Colour perception \& Colour names

Gunilla Borgefors, Vi2
gunilla@cb.uu.se

10 Oct. 2018

Life on Earth

4600 Mya	3750 Mya	2500 Mya	543 Mya
HADEAN	ARCHEAN	PROTEROZOIC	
Earth formed	Prokaryotes		Multicellular Complex
Earth formed	bacteria cyanobacteria	dinoflagellates yeasts amoebas	plants fungi animals
	light sensitive opsins and ch		

Protist with eye-spot

E. gracilis is a flagellate, that eats bacteria and has photosynthesis. It remains from before the plant-fungus-animal split.

Eyespot is used to move towards light for better photosynthesis.

Eyes

In the Archean a procaryote created a protein sensitive to blue light called an Opsin. This happened only once!

Eyes have developed independently at least 20 times, starting from a light-sensitive spot by:
bulg (most invertebrates)
pit (most vertebrates and octopi)
Computations show only 100000 generations needed from eye-spot to camera eye!

Opsins

Opsins changed to be most sensitive to different light wavelengths.

Red is hardest, as it has least energy
(dragonflies has the "reddest" opsin discovered).

Vertebrate opsins

Fish ~440 Mya

+ Rhodopsin for night vision

+ Rhodopsin for night vision

+ Rhodopsin for night vision

Monochromates

1

Dichromates

2

Trichromates

Tetrachromates

4

Pentachromates

5

Hexadecachromate

Human opsins

S, M, and L are found in the cones in he retina

Rhodopsine is found in the rods in he retina

Receptor pattern in retina

Human retina

S cone signal

light S cone colour

$$
\rightarrow
$$

$$
\rightarrow \quad \rightarrow
$$

$$
\rightarrow
$$

\rightarrow

$$
\rightarrow \quad-
$$

$$
\rightarrow
$$

$$
\rightarrow
$$

$$
\rightarrow
$$

$$
\rightarrow
$$

Optic nerve channels

Human opsins

Lightness $\quad \mathrm{M}+\mathrm{L}$
Hue1
M-L
"redness"
Hue2
S - (M+L) "blueness"

Lightness for shape, distance, movement
Colour for difference detection

Hering primaries (or "Urfarben")

1892 Hering suggested the
"opponent colour theory"...

$\mathrm{M}+\mathrm{L}$ max and min

L-M max and min

$\mathrm{S}-(\mathrm{M}+\mathrm{L})$ max and min

Ewald Hering 1834-1918

German physiologist
...even though he did not know about the three channels

Bird vision

Blue tit couple

The male has an UV-coloured head!

Laughing kookaburra

Four-colour vision is enhanced by five differently coloured oil droplets on the cones.

Red filters give better discrimination of greens.

Oils droplets are found in most types of eyes from earliest vertebrates onwards, but not in mammals. Different life-styles have different colour combinations. Kookaburras live in the forest.

Human eyes

The human eye is not the best - it is the brain that interprets signals that is unique.

For example: our retinas are thin and do less image processing than in other animals - so our vision is slower but more difficult to fool.

Colour discrimination

150 different hues
200 different lightnesses

150 saturations \square

\Rightarrow
about 4.5 million colours

Concepts and Names

There are concepts (sexual organ of plant)
and names
(flower, blomma, květina, цвет, fleur, gèlé, كل, kukka, 䜧, floro, 花)
Nature school: concepts are universal, only names are different

- thus all humans think the same (Chomsky, Pinker, ...)

Culture school: both concepts and names differ

- thus humans' thinking is influenced by their mother tongue (Sapir, Whorf*, ...)

Colour is used as a model, where concept = focus and range

* Not Worf!

Munsell colour chips

From: Munsell 1915: "Atlas of the Munsell Color System" Wadsworth-Howland Press, USA

Munsell colour chips

Focus - my most typical chip for "red" Range - all chips that I would call "red"

Mid 1800s

A number of people noticed the lack or strangeness of colour names in

- Indian Vedic Poems in Sanskrit
- Homer in Greek
- Old testament in Hebrew
- Quran in Arabic
- Sagas in Icelandic

Conclusion: colour vision was recently evolved (Darwin!) so ancient (and "primitive" people) where colour blind.

7 X X Chromosome with opsin gene
Normal colour vision

Normal colour vision

Prontanopia
 (red-green)

Deuteranopia
(red-green)
Tritanopia (rare!)
(blue-yellow)
M and L are less stable than S because they are evolutionary much younger

Colour "blindness"

Normal colour vision

Colour "blindness"

Prontanopia (red-green) (most mammals)

Colour "blindness"

Deuteranopia (red-green)

Colour "blindness"

Tritanopia blue-yellow

Normal colour vision

Prontanopia

Protanomaly

Deuteranopia

Deuteranomaly - most common

Colour "blindness"

Red-green blindness in about 8\% men and 7\% women.

Blue-yellow blindness in about 1\% both men and women.

1875: Lagerlunda train crash

Two trains collided just outside my hometown Linköping.
Why? (In several meanings...)

1875: Lagerlunda train crash

Holmgren concluded the driver drove against a red signal because he was red-green colour-blind!

He devised an easy-to-handle test set.

Fritiof Holmgren
1831-1897
Prof. UU

Holmgren test wools

In a very short time, all railway and marine men all over the world were tested for colour blindness...

1870s-90s: Studies of "primitive" tribes

Physiologists (e.g. studying Nubians at Berlin's zoo!)
Linguists studying native North American languages
Anthropologists going here and there
Missionaries going everywhere

Many had few colour names but all had equal colour vision!

Interest lost!

Conclusion:

The division of the colour spectrum is completely arbitrary!
and any ranking of languages and cultures became taboo
...but remember the Hering primaries

1969: New interest

Berlin \& Kay 1969:
"Basic color terms: Their Universality and Evolution"

Brent Berlin
1936--
American anthropologist
Both at U California

Paul Kay
1934--
American linguist

Based on many, mostly American, tribal languages

2009: World Colour Survey

Investigates 110 languages from all over the world, mostly collected in the 1970s.

Native speakers were asked to name all the Munsell colour chips and results merged for several speakers.

The inventory has continued with many more languages.

Basic Colour Terms

- Meaning is not understood from parts (yellow, not lemon)
- Cannot be contained in a larger category (yellow, not aureolin)
- Can be used for everything (yellow, not blonde)
- Adapts to the grammar (yellow-er, not amber-er)
- Consensus among native speakers
- High frequency in speech and writing
- Not a recent loan word
- Short response time for naming

All known languages have 2-12 BCTs

Chukchi BCT foci

tschetlju
...as collected by Dr. Almquist from Skogstibble when the Vega expedition was frozen in the ice above Siberia 1878-89.

Swedish BCT foci

(according to me and investigations into place and plant names)

English BCT foci

black

red
green

grey

white

orange

yellow

brown

pink

blue

purple

This is the standard that all other languages are compared to!

More BCT foci

Russian has two "blue" BCT

Hungarian has two "red" BCT

vörös

Himba (Namibia) has two "green" BCT

2 BCT

black(+green+blue) and white(+red+yellow)

Ex. Dani (New Guinea)

mili (black, dark, and cold colours),
focus dark blue or dark green
mola (white, bright, and warm colours),
focus dark red or pink

Language similarities

Languages with 2-6 BCTs do not have random foci and ranges!

ALL

2-BCT: dark/cold + light/warm
3-BCT: dark/cold + light + red - like Chukchi!

Language similarities - 3 BCTs

Language similarities

2-BCT: dark/cold + light/warm
 3-BCT: dark/cold + light + red

4-BCT: three possibilities (adding grue*, yellow, or non-red)
5-BCT: three possibilities
6-BCT: the Hering primaries!
*grue = green + blue

4 BCT - example

Mayoruna (Peru)
This is the most common 4 BCT pattern: light, dark, warm, cold

4 BCT - example

Karajá (Brazil)
This is a rare pattern, but not unique: light, dark, red, non-red

5 BCT - example

Jicaque (Honduras)
This is a common 5 BCT pattern, using grue
Ex: Celtic languages, Zulu, old Japanese

5 BCT - example

Martu Wangka (Australia)

This is also how Vikings talked calling Africa Blåland (blue country) and Africans Blåmän (blue men)

6 BCT example

Djuka (Surinam) (a creole including Dutch)
All Urfarben are BCTs!

Language similarities

Thus, for languages with few BCT the foci and ranges are remarkably similar.

Conclusion: The three colour channels in the optic nerve leads to regularities in colour naming.

For languages with more than 6 BCT the Urfarben are always present, but there is very little further regularity.

Three colour naming confusors

Language differences

Brain differences

Individual differences

Brain differences

Experiments - not involving colour naming - show clearly measurable differences depending on mother tongue.

- Speed of distinguishing within and between BCTs (English and Russian)
- Speed of distinguishing different in left (language) and right hemisphere (English)
- Speed of determining colour equality between BCTs and non-BCTs (Chinese)

Individual differences

The foci and ranges of "blue" of 20 speakers of Indo-European languages
The lines represent: AND, half, and OR ranges.

Colour name categories

1. BCT (grey)
2. qualified BCT (dark grey)
3. qualified fancy (lead grey)
4. fancy (marengo)

These are used when investigating the richness of individual colour names.

Individual differences

Swedish FOA study 1995 by Gunilla Derefeldt

Purpose: How many colours can you remember?
Answer: About 30 - if the subjects could name them freely

Serendipitous for us - the names used!

Individual differences

Swedish FOA study 1995 by Gunilla Derefeldt
Almost no BCT (brown) or qualified BCT (light red)
Mostly qualified fancy (thunder blue, flag blue, pigeon blue)
Some fancy (jade, plum, cerise)
Very little agreement between testees.

Individual differences

1977 Colour naming experiment in USA using 25 colour chips
Males and Nuns: mostly BCT and qualified BCT
Worldly Females: mostly qualified fancy and fancy

Other studies gave similar results

Conclusion: women have better colour vision than men but...

Individual differences

1995, 2002 USA studies of young people:
No sex differences

Same mistake as thinking "primitive" people are colour blind:
Few names \nRightarrow colour blind
Many names $\nRightarrow \Rightarrow$ better colour vision
but...

Normal colour vision

Deuteranomaly - most common

Human tetrachromates?

\Rightarrow woman with four different opsins but can they be used?

Mouse trichromates!

Wild mouse

Modified mouse

Human L
\Rightarrow trichromatic mouse!

Human tetrachromate

If the mouse brain can do it, so can hers!

Don't quarrel!

The cone pattern in your retina influences your colour perception
Your mother tongue influences your colour perception

Your mother tongue influences your colour naming
Your culture influences your colour naming
Your experience influences your colour naming

Because...

What is cerulian to an Artist (a specific pigment)
is goluboy to a Russian (light blue)
is blue to an Englishman (blue)
is -luhlaza to a Zulu (blue+green)
is nukin to a Chukchi (black+green+blue)
is mili to a Dani (all dark, cold colours)
and it can't be shown on an RGB screen!

Sources

http://www.cb.uu.se/~gunilla/Colours
Ögonblick i färg (on colour vision, in Swedish) Choosing colours for data presentation This presentation

Prof.em. UU*
*not Unseen University

How many colours?

How many colours?

How many colours?

How many colours?

Only 3 -
 but that is another perception story!

