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ABSTRACT

Adaptive mathematical morphology has recently become a
popular topic in the mathematical morphology community. In
particular, the construction of adaptive structuring elements
that adjust their size and shape to the local image structures
have increased a lot of attention in recent years. Apart from
that, there is a growing interest for representation of dig-
ital objects as graph structures. This review aims to give
an overview of the methods that have been used to define
adaptive morphological operators on graphs. Among the
methods discussed is the classical one that is a counterpartof
the adaptive structuring elements often called morphological
amoebas, while the other uses partial differential equations
on graphs to describe morphological operators. The review
concludes by assessing the prospectives of these two different
approaches for adaptive morphology on graph spaces, and by
identifying possible paths for future research.

1. INTRODUCTION

Mathematical morphology has been introduced by Matheron
and Serra [1], [2], and it provides a set of methods for filtering
and segmentation that are very useful for various applications
in image analysis, such as shape analysis, texture analysis,
biomedical applications, text recognition, etc. Mathematical
morphology is well defined theory, where morphological op-
erators are defined on complete lattices [3]. Such operators
are defined utilizing patterns, which are often called structur-
ing elements, that are used to probe the image and enhance
desirable features in it. When mathematical morphology was
introduced the size and shape of structuring elements remain
fixed for every point in the image.

Let D be a subset of the Euclidean spaceZ2 that corre-
sponds to the support of the image, and letT ⊂ R be a set that
corresponds to the gray level values in the image. Then, a gray
valued image can be represented by a functionf : D → T .
LetL be a lattice of gray valued functions with domainD and
rangeT . For a fixed structuring elementB ⊂ D, an erosion
ε : L → L and a dilationδ : L → L of a functionf can be
represented, respectively, as

ε(f)(x) =
∧

z∈B

f(x− z), δ(f)(x) =
∨

z∈B

f(x+ z),

where
∧

and
∨

denote the infimum and supremum, respec-
tively. Other morphological operators, such as opening and
closing can be constructed using these basic morphological
operators. Here, it should be stressed that an erosion and
a dilation should be adjunct operators in order to compute
morphological opening and closing, and consequently alter-
nating sequential filters. Only if an erosion and a dilation
are adjunct operators, their superpositions satisfy properties
of openings and closings. In particular, an operator is a mor-
phological opening if it is idempotent, increasing and anti-
extensive. Two operatorsε andδ are adjunct operators if the
following relation is satisfied

δ(f) ≤ g ⇔ f ≤ ε(g), (1)

wheref, g : D → T .
An alternative way to define morphological operators is

to use a framework based on partial differential equations [4].
Morphological operators, an erosion and a dilation of an input
functionf0 can be described, respectively, by the following
PDEs

∂tf(x, t) = −‖∇f(x, t)‖p, x ∈ D, (2)

∂tf(x, t) = ‖∇f(x, t)‖p, x ∈ D, (3)

where the initial condition isf(·, 0) = f0(·), and with respect
to structuring elementtB, whereB = {z ∈ D : ‖z‖p ≤ 1}.
Here, ‖ · ‖p denotes the classicallp norm. Morphological
operators defined in this way can be used for non-digitally
scalable structuring elements, where shape of the structuring
element cannot be correctly represented on a digital grid. Fur-
thermore, it allows subpixel accuracy, and more important for
the context of this paper, it allows incorporating adaptability
directly into the PDEs that model morphological erosions and
dilations [5], [6].

In this paper, we present a review on adaptive morpho-
logical operators defined in graph spaces. First, in Section2,
we revisit a recent work on adaptive mathematical morphol-
ogy. Adaptive morphological operators defined on graph are
presented in Section 3. Section 4 discusses possible future
extensions of adaptive morphology to hypergraphs and cell
complexes, and concludes the paper.



2. ADAPTIVE MATHEMATICAL MORPHOLOGY

Adaptive mathematical morphology has been recently an area
of intense interest [7], [8], [9], [10], [11], [12], [13], [14], [15],
which deals with adaptive structuring elements that adapt
their shape and size according to the local image structures.
Structuring elements can be spatially variant, but also can
adapt to the intensity levels. A good overview on this topic
can be found in [16].

Most known spatially adaptive structuring elements are
called morphological amoebas [7]. A morphological amoeba
is defined as a geodesic ball in a metric space determined by
the path-based amoeba distance. LetPxy is a path that con-
nects pixelsx andy, and consists of points{x1, x2, ..., xn+1},
such thatx1 = x andxn+1 = y, andxi, xi+1, i = 1, ..., n are
two adjacent pixels. The amoeba distance,dA, is defined as

dA(x, y) = min
Pxy

n
∑

i=1

(

1 + λ|f(xi) − f(xi+1)|
)

,

where 1 stands for a spatial distance‖xi−xi+1‖ andλ > 0 is
a constant. Then, a morphological amoeba centered in a point
x ∈ D is defined as [7]

Ar(x) = {y ∈ D : d(x, y) < r},

wherer is the radius of the morphological amoeba. Instead of
using‖xi − xi+1‖ = 1 for a spatial distance, other distances
can be used, such as the Euclidean distance‖xi − xi+1‖2, or
〈3, 4〉 weighted distance.

As pointed in [7], the morphological amoebas should be
computed on a smoothed version of the input imagef , in or-
der to reduce the influence of noise that can be present in the
image. This smoothed version of the input image is often
called a pilot image. Moreover, the same pilot image should
be used for the construction of the erosion and its adjunct
dilation, in order to obtain corresponding opening and clos-
ing [13].

3. ADAPTIVE MORPHOLOGICAL OPERATORS
DEFINED ON GRAPHS

Recently, an increasing interest is to consider digital object as
graphs structures. In this representation of digital objects, not
only the object points are considered, but also adjacency rela-
tions between these image points can be included. Therefore,
the image domain is considered as a graph whose vertices are
pixels and whose edges are adjacency relations between these
pixels. LetG = (V,E,w) is a graph, whereV is the set of
vertices andE ⊂ V × V is the set of edges. The edge(u, v)
between two neighbouring verticesu, v ∈ V we will denote
with euv. A neighbourhood ofv ∈ V is defined asN(v) =
{u ∈ V : (u, v) ∈ E}, andN̄(v) = N(v) ∪ {v}. The weight
functionw : E → R+ can be defined asw(uv) = wuv if
euv ∈ E, otherwisewuv = 0. In this paper, we consider

non-oriented graphs, i.e.,E is a set of non-ordered pairs of
edges(u, v), i.e.,wuv = wvu. Also, graphs have no loop, i.e.,
(∀u ∈ V ) (u, u) /∈ E.

A pioneer work of mathematical morphology on graphs
has been undertaken by Vincent [17], where morphological
operators are proposed for weighed and unweighted graphs.
These operators are defined on the set of verticesV . For in-
stance, the erosion and the dilation of graphG are defined
by

ε(G)(v) = min{f(v) : v ∈ N̄(u)}

δ(G)(v) = max{f(v) : v ∈ N̄(u)},
where functionf : V → R+ corresponds to the gray level
values in the image. Note that, these morphological operators
are defined only for the set of verticesV . Apart from this
initial work on mathematical morphology on graphs, a recent
work of Meyer et al. [19], [18] as well as Cousty et al. [20],
[21] proposed morphological operators as operators that are
derived on a set of edges and produce a set of vertices, and
opposite, morphological operators transform a set of vertices
to a set of edges. A graph representation allows that adjacency
relation be spatially invariant, but also to be spatially variant,
which is the focus of this paper.

In this paper, we consider two approaches for spatially
adaptive mathematical morphology on weighted graphs.
First, we consider the approach based on discrete morpholog-
ical operators that are counterpart of morphological amoebas
for images [22]. Second, we review the approach based on
PDE mathematical morphology defined on graphs [23].

3.1. Morphological amoebas for graphs [22]

Morphological amoebas are computed for each pixel in the
image, and hence the resulting computational cost is relatively
high. To overcome this problem, a set of predefined paths
computed from a minimal spanning tree was considered [22].

Isotropic structuring elements of sizes that is centered at
a nodeu is defined as

B(u) = {v ∈ V : d0(u, v) ≤ s},

where the number of the edges in the shortest pathPuv =
{eu u+1, eu+1 u+2, ..., eu+s−1 v} from the nodeu to the node
v is computed according to the distance

d0(u, v) = min
Puv





∑

eij∈Puv

1



 .

In this case, the shape of structuring elements depends only
on the considered distance measured0.

Accordingly, a morphological amoeba in the nodeu with
the size ofs and radiusr can be defined as

Ar
s(u) = {v ∈ V : d0(u, v) ≤ s, λd1(u, v) ≤ r},



whered1(u, v) is the length of the shortest pathPuv with re-
spect to weights from nodeu to nodev usingl1 norm, i.e.,

d1(u, v) = min
Puv

(

∑

euv∈Puv

wuv

)

.

Opposite from the isotropic structuring elements, for adaptive
structuring elements the edges of the graph have weights and
the weights are depends on the image structure. The weights
for morphological amoebas [7] on graphs are defined as

wuv = |f(u) − f(v)|, euv ∈ E.

One can consider other distance measures for the con-
struction of morphological amoebas as well. For instance,
morphological amoebas usingl∞ norm

d∞(u, v) = min
Puv

(

max
euv∈Puv

wuv

)

,

are defined as

Ar
s(u) = {v ∈ V : d0(u, v) ≤ s, λd∞(u, v) ≤ r}.

Similarly to morphological amoebas, an erosionε and di-
lation δ for adaptive structuring elementsAr

s(u), which sat-
isfy adjunction property (1) can be defined, respectively, as

(ε(f))(u) =
∧

v∈Ar
s(u)

f(v), u ∈ V,

(δ(f))(u) =
∨

v∈Ǎr
s(u)

f(v), u ∈ V,

whereǍr
s(x) is the reflected neighbourhood defined as

v ∈ Ar
s(u) ⇔ u ∈ Ǎr

s(v). (4)

Then, the corresponding opening and closing are defined by
γ(f)(u) = (δ(ε))(f)(u) andψ(f)(u) = (ε(δ))(f)(u), u ∈
V , respectively.

3.2. PDE-based adaptive mathematical morphology [23]

As presented in Section 2, morphological operators can be de-
scribed by partial differential equations (2), (3). Nevertheless,
the graphs are discrete structures and these equations should
be adapted to them. Since basic morphological operator, an
erosion and a dilation can be modelled by the differential
equations that contain the gradient of the image, we should
find a way how to define the gradient on a graph. It is a logical
choice to choose the weighted difference

√
wuv(f(v)−f(u))

as an approximation of the first derivative in a pointu ∈ V
and the direction to a vertexv. Then, the gradient of a func-
tion f at a vertexu can be defined as

(∇f)(u) =
∑

v∈N(u)

√
wuv

(

f(v) − f(u)
)

.

To use the equations (2), (3) for a weighted graphG =
(V,E,w), we consider the following sets:∂+U = {u ∈ V \
U : ∃v ∈ U, v ∈ N(u)} and∂−U = {u ∈ U : ∃v ∈
E \U, v ∈ N(u)} be the external and internal boundary of a
setU .

Then, morphological operators can be considered as

erosion: ε : ∂tf(u, t) = −‖(∇−f)(u, t)‖p

dilation : δ : ∂tf(u, t) = ‖(∇+f)(u, t)‖p,

for everyu ∈ V and for the initial conditionf(·, 0) = f0(·),
and where

(∇−f)(u, t) =
∑

v∈N(u)

√
wuv

∣

∣min(0, f(v) − f(u))
∣

∣

(∇+f)(u, t) =
∑

v∈N(u)

√
wuv

∣

∣max(0, f(v) − f(u))
∣

∣.

To use these equations, it is necessary to consider their
composition into level sets, denoted here for a functionf as
f l = κ(f−l), whereκ : V → {0, 1} is the indicator function.
Hence, morphological operators can be defined as

erosion: ε : ∂tf
l(u, t) = −‖(∇−f l)(u, t)‖p

dilation : δ : ∂tf
l(u, t) = ‖(∇+f l)(u, t)‖p,

for all level setsl. Intuitively, a dilation (resp. erosion) over
U ⊂ V can be interpreted as a growth (resp. contraction)
process that adds (resp. removes) vertices from∂+U (resp.
∂−U ) to U . These resulting morphological operators corre-
sponds to the definitions of morphological operators proposed
by Vincent [17] for unweighted graphs. Dilation off l over
U l corresponds only to the set∂+U l. Similarly, erosion off l

overU l corresponds only to the set∂−U l.
Adaptive morphological operators can be consider through

adaptivity of graph weights and graph topology. Weights can
be used for the edges of the graph. The simplest choice is to
havew(uv) = 1, i.e., to consider unweighted graphs. Never-
theless, a typical weighting is often obtained using one of the
following functions:

w(uv) = exp

(−ρ(f(u), f(v))2

σ2

)

,

or

w(uv) =
1

1 + ρ(f(u), f(v))
,

whereρ is a distance measure. A weighting functionw can be
seen as a local speed function that controls the morphological
operators.

The other approach to adapt morphological operators,
is to consider different vertex neighbourhood as a structur-
ing element. Then, a structuring element can be the same
neighbourhood for each vertex, or can be adaptive according
the position and weights of the vertices and its edges. The



adaptive structuring elements on the graphs can be defined
asτ−neighbourhood asN(u) = {v ∈ V : d(u, v) ≤ τ},
whereτ > 0 is the radius of the adaptive structuring element.
Here, d : V × V → R+ is a pairwise distance function.
Similarly, it can be definedk−nearest neighbour graph where
adaptive structuring elements is determined by thek-nearest
neighbour of the considered vertex. More details on different
neighbourhood on graphs can be found in [17].

Interestingly enough, Ta et al. [23] did not consider, nor
even mention when an erosion and a dilation for adaptive
structuring elements are adjunct morphological operators. As
pointed by Roerdink [13], this is a common misunderstand-
ing of adaptive morphological operators, since to construct an
erosion and its adjunct dilation (1), the condition (4) has to be
satisfied.

4. DISCUSSION AND PROSPECTIVES

It has been shown, in a number of experiments, that adaptive
morphological operators have advantages over using the clas-
sic ones [7, 8, 15]. Nevertheless, there is still a problem how
to find a superior and efficient method to construct adaptive
structuring elements, and consequently adaptive morpholog-
ical operators for a particular application. One of the possi-
bles approaches to overcome these issue is to construct mor-
phological operators using a graph representation of the im-
age. In this paper, we have revisited two different approaches
to define adaptive morphological operators on graphs, one
that mimic morphological amoebas, and one that is based on
PDEs which describe morphological operators.

Morphology operators has been recently defined on the
other structures than graphs. Recent work of Dias et al. [24]
and Bloch and Bretto [25] have proposed morphological op-
erators on cell complexes and hypergraphs, respectively. Ini-
tial experiments with these two approaches have promising
results since they provide morphological operators that have
good performance, and they can be less computationally ex-
pensive in some cases. Hence, here, we speculate that graph-
based mathematical morphology defined on complex struc-
tures, such as cell complexes and hypergraphs will be in a fo-
cus of the morphological community in the following years.
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