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Objective

This talk presents a methodology, which has been very well
succeeded in Image Analysis, from a more general point of view, in
order to invite collaborators from other research areas.
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Organization

The Community Ordered Formation process, where groups of
individuals are formed based on optimum connectivity
relations to their leaders.
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Organization

The Community Ordered Formation process, where groups of
individuals are formed based on optimum connectivity
relations to their leaders.

The mathematical and computational models of the COF
process.

Its applications in Image Analysis.

Conclusive remarks.
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Community Ordered Formation Theory

For a given population, we may assume that each individual
has some desire to become a leader of a community.
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Community Ordered Formation Theory

For a given population, we may assume that each individual
has some desire to become a leader of a community.

The individuals with higher desire offer to their acquaintances
a reward to be part of their community.

If the offered reward is higher than his/her current
reward/desire, then the acquaintance agrees to change
community.
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Community Ordered Formation Theory

The true leaders are those whose desire is higher than the
reward offered by any other individual.

The rewards are propagated from the true leaders through the
members of their communities, which always offer a reward
not higher than their own reward.

The population is divided into communities, where each
individual belongs to the group which offered to him/her the
highest reward.
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Mathematical Model

Let the set N be the population and the adjacency relation
A ⊂ N ×N indicate the acquaintance relation between
individuals.
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Mathematical Model

Let the set N be the population and the adjacency relation
A ⊂ N ×N indicate the acquaintance relation between
individuals.

The pair (N ,A) defines a graph and the directed arcs
(s, t) ∈ A indicate that node t is acquainted of node s, such
that the set A(s) contains all acquaintances t of s.

A sequence of invitations, starting at a leader s1, passing
through other individuals, and ending at an individual sn = t,
forms a simple path πt = 〈s1, s2, . . . , sn〉, where (si , si+1) ∈ A.

Solitary individuals πt = 〈t〉 form trivial paths.
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Mathematical Model

The desire of an individual to be a leader is indicated by a
connectivity function f (〈t〉), as well as the reward f (πs · 〈s, t〉)
that a member s offers to his/her acquaintance t.
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connectivity function f (〈t〉), as well as the reward f (πs · 〈s, t〉)
that a member s offers to his/her acquaintance t.

The communities are formed by maximizing (minimizing) a
connectivity map V (t).

V (t) = max
∀πt∈Π(N ,A,t)

{f (πt)},

where Π(N ,A, t) is the set of all possible paths with terminus
t.
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Mathematical Model

The desire of an individual to be a leader is indicated by a
connectivity function f (〈t〉), as well as the reward f (πs · 〈s, t〉)
that a member s offers to his/her acquaintance t.

The communities are formed by maximizing (minimizing) a
connectivity map V (t).

V (t) = max
∀πt∈Π(N ,A,t)

{f (πt)},

where Π(N ,A, t) is the set of all possible paths with terminus
t.

However, this process follows the non-increasing order of optimum
connectivity (reward) values.
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Computational Model

A generalization of Dijkstra’s algorithm solves this problem by
outputting an optimum-path forest P — i.e., an acyclic map that
assigns a mark nil 6∈ N to every individual t ∈ N , when t is a
leader (root of the forest), or a predecessor P(t) = s ∈ N in the
optimum path P∗(t).
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Computational Model

As subproducts, the COF algorithm also outputs the maximum
connectivity map V (t) and an optimum partition R(t), which
assigns to each individual t its root (leader) R(t) or any other
label L(t) associated with R(t).
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Correctness

The correctedness of the COF algorithm requires that for every
t ∈ N , there must exist at least one optimum path πt , either
trivial or simple πt = πs · 〈s, t〉, such that:

1 f (πs) ≥ f (πt).

2 The prefix πs is optimum.

3 For any other optimum prefix τs , f (τs · 〈s, t〉) = f (πt).
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Correctness

The correctedness of the COF algorithm requires that for every
t ∈ N , there must exist at least one optimum path πt , either
trivial or simple πt = πs · 〈s, t〉, such that:

1 f (πs) ≥ f (πt).

2 The prefix πs is optimum.

3 For any other optimum prefix τs , f (τs · 〈s, t〉) = f (πt).

s

t

π

τ

s

s

These conditions are only applied to optimum paths.
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Applications in Image Analysis

In Image Analysis, the individuals may be pixels, regions,
objects, images, each represented by a feature vector.
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objects, images, each represented by a feature vector.

Its applications include image filtering[1],
segmentation[2, 3, 4, 5, 6], shape representation[7, 8, 9, 10],
data clustering[11, 12], and data classification[13, 14, 15, 16].
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Applications in Image Analysis

In Image Analysis, the individuals may be pixels, regions,
objects, images, each represented by a feature vector.

Its applications include image filtering[1],
segmentation[2, 3, 4, 5, 6], shape representation[7, 8, 9, 10],
data clustering[11, 12], and data classification[13, 14, 15, 16].

For pixels, the COF process is called an Image Foresting
Transform (IFT), whose seminal work was published in [17].

A COF-based image operator requires an adjacency relation,
which may be defined in the image domain and/or in the
feature space, and a connectivity function.
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Connectivity Functions

Maximizing (minimizing) V (t) with the minimum (maximum)
arc weight along the paths.

fmin(〈t〉) = H(t)

fmin(πs · 〈s, t〉) = min{fmin(πs),w(s, t)}
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Connectivity Functions

Maximizing (minimizing) V (t) with the minimum (maximum)
arc weight along the paths.

fmin(〈t〉) = H(t)

fmin(πs · 〈s, t〉) = min{fmin(πs),w(s, t)}

Minimizing V (t) with the sum of arc weights along the paths.

fsum(〈t〉) = H(t)

fsum(πs · 〈s, t〉) = fsum + w(s, t)

Minimizing V (t) with the Euclidean distance between the
terminal nodes of the paths.

feuc(〈t〉) =

{

0 if t ∈ S
+∞ otherwise

feuc(πs · 〈s, t〉) = ‖t − R(s)‖
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Pixel Clustering

Random samples can be used to estimate a probability density
function (pdf) with a few maxima (true leaders) and one
optimum-path tree rooted at each maximum defines a cluster.
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Background Removal

Random samples from the image’s border can be used to estimate
the pdf of the background, reducing segmentation to an optimum
thresholding on the density values.
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Optimum connectivity with markers

Object and background markers compete for the most strongly
connected pixels. The strength of connectedness is reduced when
paths cross the object’s borders. The ordering process guarantees
connected regions.
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Combination with object models

Medical imaging: Object modeling and image segmentation

Object models can be used to estimate internal and external
markers for automatic segmentation. Clustering completes
segmentation inside the objects.
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Multiscale Shape Representation

Shapes can be represented in
multiple scales.
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Multiscale Shape Representation

Shapes can be represented in
multiple scales.

The Euclidean distance transform
can be obtained from the optimum
connectivity map rooted at contour
pixels.

The root map creates discrete
Voronoi regions.

Multiscale skeletons are obtained
from the roop map, by computing
geodesic distances along the
contour between the roots of
4-adjacent pixels.
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Multi-Scale Skeletons

The skeletons are one-pixel wide and connected in all scales and a
proper scale can be chosen before it disconnects from the SKIZ.
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Multi-Scale Skeletons

The skeletons are one-pixel wide and connected in all scales and a
proper scale can be chosen before it disconnects from the SKIZ.

The 3D extension exploits geodesic areas[18].
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Contour Saliences

The internal and external skeleton saliences lead to the convex and
concave contour saliences, respectively.
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Image Classification

An image classifier can be created by active learning to reduce the
number of relevant feedback iterations for Contend-Based Image
Retrieval.
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Conclusion

The COF (IFT) methodology unifies several image operators,
provides fast implementations, and favors a better
understanding among methods.
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Conclusion

The COF (IFT) methodology unifies several image operators,
provides fast implementations, and favors a better
understanding among methods.

All image operators have been implemented with a few types
of connectivity functions. Can we increase this small set of
functions?

Can we include dynamics to the COF process, by analyzing
changes along time on the optimum-path forest?

Can we allow an individual to be part of multiple communities
and use this methodology in new applications?

Alexandre Xavier Falcão
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