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1 Introduction

The inhomogeneous Laplace equation with internal Dirichlet boundary conditions has re-
cently appeared in many applications arising from image segmentations, image colorization,
image filtering and so on. Efficient solutions of (anisotropy) Laplacian equations have been
studied intensively in numerical analysis world. In this project paper, I apply the known
algorithms, especially an algebraic multigrid method, to solve Laplacian equations used in
image analysis.

2 General setting and preliminaries

Some notations of a graph need to be fixed firstly. A graph consists of a pair G = (V, E)
with vertices (nodes) v € V and edges e € E C V x V. An edge e, spanning two vertices v;
and v, is denoted by e;;. A weighted graph assigns a value (also called a weight) to each
edge. The weight of an edge e;; is denoted by w;;. The degree of a vertex is d; = > wy;
for all edges e;; incident on v;. Here, I assume that our graph is connected and undirected
(i.e., wy; = wj;).

For generality, I will consider finding a solution to the equation

(L+D)x =f,

where D is a diagonal matrix with arbitrary nonnegative function on the diagonal, and L
represents the Laplacian matrix defined as

d  ifi=j
Lij =< —wy if v; and vj are adjacent nodes
0 otherwise

where L;; is indexed by vertices v; and v;. In the various imaging applications, the edge
weights are used to encode the image structure. Although in this paper the weight of an
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edge e;; is chosen to be its length, another very common weighting function is given by
where g; indicates the image intensity at pixel ¢ and  is a parameter.

Additionally, I will permit internal Dirichlet boundary conditions at a set of nodes
Vp € V where the solutions on these nodes have been prescribed in advance. Among the
several ways to enforce the boundary conditions, in this paper I use the following method.
For example, if v, € Vg, I zero the kth row and column of the coefficient matrix L + D
and then specify the (k, k) element to be unit. Corresponding, the kth component of the
right hand vector, i.e., f(k), should be given the prescribed solution on the node vy.

3 Numerical solutions

How to efficiently solve the discrete Laplacian equation is the kernel of this project paper.
The Laplacian coefficient matrix is large but sparse. Since each node is connected via an
edge to its neighboring nodes with a 4-connected structure in 2D, or 6-connected structure
in 3D, there are at most 4 nonzero elements per row in 2D and 6 nonzero elements per
row in 3D. Due to the preservation of sparsity, direct solution specified for large and
sparse linear systems is suitable. Because the Laplacian matrix is symmetric and positive
definite, conjugate gradient (CQG) iterative solution and preconditioned conjugate gradient
(PCG) with incomplete Cholesky decomposition factors as preconditioner are also choices.
Additionally, the algebraic multigrid (AMG) method is another very efficient approach.
The AMG method I use here is an aggregation-based algebraic multigrid method (AGMG),
see [1, 2, 3|. The implementation is in Fortran and Matlab interface is provide. Therefore,
its performance in time is comparable with that of the 'backslash’ direct solver in Matlab.

The image graph used here is the homogeneous Cartesian mesh in 2D. The distance
between any two adjacent nodes is the same and the length of an edge is h. The regular
refinement is applied, namely, the edge is equally cut into two edges by one refinement. In
my computation the diagonal matrix L is chosen to be L = h?I, where I denotes the identity
matrix. In this paper, I choose the weight function of an edge to be its length. Therefore,
in the homogeneous Cartesian mesh, for generality reason the weight function w;; is set to
be unit. The Dirichlet boundary can be specified randomly within the graph. Without loss
of generality, in this paper I consider the whole graph boundary as the Dirichlet boundary.

To compare the efficiency of direct and iterative solutions, i.e., CG, PCG and AGMG
when solving the discrete Laplacian equation, I check the CPU time (in seconds) for all
methods and the iteration number of iterative solutions. The results are presented in
Table 1. The CPU time of the direct solver and multigrid AGMG method increase by
4 times when refining the mesh once, i.e., the size of Laplacian matrix increasing by 4
times. Meanwhile, the iterations of AGMG keep the same. This observation show that
the AGMG is of the optimal computational complexity and is independent of the mesh
refinement. Another important conclusion based on Table 1 is that the AGMG is the most
efficient approach among the several options. The high efficiency of AGMG is due to its



Table 1: The comparison between direct solver, CG, PCG and multigrid AGMG methods

size(L) | Direct solver CG PCG AGMG
CPU iter. CPU | iter. CPU |iter. CPU
16641 0.61 264 0.48 113 0.48 19 0.14
66049 3.25 530 3.51 226 3.14 19  0.35
263169 14.88 1071 25.13 456 22.72 19 1.48
1050625 62.45 2150 219.34 | 917 21534 | 20 6.81
4198401 264.76 4754 1927.14 | 2024 1812.08 | 20 28.97

original design for large systems arising from discretization of scalar second order elliptic
PDEs, e.g., the Laplacian equations.

By one refinement, the CPU time increase by around 8 times and the iterations increase
by 2 times for the CG and PCG iterative solutions. Although the iterations of PCG are
almost the half of that of CG method, the CPU time for the two methods are almost the
same. The reason is that compared to the CG method, at each iteration the PCG method
need to solve a linear system with the preconditioner, which takes time. The convergence
histories of the CG, PCG and AGMG solutions are plotted in Figure 1.

All the results are computed using Matlab implementation on a server with 16 cores
AMD Opteron 6274 CPU provided by SNIC through Uppsala Multidisciplinary Center for
Advanced Computational Science (UPPMAX).

4 Conclusion and future work

Based on the numerical experiments I conclude that the aggregation-based algebraic multi-
grid method (AGMG) used in this paper is highly efficient for solving the Laplacian equa-
tions used in image analysis. The AGMG solver is used here as a black box and purely
algebraic, that is, no information has to be supplied besides the system matrix and the
right hand vector. The test of the efficiency of AGMG algorithm for solving the inhomoge-
neous Laplacian equations, namely, the weights are not uniform, is considered as a future
work.
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Figure 1: The convergence of CG, PCG and AGMG solutions, Size(L) = 1050625
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