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Abstract. The Image Foresting Transform (IFT) is a framework for
image partitioning, commonly used for interactive segmentation. Given
an image where a subset of the image elements (seed-points) have been
assigned user-defined labels, the IFT completes the labeling by comput-
ing minimal cost paths from all image elements to the seed-points. Each
image element is then given the same label as the closest seed-point. In
its original form, the IFT produces crisp segmentations, i.e., each image
element is assigned the label of exactly one seed-point. Here, we propose
a modified version of the IFT that computes region boundaries with
sub-pixel precision by allowing mixed labels at region boundaries. We
demonstrate that the proposed sub-pixel IFT allows properties of the
segmented object to be measured with higher precision.

Key words: Image foresting transform, Interactive image segmentation,
Sub-pixel precision.

1 Introduction

Image segmentation, i.e., the partitioning of an image into relevant regions, is
a fundamental problem in image analysis. Accurate segmentation of objects of
interest is often required before further analysis can be performed. Despite years
of active research, fully automatic segmentation of arbitrary images is still seen as
an unsolved problem. Semi-automatic, interactive segmentation methods [12] use
human expert knowledge as additional input, thereby making the segmentation
problem more tractable.

The segmentation process can be divided into two tasks: recognition and
delineation [6]. Recognition is the task of roughly determining where in the image
an object is located, while delineation consists of determining the exact extent of
the object. Human users outperform computers in most recognition tasks, while
computers are often better at delineation. A successful semi-automatic method
combines these abilities to minimize user interaction time, while maintaining
tight user control to guarantee the correctness of the result.

One popular paradigm for interactive segmentation is seeded region segmen-
tation, where the user assigns labels (e.g., object and background) to a small
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subset of the image elements (known as seed-points). An automatic algorithm
then completes the labeling for all image elements. If the result is not satisfac-
tory, the user can add or remove seed-points until a desired segmentation has
been obtained. Many different algorithms have been proposed for performing the
label completion, see, e.g, [1, 7]. Here, we will focus on one such algorithm, the
Image Foresting Transform (IFT) [4, 5].

The IFT belongs to a family of graph-based methods, where the image is
interpreted as a graph. Each image element corresponds to a node in the graph,
and adjacent image elements are connected by edges. For each node in the graph,
the minimum cost path from the node to the set of seed-points is computed.
The cost of a path typically depends on local image features. By choosing an
appropriate path cost function, popular image segmentation methods such as
relative fuzzy-connectedness [3] and watersheds [11] can be implemented.

The IFT can be computed efficiently using Dijkstra’s algorithm, slightly mod-
ified to allow multiple seed-points [5]. In interactive segmentation applications, a
user often adds or removes seed-points to refine an existing segmentation. In [4],
it was shown that seed-points can be added to, or removed from, an existing
IFT solution, without recomputing the entire solution. This modified algorithm
is called the differential IFT, and has been shown to give a significant reduction
of the total time required for interactive segmentation.

In the original IFT, the resulting labels are crisp, i.e., each image element
is assigned the label of exactly one seed-point. However, due to the finite res-
olution of digital images, an image element may be partially covered by more
than one (continuous) object. By allowing mixed labels, it is possible to obtain
segmentations with sub-pixel precision. Numerous studies have confirmed that
pixel coverage segmentation [14] outperforms crisp segmentation for subsequent
measuring of object properties such as length and area/volume, see, e.g., [13, 15].
In [9], it is shown that consequently misplacing the tissue borders, in a brain
volume having voxels of size 1 mm3, by one voxel resulted in volume errors
of approximately 30%, 40% and 60% for white matter, grey matter and cere-
brospinal fluid, respectively. Segmentation methods with sub-pixel precision can
also produce more visually pleasing results than their crisp counterparts. Surface
extraction algorithms such as Marching Cubes [10] can utilize sub-pixel preci-
sion to produce visually smoother surfaces. In the context of image compositing,
sub-pixel segmentation is necessary to avoid aliasing artifacts [2].

Here we propose a modified version of the IFT, that computes labels with
sub-pixel precision. In the following, we will refer to the original IFT method
as crisp IFT, and the proposed method as sub-pixel IFT. Like the crisp IFT,
the proposed method is defined on general graphs. Therefore, the method can
be applied to higher-dimensional data without modification. Our method does
not rely on any assumptions about the shape of the image elements. This makes
the method more general, but also means that the output of the method is not
strictly a pixel coverage segmentation. Instead, we see the previously demon-
strated advantages of pixel coverage segmentation as a motivation for including
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sub-pixel information in the IFT. We demonstrate that similar improvements in
feature estimation can be achieved with the proposed sub-pixel IFT.

2 Notation and definitions

2.1 Images and graphs

An image I is a pair (I, I) consisting of a set I of image elements and a mapping
I that assigns to each image element p ∈ I a value in some arbitrary set (e.g.,
I ⊂ Zn and I : I → [0, 255]).

Over the image elements, we define an adjacency function N that maps each
image element p ∈ I to a set N (p) ⊂ I of adjacent nodes. Once the adjacency
function has been fixed, the image I can be interpreted as a directed graph,
whose nodes are the image elements and whose edges are all ordered pairs of
image elements p, q ∈ I such that q ∈ N (p).

For each ordered pair of adjacent nodes p and q, we assign a real valued
edge weight w(p, q). This weight typically depends on local image features such
as intensity or gradient magnitude. A thorough discussion on how the choice
of adjacency function and edge weights affect the segmentation results can be
found in [8].

2.2 Paths and path costs

A path π = 〈p1, p2, . . . , pk〉 of length |π| = k is a sequence p1, p2, . . . , pk such that
pi+1 ∈ N (pi). We denote the origin p1 and the destination pk of π by org(π) and
dst(π), respectively. If π and τ are paths such that dst(π) = org(τ), we denote
by π · τ the concatenation of the two paths. Given a set Π of paths such that
dst(π) = p for all π ∈ Π, and a path τ such that org(τ) = p, we define the set
Π · τ as

{π · τ |π ∈ Π} . (1)

The cost of a path is denoted f(π). This cost is typically a function of the edge
weights along the path, e.g., the sum of all the edge weights along the path or the
maximum edge weight along the path. We require f(π) to be strictly increasing
with respect to |π|, i.e., for two non-empty paths π, τ such that dst(π) = org(τ)

f(π) < f(π · τ) if |π| < |π · τ | . (2)

This requirement is slightly more strict than the corresponding requirement
in [5], where the path cost function was only required to be monotonically in-
creasing. The stricter requirement is necessary to guarantee the existence of the
sub-pixel region boundaries in Section 3.2. In practice, this additional restriction
is not very limiting. For a given monotonically increasing path cost function f ,
a corresponding strictly increasing function g can be defined as

g(π) = f(π) + ε|π| , (3)
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where ε is a small positive number.
Given three paths π, τ and υ such that dst(π) = dst(τ) = org(υ) andf(π) =

f(τ), we also require of the path cost function that

f(π · υ) = f(τ · υ) . (4)

A path π is a minimum cost path if f(π) ≤ f(τ) for any other path τ with
org(τ) = org(π) and dst(τ) = dst(π). Note that in general, the minimum cost
path is not unique. The set of minimum cost paths between two nodes p and q is
denoted πmin(p, q). For a node p and a set A ⊂ I, the set of minimal cost paths
between p and A is defined as

πmin(p, A) =
⋃
q

πmin(p, q) , (5)

for all q ∈ argmin
r∈A

(f(πmin(p, r))).

2.3 Spanning Forests

A predecessor map is a function P that assigns to each image element p ∈ I
a (possibly empty) subset of N (p). Note that in contrast to [5], we here allow
|P (p)| to be greater than one, i.e. a node can have more than on predecessor.
For any node p ∈ I, a predecessor map P defines a set P ∗(p) of one or more
paths recursively as

P ∗(p) =
{
{〈p〉} if P (p) = ∅⋃

q∈P (p)(P
∗(q) · 〈q, p〉) otherwise . (6)

A spanning forest is a predecessor map that contains no cycles, i.e., |π| is
finite for all paths π ∈ P ∗(p).

2.4 The Image Foresting Transform

The IFT takes an image I, a path cost function f , an adjacency function N
and a set of seed-points S ∈ I, and returns a spanning forest P such that
P ∗(p) = πmin(p, S) for all nodes p ∈ I.

During this process, a cost map C and a label map L is built. The cost
map contains the cost of the minimum cost path from each pixel to S, i.e.,
C(p) = f(πmin(p, S)). The label map assigns to each node a label vector L(p) =
(l1, l2, ..., lk) where li ∈ [0, 1] (For the original, crisp IFT, li ∈ {0, 1}). Each
element in the label vector indicates the belongingness of the node to a certain
class (such as object or background). The labels li sum up to 1, i.e.

k∑
i=0

li = 1 . (7)
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For all nodes p ∈ I, L(p) should represent the label of the seed-point closest to
p. As discussed in previous sections, assigning a single element of the set LS =
{L(q) | q ∈ S} to L(p) is problematic, due to both the ambiguity of minimal cost
paths in the graph and the limited resolution of the image. We therefore calculate
L(p) as a weighted average of the label vectors in LS . The exact procedure
for calculating this average is described in Section 3. To differentiate between
crisp and sub-pixel labels, label maps that have been computed with sub-pixel
precision are denoted Lsub.

3 Method

In this section, we present the proposed sub-pixel IFT method. The method
consists of three steps. First, the IFT is computed, using a new policy for han-
dling cases where the minimum cost path is not unique. Pseudo-code for this
modified IFT is given in Section 3.1. Secondly, region boundaries between the
nodes are estimated with sub-pixel precision using a linear model. Finally, the
sub-pixel label of each node is computed by integrating the labels over the graph
edges connected to the node. In Section 3.2, we show that this integral can be
evaluated analytically.

3.1 Handling ties

As observed in Section 2.2, the minimum cost path between a node and the set of
seed-points is not necessarily unique. Therefore, a strategy is needed for assigning
labels in cases where the minimal cost path is ambiguous. In previous literature
on the IFT, such a strategy is usually referred to as a tie-breaking policy. In [5],
two strategies were suggested: the first-in-first-out (FIFO) strategy and last-in-
first-out (LIFO) strategy. With these strategies, each node is assigned the label
corresponding to the minimum cost path found first and last, respectively. Both
these strategies are somewhat ad-hoc and have the effect that the output of the
algorithm depends on the order in which we process the seed-points. A better
strategy is therefore desirable.

The problem with handling ties in the crisp IFT framework is that a single
label must be determined for each node. For the sub-pixel IFT this requirement
is lifted, and we therefore have more flexibility for handling ties. Here, we have
used a mean tie-breaking scheme, where each node p is assigned the mean of the
labels of the predecessors P (p) along the minimal cost paths from p to S. Pseudo-
code for computing the IFT with mean tie-breaking is given in Algorithm 3.1.
Note that due to Equation (4), f(P ∗(p)·〈p, q〉) is well defined even if |P ∗(p)| > 1.

3.2 Sub-pixel estimation of region boundaries

In the crisp IFT, labels are defined for all nodes. To obtain sub-pixel precision,
we define the labels over the graph edges as a piecewise constant function. Given
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Algorithm 1 Computing the IFT with mean tie-breaking
Input: An image I, a path-cost function f , an adjacency function N , and a set of
seed-points S ⊂ I.
Output: A spanning forest P such that P (p) = πmin(p, S) for all p ∈ S, a cost map
C such that C(p) = f(πmin(p, S)) for all p ∈ S, and a label map L.
Auxiliary data structures: A list Q of active nodes.
Initialization: Set C(p) ← 0 for source nodes p ∈ S and C(p) ← ∞ for remaining
nodes. Assign appropriate labels L(p) to all source nodes. Insert all source nodes in
Q. Set P (p) = ∅ for all nodes.

while Q is not empty
Remove from Q a node p such that C(p) is minimal.
forall nodes q ∈ N (p)

if f(P ∗(p) · 〈p, q〉) < C(q)
Set C(q)← f(P ∗(p) · 〈p, q〉)
Set L(q)← L(p)
Set P (q)← p
Insert q in Q

elseif f(P ∗(p) · 〈p, q〉) = C(q)

Set L(q)← |P |L(q)+L(p)
(|P |+1)

Set P (q)← P (p) ∪ {p}
endif

endfor

endwhile

two adjacent nodes p and q with corresponding labels, the label along the edge
p, q is given by

Lp,q(t) =
{
L(p) if t ≤ t′p,q

L(q) if t > t′p,q
, (8)

where the parameter t ∈ {0, 1} determines the position along the edge and
t′p,q ∈ {0, 1} is the point along the edge where the label changes.

To approximate t′p,q, we compare the cost of a minimum path to p with the
cost of a minimal path to q appended by the path 〈q, p〉, and vice versa. We
denote these four scalar values a, b, c and d:

a = f(πmin(p, S))
b = f(πmin(p, S) · 〈p, q〉) (9)
c = f(πmin(q, S))
d = f(πmin(q, S) · 〈q, p〉) .

We assume that the path costs vary linearly between nodes, a natural as-
sumption if we consider the edge weights to be constant along each edge. Thus
we can solve a linear equation to find t′p,q. See Figure 1. For the intersection
point t′p,q, we obtain the equation



Sub-pixel Segmentation with the Image Foresting Transform 7

Fig. 1. Finding the intersection point t′p,q between two adjacent nodes. The scalars
a,b,c and d are defined in the text.

t′p,qa + (1− t′p,q)b = (1− t′p,q)c + t′p,qd . (10)

Solving Equation (10) for t′p,q, we obtain

t′p,q =
b− c

(b− a) + (d− c)
. (11)

Since the path cost function f is required to be strictly increasing with respect to
path length, (b−a) > 0 and (d−c) > 0. Thus, the denominator of Equation (11)
is non-zero.

Once the intersection points are determined, we calculate a sub-pixel label
for each node by integrating the labels over edges connected to the node. For
each edge, the domain of integration is the half of the edge that is closest to the
node. This concept is illustrated in Figure 2. Formally, for each node p ∈ G, the
sub-pixel label Lsub(p) is determined as

Lsub(p) =
2

∑
q∈N (p)

∫ 1
2

0
Lp,q(t) dt

|N (p)|
. (12)

The integral in the numerator of Equation (12) can be written in closed form as

2
∫ 1

2

0

Lp,q(t) dt =
{

sL(p) + (1− s)L(q) if s < 1
L(p) otherwise , (13)

where s = 2t′p,q.

3.3 Implementation details

We have implemented the sub-pixel IFT in an interactive segmentation applica-
tion. In our implementation, the sub-pixel boundaries are computed in a post-
processing step. For efficiency, sub-pixel labels are only calculated for nodes that
are adjacent to at least one node having different label. The time required for
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Fig. 2. Determining the sub-pixel label for a node with four neighbors. The sub-pixel
label for the middle node is calculated by integrating over the closest half of all edges
connected to the node.

computing the sub-pixel boundaries is small compared to the computation time
of the IFT itself.

The proposed sub-pixel model can also be implemented differentially. For
each node p whose label is changed due to insertion or removal of a seed-point,
only the sub-pixel labels of p and N (p) need to be updated, since the sub-pixel
label only depends on the labels at adjacent nodes.

4 Evaluation

All interactive segmentation methods are subject to variations in user input.
A labeling method used for seeded region segmentation should therefore be in-
sensitive to small variations in seed placement. To compare the crisp IFT and
sub-pixel IFT with respect to this property, we perform an experiment where
we segment the spleen in a slice from a CT volume of a human abdomen. The
spleen is selected because it is a non-trivial object from a real application, yet it
can be accurately segmented using a limited number of seed-points.

For this experiment, an additive path cost functions is used, i.e.,

f(π) =
|π|∑
i=2

w(πi − 1, πi) . (14)

The edge cost is

w(p, q) = |I(q)− I(p)|+ ε , (15)

where ε is a small positive number.
To simulate realistic variations in user input, we select regions that are de-

termined to be inside and outside the spleen, respectively. We then compute
both the crisp IFT and the sub-pixel IFT, using a single pixel from the inside
region and the complete outside region as seed-points. See Figure 3. We thus
obtain 41 crisp and 41 sub-pixel segmentations, one for each pixel in the inside
region. Visually, all (crisp and sub-pixel) segmentations correctly delineate the
spleen. Each segmentation was computed in less than a second on a standard
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Fig. 3. Segmentation of the spleen in a slice from a CT volume.(Left) Seed-point regions
used in the experiment. The green pixels define all object seeds, while the red pixels
define background seeds. Single pixels from the green region were used to define object
seeds. (Middle) Example result of crisp IFT. (Right) Example result of the proposed
sub-pixel IFT.

Table 1. Statistics on the measured area for the 41 segmentations in the experiment.
(Areas are given in number of pixels.)

Method Mean area Min area Max area σ

Crisp IFT 266.5 265 269 0.98
Sub-Pixel IFT 266.2 265.4 266.7 0.40

PC (3.6 GHz, 3 GB RAM). The area of each segmented object is measured by
summing all pixel values of the segmented image. The results are plotted in Ta-
ble 1. The difference between the maximum and the minimum area as well as
the standard deviation of the area measurements is smaller for the sub-pixel IFT
than for the crisp IFT. The measured area for all individual segmentations are
shown in Figure 4. For all segmentations, the area of the sub-pixel segmentation
deviates less from the mean area than the area of the crisp segmentation. This
is true regardless of whether the area is larger or smaller than the mean area.

The results of the experiment indicate that the sub-pixel IFT is less sensitive
to variations in seed placement than the crisp IFT, for the purpose of estimating
area/volume of a segmented object.

5 Conclusions

We have presented a modified version of the IFT algorithm, that computes labels
with sub-pixel precision. The sub-pixel IFT is straightforward to implement in
an existing IFT implementation, and preserves the advantages of the crisp IFT.
It can be computed efficiently, and can be implemented differentially to allow
fast editing. Like the crisp IFT, the sub-pixel IFT is defined for general graphs,
and can therefore be applied to images of any dimension. In addition to 2D
segmentation, an example of volume image segmentation with the sub-pixel IFT
is shown in Figure 5.
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Here, we have assumed that all edges that connect to a node affect the
sub-pixel label of the node equally. For some graphs, this assumption may be
invalid. In such cases, the uniform average in Equation (12) could be replaced
by a weighted average that better reflects the influence of each edge.
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Fig. 4. Area of the segmented object for the 41 different segmentations in the experi-
ment, sorted by the position of the seed-point inside the object. For all segmentations,
the area of the sub-pixel segmentation deviates less from the mean area than the area
of the crisp segmentation.

Fig. 5. Lateral ventricles of a human brain, segmented from an MR volume image using
20 single-voxel seed-points. A polygonal surface was extracted from the segmented
volume using the Marching Cubes algorithm, which takes sub-pixel information into
account. Both segmentations were produced using the same seed-points and path-
cost function. (Left) Surface extracted from crisp IFT segmentation. (Right) Surface
extracted from sub-pixel IFT segmentation.


