
A Matlab-based Implementation of the Livewire
Interactive Segmentation Tool

Omer Ishaq

Centre for Image Analysis, Uppsala University, Uppsala, Sweden
omer@cb.uu.se

Abstract. Image segmentation is the process of delineating an image
into foreground and background regions. Typically, the computer-assisted
image segmentation techniques are classified as either fully automated or
interactive segmentation methods. These interactive segmentation tech-
niques are typically graph-driven and are further sub-categorized as ei-
ther region- or boundary-based algorithms. Livewire is one of the earli-
est interactive image segmentation algorithm and has been extensively
applied to image segmentation problems. As part of a course on Graph-
based Methods for Image Analysis, an implementation of the Livewire
was done in Matlab. This implementation is the focus of this report.
Implementation details and results are provided. Note, there is no novel
contribution in the report.

1 Introduction

In medical image analysis (MIA) segmentation is vitally important for local-
izing, delineating, quantifying and visualizing anatomical structures. Typically,
the segmentation approaches in MIA can be broadly categorized as: (i) Manual
segmentation; (ii) Fully automated segmentation; (iii) Interactive segmentation.
Traditionally, segmentation has been performed through manual tracing by ex-
perts, however, such an approach is very time consuming and engenders large
inter- and intra-rater variation. The other end of the spectrum comprises fully
automated segmentation techniques. Although these techniques are fast and re-
producible, yet they suffer from a significant reduction in segmentation accuracy.
Where as, interactive (semi-automated) segmentation techniques have emerged
as a robust mechanism for performing accurate computer-aided image segmen-
tation using minimal human intervention.

The project focuses on a Matlab implementation of the classic Livewire in-
teractive segmentation tool [1] for two dimensional images.

2 Methods

This methods section is organized as follows, Section 2.1 details the generation
of a weighted-graph representation of a 2D image. Sections 2.2 and 2.3 discuss
the shortest path selection in a weighted graph and the generation of a closed
curve, respectively. The details of the matlab implementation are provided in
the Section 2.4.



2.1 Generation of the Cost Graph

Livewire is a graph-based method for interactive image segmentation. This ne-
cessitates the generation of an undirected weighted-graph W from an input
image. Any n-dimensional image can be represented as an undirected graph.
The graph nodes represent the image pixels. The edges represent the connec-
tions/relationships between the neighboring pixels. We use a 4-connectivity model
where every pixels is connected to four of its closest neighboring pixels, that is,
the top, bottom, left and right pixels. Subsequently, we assign the weights to the
graph edges. The weights assigned are a function of the edge strength between
two pixels. More specifically, for each pixel pi,j image derivatives/gradients Gx

and Gy are calculated along the horizontal and the vertical directions, such that,

Gx = pi,j − pi+1,j (1)

Gy = pi,j − pi,j+1 (2)

The magnitude G and direction θ of the gradient are calculated as,

G =
2

√
(Gx)

2
+ (Gy)

2
(3)

θ = tan−1
Gy

Gx
(4)

The orientation θ calculated from the Equation 4 is normal to the image
edge. Since, the objective of a Livewire algorithm is to follow along an image
edge/boundary, therefore, the recovered directional vector θ is rotated through
ninety degrees to align with the edge. We will refer to the re-aligned vector as
θa. For the current project, we followed the convention of rotating the vector
θ clockwise. An anti-clockwise rotation yields the same results. The re-aligned
vector θa may have any orientation between 0 degrees and 360 degrees with
reference to the horizontal. On the other hand, the edges connecting a pixel pi,j
with its neighbors occur only along the orientations of 0, 90, 180 and 270 degrees,
therefore, the re-oriented gradient vector with the orientation θa and magnitude
G is decomposed to its horizontal and vertical components Ga

x and Ga
y. These

components are shown in the Equations 5 and 6,

Ga
x = G cos θa (5)

Ga
y = G sin θa (6)

The inverse of these components Ga
x and Ga

y are assigned as the edge weights
Wx and Wy in the cost graph W ,

Wx =
1

Ga
x

(7)



Wy =
1

Ga
y

(8)

The inverse is calculated so that the strongest edges in the image have lowest
cost in W , and vice versa. The process is repeated for all the pixels in an image.

2.2 Selection of the Shortest Path

Given an undirected weight graph W , generated from Section 2.1, the goal of
Livewire is to find the strongest edge between two user specified control points
Ck and Ck+1. As mentioned in Section 2.1, the stronger the edge strength in the
image I, the lower its weight in W , therefore, the task of finding the strongest
edge between points Ck and Ck+1 is the same as finding the lowest cost path (i.e.,
the shortest path) between the nodes representing the fore-mentioned control
points in the graph W . We use the Dijkstra′s algorithm for finding this path.

Therefore, given an ordered set of control points C1, C2, C3, ... Ck, ... Cn, a
connected curve can be generated by finding the shortest path between all pairs
of neighboring control points, that is, a set of n points would generate a set of
n−1 paths. These paths are connected together to generate the resultant curve.
The generated curve may or may not be closed. A mechanism for generating a
closed curve is dicussed in the Section 2.3.

2.3 Generation of a Closed Curve

The goal of an image segmentation algorithm is to generate a closed delineating
curve which separates the foreground and the background pixels. The curve
generated from the Section 2.2 may or may not be closed. There are three possible
scenarios,

1. The curve γ defined over the interval [a, b] self intersects at only one point,
such that γ(a) = γ(b). This is a closed curve with no other self intersections
and provides a delineation between the fore- and the back-ground.

2. The curve γ has no self intersection points. This is an open curve and can
be closed by finding the shortest path (i.e., using the Dijkstra’s algorithm)
between the extreme points a and b.

3. The curve γ self intersects at point c, where c is different from a and b . The
curve is corrected by discarding the curves over the intervals [a, c) and (c, b].

2.4 Implementation Details

The algorithm is implemented in the Matlab package. The weighted connectiv-
ity graph W is represented by a sparse adjacency matrix. The sparse matrix is
selected because of the memory constraints. All the weights calculated in the
Section 2.1 are assigned to the sparse matrix in a single step, on the other hand,
if the weights were assigned one at a time, it would result in considerable com-
putation overhead since the matrix would need to grow with each assignment.



The shortest path between any pair of user specified control points is gen-
erated by the graphshortestpath function which is based on the Dijkstra’s al-
gorithm. The interactive user interface is implemented by capturing the mouse
and the keyboard events.

3 Results

The implemented algorithm was used on multiple images. The results for one of
these images is shown in Figure 1. Figure 1(a) shows a minimum cost curve/path
(shown in yellow), between a static user-specified control point and the moving
mouse pointer. More specifically, the user clicks on the image to specify a static
control point and then moves his/her mouse pointer to generate potential bound-
ary delineations. An appropriate boundary delineation can be selected/fixed by
clicking a second time on the image. Subsequently, the selected curve segment
is saved, as shown in blue color in the Figure 1(b). In this manner, n− 1 curves
can be selected by specifying n control points. An open curve (shown in Figure
1(b)) can be auto-closed (Figure 1(c)) by using the method in Section 2.3.

As discussed in the Section 2.4, the edge weights are assigned to the sparse
adjacency matrix in a single step, therefore, the memory for the adjacency matrix
is allocated only once. The weights calculation and assignment step takes 8.9
seconds for a 2D image with 225 pixels along each dimension. However, if the
assignment is done individually for each weight, then it can take as much as 113
seconds for the same image. Consequently, we assign all the weights in one step.

(a) Shortest path between
a control point and the
moving mouse pointer.

(b) A selected/fixed curve
segment.

(c) An auto-closed curve.

Fig. 1. Different execution stages of the algorithm: (a) Generation of a potential curve;
(b) A fixed/selected curve; (c) An auto-closed curve.

4 Conclusions

We have implemented a Matlab-based Livewire algorithm. The algorithm has
reasonable computation time. An interactive graphical user interface is provided.



References

1. A.X. Falco, J.K. Udupa, S. Samarasekera, S. Sharma, B.E. Hirsch, R.A.
Lotufo, “User-steered image segmentation paradigms: Live-wire and live-
lane”, Graphical Models and Image Processing, 60(4):233-260, 1998.


