Random Walks for Interactive Separation of
Segmented Bone Fragments

Johan Nysjo
Centre for Image Analysis, Uppsala University, Sweden
Email: johan.nysjo@cb.uu.se

Abstract—Identifying and segmenting individual bone
fragments in CT images is an important task in surgery
planning. Although it is often straightforward to separate the
bone tissue from the rest of the image, extracting individual
bone fragments is typically a more difficult segmentation
problem. In many cases, the bone fragment of interest is
connected to one or several other bone fragments, making
it difficult for an automatic segmentation method to identify
the object boundary. The aim of this project is to investigate
whether a random walks-based mesh segmentation method
can be used to extract individual bone fragments from
surface meshes that have been obtained with the marching
cubes algorithm.

I. INTRODUCTION

A number of mesh segmentation methods have been
developed for the purpose of decomposing 3D models into
components. In contrast to conventional image segmenta-
tion methods, these methods perform the segmentation on
explicit surface representations of objects, rather than on
voxel grids. In this project, we will investigate a recently
developed mesh segmentation method [1] that is based
on the random walks paradigm. The objective is to see
whether this method, which was originally developed for
segmenting CAD models or graphical 3D models such
as the one shown in Figure 1, can be used to segment
and separate individual bone fragments in CT images—a
task that is of great importance in surgery planning. The
method will be tested on surface meshes that have been
extracted from real CT images.

II. INTERACTIVE MESH SEGMENTATION

This section describes the different steps in the inter-
active mesh segmentation method that we have adapted
for bone segmentation.

A. Surface Extraction

Given a CT image, we use the marching cubes algo-
rithm [2] to extract an explicit surface representation of
the contained bone fragments. This surface is represented
as a triangle mesh 7' = (V, F'), where V is the vertex set
and F' is the face set. The isovalue we use for the surface
extraction, t;5, = 100, is based on the Hounsfield value
for bone tissue.

B. Mesh Simplification

A triangle mesh extracted from a CT image may
contain millions of faces, making the mesh segmenta-
tion potentially time-consuming to compute. To speed
up the segmentation process, we follow the advice

Fig. 1. Random walks-based mesh cutting segmentation of a 3D model.
(a) Interactive seeding. (b) Segmentation result.

in [1] and use MATLAB’s mesh-simplification function
reducepatch to reduce the number of faces in the
mesh.

C. Interactive Seeding

The user initializes the segmentation by placing n seeds
on the regions of interest, using a standard 2D mouse and
a keyboard as input devices. Each seed corresponds to a
single region of interest and will snap to the closest face
in the triangle mesh. We denote the resulting seed faces
as Si,...,8n.

D. Random Walks-Based Mesh Segmentation

To extract the selected bone fragments from the surface
mesh, we use the random walks-based mesh segmentation
method presented by Lai et al [1]. This method, which is
based on the same idea as the random walks algorithm
for image segmentation [3], allows the user to perform
interactive mesh cutting.

In brief, the method works as follow. Let f1,..., fm
denote the faces in the surface mesh. The probability that
a random walk starting from face f; will reach a seed s;

before it reaches any of the other seeds is given by the
equation

P(fe) =Y priP (fra), (D
=1

where f,; denotes a neighbor face sharing an edge ey ;
with fj, and k is the number of such neighbor faces
(normally, k = 3). The probability that a random walker
at face f;, will move across an edge ey, ; to a face neighbor
fr,: is denoted as py, ;, and is computed as

Pk, = |ek,i| exp {—W} ;)

g

where 7
di(fr, fri) = §HNk — Niill? (3)

is a difference function measuring the dihedral angle
between f; and fi;, and o is a weight used to control
the influence of d;. Nj and Ny, ; denote the face normals,
and 7 is a weighting term. To prioritize concave edges,
we set n to n = 1.0 for concave edges and n = 0.2 for
convex edges. The control parameter o is set to o = 1.0
in all experiments. See [1] for more details. The computed
probability values py, ; should be scaled so that they satisfy
the equation

K
D pei=1)

i=1
For each seed s1,...,s,, Equation 1 defines a sparse
linear system ApmwmP! = B!, where P' and B' are

column vectors of length m. These systems can be written
on the composed form

AP = B, &)

where P = (Py,...,P,) and B = (By,...,B,). A will
be a sparse matrix with at most x non-zero elements per
row. For B!, it holds that B'(f;,) = pk,i if one of the
neighbors f}; ; to f, happens to be the Ith seed; otherwise,
B'(fx) =0 [1].

Surface meshes extracted with the marching cubes al-
gorithm can often have disconnected components. Exper-
imentally, we have found that linear systems constructed
from such meshes are solvable, but it could be of interest
to verify that these systems actually have unique solutions.

After solving the sparse linear system in Equation 5,

we assign, for [= 1,...,n, the label of seed s; to the
mesh faces satisfying the equation
P'(fr) = max P'(fi). (©)

Mesh faces that are not connected to any of the seeds will
(in our implementation) be assigned a default label.

III. IMPLEMENTATION

We have implemented the interactive mesh segmen-
tation method described in Section II in MATLAB, us-
ing existing functions from a graph theory toolbox! to
efficiently determine the face neighbors of each face

TURL: http://www.mathworks.com/matlabcentral/fileexchange/5355-
toolbox-graph

Fig. 2. Interactive mesh cutting applied on a triangle mesh extracted
from a CT image of a human foot. (a) Interactive seeding. (b) Segmen-
tation result.

in the triangulation. The matrix A is represented as a
sparse matrix, and the corresponding sparse linear system
AP = B is solved using MATLAB’s direct solver.

It is possible (and desirable) to implement the seeding
so that the user can define multiple seeds per label. In our
initial implementation, however, the seeding is restricted
to one seed per label.

IV. EXPERIMENTS AND RESULTS

We tested the mesh segmentation method on two sur-
face meshes that had been extracted from CT images of a
human foot and the hand of a mouse. In addition, we also
tested the method on the 3D model shown in Figure 1,
to verify that our implementation provides similar results
as the implementation used in [1].

Figures 2 and 3 show the mesh segmentation result
obtained for the two CT images. Given a few seeds,
the segmentation method is able to identify the object
boundaries, although additional seeds would be required
to obtain an accurate segmentation of the mouse hand.

The segmentation result shown in Figure 1b illustrates
that the method is able to decompose simple graphical
models.

Although not presented in this report, the computation
times required to solve the sparse linear systems seems
to be consistent with the timing results reported in [1].
However, for large surface meshes (i.e., meshes with more
than 100000 faces), the computation time is dominated by
the task of creating the graph and setting up the sparse
linear system, indicating that we need to optimize some
parts of the implementation.

V. CONCLUSIONS

Overall, the interactive mesh segmentation method we
have investigated here seems to perform well on the

(b)

Fig. 3. Interactive mesh cutting applied on a triangle mesh extracted
from a CT image of a mouse hand. (a) Interactive seeding. (b) Segmen-
tation result.

task of segmenting individual bones in surface meshes
extracted from CT images. However, the method tend to
produce suboptimal cutting contours when the seeding is
limited to one seed per label, indicating that we need
to extend the implementation to handle multiple seeds
per label. Placing more seeds around the desired cutting
contour may improve the segmentation accuracy, but will
also make the segmentation more tedious. The constrained
random walks-based mesh cutting method by Zhang et
al. [4] overcomes this problem by allowing the user to
specify additional seeds on the cutting contours. These
seeds are used as hard or soft boundary constraints to
improve the accuracy of the mesh cutting.

To evaluate the accuracy of the obtained mesh seg-
mentation results, we could use the framework described
in [5], which provides a benchmark for evaluation of 3D
mesh segmentation algorithms.

Finally, it would be interesting to investigate whether
the mesh segmentation results can be propagated to the
underlying voxel data.

ACKNOWLEDGMENTS

The 3D model used in this report has been obtained
from the AIM@SHAPE Shape Repository?.

REFERENCES

[1] Y.-K. Lai, S.-M. Hu, R. R. Martin, and P. L. Rosin, “Rapid
and effective segmentation of 3d models using random walks,”
Computer Aided Geometric Design, vol. 26, no. 6, pp. 665-679,
2009.

[2] W. E. Lorensen and H. E. Cline, “Marching cubes: A high reso-
lution 3D surface construction algorithm,” SIGGRAPH Computer
Graphics, vol. 21, no. 4, pp. 163-169, 1987.

[3] L. Grady, “Random walks for image segmentation.” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 28, no. 11,
pp- 1768-1783, 2006.

2URL: http://shapes.aim-at-shape.net/viewmodels.php

[4] J. Zhang, J. Zheng, and J. Cai, “Interactive mesh cutting using
constrained random walks,” IEEE Transactions on Visualization and
Computer Graphics, vol. 17, no. 3, pp. 357-367, 2011.

[5] X. Chen, A. Golovinskiy, and T. Funkhouser, “A Benchmark for
3D Mesh Segmentation,” ACM Transactions on Graphics (TOG),
vol. 28, no. 3, pp. 1-12, 2009.

