 
removes (most of) these redundant CMD/CMS; 
hence, the shape representation is further reduced. In 
2D, examples are shown for the city block (D 4) and 
chessboard (D 8) metrics, for the weighted 3-4 and 
5-7-11 metrics, and for the Euclidean metric. In 3D, 
examples are shown for the D 6, D 26 and weighted 
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Fig. 1. Two fused digital discs (left). The desired set of centres of maximal discs in black (middle). The standard set of centres of 
maximal discs in black (right). 

3-4-5 metrics. In a weighted metric the local distance 
between a pixel/voxel and its neighbours is set to dif- 
ferent values for different neighbours, e.g. in the 3-4 
metric the local distance between edge-neighbours is 
3 and between point-neighbours 4. See (Borgefors, 
1984) for details on different metrics. 

di Baja, 1988). If the current voxel has a greater value 
than each neighbouring voxel minus the correspond- 
ing local distance to the current voxel, it is a CMS. 

The shape is easily reconstructed from the set of 
CMD/CMS using the r e v e r s e  distance transformation, 
see the next section. 

2. Centres of maximal discs/spheres 

To compute the CMD in 2D, the binary image con- 
taining the shape(s) is first converted to a distance 
transform. To detect the CMD in the distance trans- 
form, one raster scan is performed. The deletion or re- 
tention of each pixel depends on the configuration of 
the pixels in a local neighbourhood. How to compute 
the set of CMD has been described earlier in the liter- 
ature for the city block, chessboard, 3-4 (Arcelli and 
Sanniti di Baja, 1988), 5-7-11 (Borgefors, 1993), and 
Euclidean (Borgefors et al., 1991 ) metrics. In the city 
block and chessboard distance transforms, the CMD 
are simply the local maxima. 

The same principle can be used for volumetric (3D) 
shapes as for fiat shapes, where the algorithm uses a 
3 x 3 x 3 neighbourhood. In the D 6 and D 26 distance 
transforms the CMS are those voxels which are local 
maxima. The 3-4-5 metric is a reasonably good inte- 
ger approximation of the Euclidean metric (Borgefors, 
1996). The CMS are detected in the 3-4-5 distance 
transform in one raster scan. (The local distances are 
3, 4 and 5 for face-, edge and point-neighbours, re- 
spectively.) As for the 3-4 metric, the distance value 
3 first has to be substituted by the equivalence label 1, 
to avoid detection of false CMS (Arcelli and Sanniti 

3. Reverse distance transformation 

The reverse distance transformation can be used to 
reconstruct a shape from its set of CMD/CMS. It is 
also used in the reduction algorithm described in the 
next section. 

The input to the reverse distance transformation is a 
grey-level image with seed distance points in different 
positions, for example the set of CMD/CMS, The rest 
of the image is set to zero. Like the distance transfor- 
mation, the reverse distance transformation requires 
raster scans (two, except for the Euclidean distance) 
of the image, during which a number of the neighbours 
of every pixel/voxel are taken into account (Borge- 
fors, 1984; Ragnemalm, 1993). The algorithm per- 
forms a propagation with decreasing distances. Every 
pixel/voxel is assigned the maximum of the current 
pixel/voxel value and the difference between its al- 
ready visited neighbouring pixels/voxels and the cor- 
responding local distance to the current pixel/voxel. 

The algorithm for 2D images can be found in (Ar- 
celli and Sanniti di Baja, 1988; Borgefors et al., 1991 ), 
and for volume images in (Nystr6m and Borgefors, 
1995). 
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Fig. 2. The three masks used in the reverse Euclidean distance transformation. Row-wise scan from upper left to lower fight (left), 
row-wise scan from lower left to upper fight (middle), and column-wise scan from upper fight to lower left (fight). 

3.1. Euclidean metric 

The reverse distance transformation is straightfor- 
ward to implement for all the metrics used, except 
for the Euclidean one (Borgefors et al., 1991). Diffi- 
culties occur, that can be overcome, but special care 
is required when designing the algorithm even in the 
2D case. Therefore, we describe it here. To maintain 
precision we want to use integer arithmetic as much 
as possible. Hence, the seed distances should be the 
squared Euclidean distances. In three raster scans, val- 
ues are propagated in three images. The first image is 
initially the set of squared CMD. Eventually its other 
pixels will contain the value of the closest CMD. The 
other two images contain the horizontal and vertical 
distances, respectively, to the closest CMD, and are 
initialised to zero (vector length zero). Together they 
form the vector pointing to the position of the closest 
CMD. At each pixel position, some of the eight neigh- 
bours of the current position, see the masks in Fig. 2, 
from (Ragnemalm, 1993), are candidates to propagate 
their three values. The sum of each neighbour vector 
and the corresponding mask vector form a candidate 
vector. Real arithmetic is necessarily introduced when 
the candidate distance values are computed. A candi- 
date distance value for the current position is the dif- 
ference between the square root of a neighbour and 
the length of its candidate vector. The highest candi- 
date distance value gives values to the current position 
in the three images; a CMD value and the horizontal 
and vertical distances to the CMD. A simplification of 
(Borgefors et al., 1991 ) is that there is no need to dis- 
tinguish between pixels that are and are not CMD; the 

corresponding vector lengths are zero for the CMD. 
The extra vector length computation requires less time 
than checking whether every pixel belongs to the set of 
CMD. Finally, the true distance value for each pixel is 
computed as the difference between the square root of 
the value in the first image (the closest CMD) and the 
length of the corresponding vector. If only the shape 
is needed, it is found in the first image, as the set of 
pixels with values greater than zero. 

From the experiences with implementing the re- 
verse Euclidean distance transformation for 2D im- 
ages, together with the fact that at least four raster 
scans are necessary (Ragnemalm, 1993), we have de- 
cided not to extend it to volume images. It is quite 
possible though, if desired, but the simpler 3-4-5 dis- 
tance transformation should be a fair approximation 
in many cases. 

4. Reduction algorithm 

When the set of CMD/CMS has been computed, 
a reduction of the set by removing pixels/voxels 
containing redundant information can be performed. 
A CMD/CMS is redundant when its disc/sphere is 
covered by the union of some other discs/spheres; 
the shape can be reconstructed from the other 
discs/spheres. 

One approach to reducing this set is to keep a rela- 
tion table with a column for every CMD/CMS and a 
row for every border pixel/voxel in the shape (Nils- 
son and Danielsson, 1996). A table entry indicates 
whether a CMD/CMS covers a border pixel/voxel. 
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Fig. 3. The "car silhouette" example (top-left). The set of CMD is imposed in dark gray. The reduced set is imposed in black. The different 
metrics are city block (top-middle),  chessboard (top-right), 3-4 (bottom-left), 5-7-11 (bottom-middle) and Euclidean (bottom-right).  

The table is then reduced. This table will become a 
large data structure with increasing shape size (es- 
pecially for volumetric shapes), which is a compu- 
tational drawback. As only border pixels/voxels are 
considered, post-processing is necessary to remove 
holes/cavities, i.e. to cover interior parts not covered 
by the chosen set of CMD/CMS. 

In our approach there are no complex data struc- 
tures, and no need of post-processing, to produce a 
small set of CMD/CMS that is enough to reconstruct 
the shape. The 2D reduction algorithm has been de- 
scribed for the Euclidean distance transform in (Rag- 
nemalm and Borgefors, 1993). The algorithm for vol- 
ume images (Borgefors and Nystrfm, 1995) is a gen- 
eralization of the 2D algorithm. 

Step 1. A grey-level image containing the standard 
set of CMS is the input. The set of CMS is sorted, 
together with their positions, into a list according 
to increasing distance value. 

Step 2. A temporary image is used for storing the num- 
ber of spheres covering each voxel in the original 
shape. This image is obtained by traversing the list 

of CMS, generating the associated sphere for each 
distance value, and incrementing all the voxels in 
the temporary image corresponding to the spheres. 

Step 3. The list is traversed once more. For each CMS, 
inspect the corresponding sphere in the temporary 
image. If all its voxels have values greater than one, 
it is covered by at least one other maximal sphere. 
The CMS is not necessary for reconstructing the 
shape and can be removed. All voxels of the corre- 
sponding sphere are then decremented. 

In Step 3 it is necessary to process the list in in- 
creasing order to remove smaller spheres rather than 
larger spheres, as large spheres are perceived as more 
significant, and to increase the possibility of removing 
as many spheres as possible. For efficiency reasons, 
the sorted list is used in Step 2, as well. Generation of 
the associated spheres, by using the reverse distance 
transformation on the distance value, will then only 
be performed once per sphere size, rather than once 
per sphere. The spheres are, of course, generated with 
the same metric that was used for the distance trans- 
formation and the computation of the set of CMS. 



G. Borgefors, 1. NystrOm /Pattern Recognition Letters 18 (1997) 465-472 469 

J J 

~ , j J  i k ~ J  

J J 

Fig. 4. Rendered 3D car in different representations. Original (top-left). The reduced sets of CMS for the D 6 metric (top-right), D 26 

metric (bottom-left), and 3-4-5 metric (bottom-right). (Thanks to Dr Pieter Jonker, Delft University, The Netherlands, for letting us use 
the volume visualization software.) 

4.1. Implementation complexity 

Our implementation is written in C. When run on 
a DEC Alpha (a standard UNIX workstation) the re- 
duction time is, for example, in the order of a few 
minutes for shapes in 128 x 128 x 128 (2Mbyte) im- 
ages. The reconstruction from the reduced set takes 
approximately 10 seconds. 

Our reduction algorithm is using a list for the set 
of CMD/CMS and their positions, and two tempo- 
rary images (one to generate discs/spheres and one 
to store the number of discs/spheres covering each 
pixel/voxel in the original shape), so there are no 
complex data structures. 

5. Examples 

The example in Fig. 4 (top-left) is a synthetic "car" 
in a 64 x 64 x 64 image. It is constructed by combining 
a Euclidean sphere, and a rectangular block. Four short 
cylinders have been used as wheels. The silhouette of 
the car is used as an example in the 2D case. The car 
contains both curved and sharp borders, so none of (or 
all!) the different distance transforms are favoured. 

Fig. 3 shows the standard and reduced sets of CMD for 
different 2D metrics. Fig. 4 similarly shows different 
reduced sets of CMS for the 3D car. 

A comparison can be made of the reduction rates 
of the reduced set compared to the standard set of 
CMD/CMS for different metrics. In this example, the 
standard set of CMD is almost the same as the reduced 
set for the city block metric, while for the Euclidean 
metric there is a major reduction, and the standard 
set of CMS coincides with the reduced set for the D 6 
metric, while the 3-4-5 metric results in a reduction to 
less than half the set. See Table 1 for details. 

A non-synthetic example is a hand in a 170 x 150 x 
120 image. In Fig. 5 the result of a reduction of the 
hand can be seen. The original hand contains more 
than 400000 voxels. By representing it with its set of 
CMS, 8.4% of the voxels are needed. The reduced set 
contains 5.8% of the original voxels. 

6. Conclusions 

The standard set of centres of maximal discs/ 
spheres is usually far from optimal, in the sense that 
many CMD/CMS are not necessary for shape recon- 
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Fig. 5. To the left a hand. To the right a reduction of the hand using the 3-4-5 metric, containing 5.8% of the original voxels. (The 
copyright holders of  this hand are Professors Jun-ichiro Toriwaki and Kazuhiro Katada, Nagoya University, Japan.) 

Table 1 
The number of  CMD/CMS for the "car" before and after reduc- 
tion. The original shapes contain 941 pixels and 17919 voxels, 
respectively 

Metric Standard set Reduced set 

pixels % pixels % 

City block 79 8.4 73 7.8 
Chessboard 49 5.2 20 2.1 
3-4 99 10.5 21 2.2 
5-7-11 93 9.9 15 1.6 
Euclidean 94 10.0 14 1.5 

voxels % voxels % 

D 6 2223 12.4 2223 12.4 
D 26 515 2.9 131 0.7 
3-4-5 2351 13.1 931 5.2 

struction. Our algorithm reduces this set under the 
constraint that the shape still can be exactly recon- 
structed. The reduction of data is of even greater im- 
portance for volume images than for 2D images. The 
reduction rate is naturally both shape dependent and 
metric dependent, see Table 1. Note that the remain- 
ing set of CMD/CMS is not necessarily optimal, as 
the standard set is inspected in a fixed order. However, 
the results should be close to optimal in most cases. 

By discarding pixels/voxels having values less than 
a given threshold, the set may be further reduced, at 

the expense of losing fine details in the reconstructed 
shape. This can, in a more positive sense, be seen as 
noise reduction. 

The set of CMD/CMS is an equivalent representa- 
tion of the original shape, and can be used in itself, 
both for storing, manipulation and segmentation. It is, 
however, in all but the trivial cases, not connected and 
thus not topologically equivalent to the shape. A thin, 
topologically correct representation of a shape is the 
skeleton (Lam et al., 1992). Distance transform based 
algorithms have been used to generate skeletal repre- 
sentations of shape in 2D, e.g. (Sanniti di Baja and 
Thiel, 1996). 

The standard method to compute a skeleton based 
on a distance transform is to first detect the set of 
CMD and the saddle points, and then grow linking 
paths through the ascending gradient in the distance 
transform between them. As the set of CMD is "thick" 
(see Fig. 3), the skeleton will need post-processing 
to reduce it to unit thickness. This will remove CMDs 
arbitrarily. If  the set of CMD is first reduced as de- 
scribed here, the skeleton will become thinner and 
needs less post-processing. The final skeleton should 
contain more of the significant CMDs. The drawback 
is that many of the pixels that are removed will have 
to be added again, as they are necessary for connect- 
edness. 
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To date, not  much  has been wri t ten on dis tance 

t ransform based skele toniza t ion  a lgor i thms for  v o l u m e  

images,  but see (Sa i to  and Toriwaki ,  1995).  The  task 

is diff icult  due  to the diff icul ty o f  ident i fy ing  "saddle  

poin ts"  in the d is tance  transform. Fur ther  work  is nec- 

essary. 
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