
Interactive segmentation,
Combinatorial optimization

Filip Malmberg

But first...

Implementing graph-based algorithms

Even if we have formulated an algorithm on a general graphs, we do
not neccesarily have to allow arbitrary graphs in implementations of
the algorithm.

For standard pixel/voxel adjacency graphs, we can evaluate adjacency
relations without having to store the graph explicitly.

Implementing graph-based algorithms

If we do want to store the graph explicitly, there are some available
libraries:

For C++, I recommend the Boost Graph libraries. (www.boost.org)

For Matlab, check out the Graph Analysis Toolbox
(http://cns.bu.edu/ lgrady/software.html).

Part 1: Interactive segmentation

Image segmentation
Wikipedia on segmentation:

”In computer vision, Segmentation is the process of partitioning a
digital image into multiple segments”

”More precisely, image segmentation is the process of assigning a
label to every pixel in an image such that pixels with the same label
share certain visual characteristics.”

”Each of the pixels in a region are similar with respect to some
characteristic or computed property, such as color, intensity, or
texture. Adjacent regions are significantly different with respect to
the same characteristic(s).”

”Since there is no general solution to the image segmentation
problem, these [general purpose] techniques often have to be
combined with domain knowledge in order to effectively solve an
image segmentation problem for a problem domain.”

Image segmentation

Another view on segmentation:

”Image segmentation is the task of partitioning an image into
relevant objects and structures” Malmberg, 2011

”Recent image segmentation approaches have provided ... methods
that implicitly define the segmentation problem relative to a particular
task of content localization. This approach to image segmentation
requires user (or preprocessor) guidance of the segmentation
algorithm to define the desired content to be extracted.” Grady, 2006

Image segmentation

Image segmentation is an ill-posed problem...

Figure 1? : What do we mean by a segmentation of this image?

Image segmentation

Image segmentation is an ill-posed problem...

...Unless we specify a segmentation target.

Figure 2? : Segmentation relative to semantically defined targets.

Image segmentation

We can divide the image segmentation problem into to two tasks:

Recognition is the task of roughly determining where in the image an
object is located.

High-level task.
Requires prior knowledge of the segmentation task/image.

Delineation is the task of determining the exact extent of the object.

Low-level task
Can often be completed based on image data.

Semi-automatic segmentation

Humans outperform computers in recognition.

Computers outperform humans in delineation.

Semi-automatic segmentation methods try to take advantage of this
by letting humans perform recognition, while the computer does the
delineation.

The goal of semi-automatic segmentation is to minimize user
interaction time, while maintaining a tight user control to ensure
correct results.

Semi-automatic segmentation

Figure 3? : The interactive segmentation process.

Paradigms for user input: Initialization

The user provides an initial segmentation that is “close” to the
desired one.

Figure 4? : Segmentation by initialization.

Paradigms for user input: Segmentation from a box

The user is asked to provide a bounding box for the object

Figure 5? : Segmentation from a box.

Paradigms for user input: Boundary constraints
The user is asked to provide points on the boundary of the desired
object(s).

Figure 6? : Segmentation with boundary constraints.

Paradigms for user input: Regional constraints
The user is asked to provide correct segmentation labels for a subset
of the image elements (”seed-points”)

Figure 7? : Segmentation with regional constraints.

Hard and soft constraints

The user input is commonly interpreted in one of two ways

Hard constraints - the conditions specified by the user must be satisfied
exactly.
Soft constraints - the user input guides the segmentation algorithm
towards a specific result, but does not reduce the set of feasible
solutions.

Hard constraints give a higher degree of control.

Soft constraints may require less precise user input.

Desired properties of delineation methods

A delineation method (“computational part”) takes an image, together
with user input is some form, and produces a segmentation of the image.
Desirable properties for a delineation method include:

Fast computation.

Fast editing.

An ability to produce, with sufficient interaction, an arbitrary
segmentation.

“Intuitive” results.

Robustness to “small” variations in user input.

Evaluation of interactive segmentation methods

Evaluation of interactive segmentation methods differs slightly from
evaluation of automatic segmentation methods.

Segmentation methods can be evaluated according to:

Accuracy - how well the segmentation result corresponds to the
”truth”. We could argue that semi-automatic segmentation, by
definition, is accurate.
Efficiency - How much time is required to obtain a segmentation result
(user time/computer time).
Repeatability (precision) - How much does the result change if we
repeat the segmentation (with slightly different input).

Part 2: Combinatorial optimization

Segmentation as an optimization problem

We wish to find a cut/labeling that is as good as possible according to
some criterion, while satisfying the constraints provided by the user.

Typical measures of “goodness” may favour, e.g.:

Segmentations where object boundaries coincide with strong edges in
the image.
Segmentation that divide the image into regions that are homogeneous
with respect to some feature (intensity, color, texture).

Combinatorial optimization

A combinatorial optimization problem consists of a finite set of
candidate solutions S and an objective function f : S → R.

In segmentation, S could be the set of all possible vertex labelings (or
cuts) of a graph.

The objective function function f can measure either “goodness” or
“badness” of a solution. Here, we assume that we want to find a
solution x ∈ S that minimizes f .

Ideally, we want to find a globally minimal solution, i.e., a solution
x∗ ∈ argmin

x∈S
f (x).

Combinatorial optimization

It is tempting to view the objective function and the optimization
method as completely independent. This would allow us to design an
objective function (and a solution space) that describes the problem
at hand, and apply general purpose optimization techniques.

For an arbitrary objective function, finding a global optima recuires
checking all solutions.

The set S of solutions is finite. Can’t we just search this set for the
globally optimal solution?

How hard is combinatorial optimization?

In vertex labeling, the number of possible solutions is |L||V |.
Consider binary labeling of a 256× 256 image.

The number of possible solutions is 265536. This is a ridiculously large
number!

Searching the entire solution space for a global optimum is not
feasible!

So, what do we do?

For restricted classes of optimization problems, it is sometimes
possible to design efficient algorithms that are guaranteed to find
global optima. In upcoming lectures, we will cover some of these.

Local search methods can be used to find locally optimal solutions.
This is the topic of the remainder of this lecture.

Local optimality

Define a neighborhood system N that specifies, for any candidate
solution x , a set of nearby candidates N (x).

A local minimum is a candidate x∗ such that
f (x∗) ≤ minx∈N (x∗) f (x).

Local search

A general method for finding local minima.

Start at an arbitrary solution.
While the current solution is not a local minimum, replace it with an
adjacent solution for which f is lower.

This algorithm is guaranteed to find a locally optimal solution in a
finite number of iterations. Why?

Local search spaces as graphs

We have a set S and an adjacency relation N.

It’s a (huge) graph!

We never store this graph explicitly, but it can be useful to consider.

For example, it seems reasonable to define the adjacency relation so
that the graph of the search space is connected.

Local search

”This algorithm is guaranteed to find a locally optimal solution in a
finite number of iterations. Why?”

If the algorithm terminates, the result is a local minimum.
Each connected component in the graph of the search space contains
at least one local minimum. (Why?)
The number of solutions is finite.
A solution is never visited more than once. (Why?)

Best-improvement search

In best-improvement search, we consider all states in the local
neighborhood of the current state. We accept the one that best
improves the objective function.

In first-improvement search, we consider the states in the local
neighborhood of the current state one at a time. We accept the first
one that improves upon the current state.

Which one gives the best results? Which leads to a faster algorithm?

Extensions of local search

In standard local search, we accept any local minimum as a good solution.
The following techniques modify the standard algorithm in an attempt to
find ”good” local minima.

Local search with restarts

Run the algorithm several times, from different initial states. Select the
best solution.
If an infinite number of restarts are allowed, a global optimum will be
found with probability 1.

Simulated annealing

Accept ”worse” states with some probability, that may decrease over
time.
Allows the algorithm to explore of harmful states, while exploiting
successful states.

Local search, an example

Let’s take a look simple binary thresholding

Let I (v) be the intensity of the pixel corresponding to v .

Given a threshold t, we compute a vertex labeling according to:

L(v) =

{
foreground if I (v) ≥ t
background otherwise

. (1)

Next, we will reformulate this as an optimization problem.

Local search, an example

We define the objective function f as

f =
∑
v∈V

Φ(v) , (2)

where

Φ(v) =

{
abs(max(t − I (v), 0)) if L(v) = foreground
abs(max(I (v)− t, 0)) otherwise

. (3)

Local optimality, example

Intensityt

Figure 8? : Objective function for binary thresholding. The red curve is the
cost of assigning the label “background” to a vertex with a certain intensity, and
the green curve is the cost of assigning the “foreground” label.

Optimization by local search

We say that two vertex labelings are adjacent if we can turn one into
the other by changing the label of one vertex.

We start from an arbitrary labeling, and use first-improvement search
to find a locally optimal solution.

Local search, an example

Figure 9? : Thresholding as an optimization problem.

Local search, an example

Start from an arbitrary labeling.

In this case, the label of each pixel does not depend on the label of
any other pixels, so one iteration is sufficient.

Figure 10? : Thresholding as an optimization problem.

Local search, an example
We can add a term |∂L|, that penalizes long boundaries:

f =
∑
v∈V

Φ(v) + α|∂L| , (4)

where α is a real number that controls the degree of ”smoothing”.

Figure 11? : Thresholding with smoothness term.

A note on efficient implementation

In our example, the objective is a sum over all pixels in the image
(and all edges in the cut corresponding to the current segmentation).

Evaluating the entire objective function at each iteration is expensive.

Instead, we can calculate how much the objective function changes
when we change the label of a vertex.

This is good to keep in mind when designing the objective function.

When is local search useful?

Similar solutions should have similar costs (”continuous” objective
function).

f

S

f

S
Figure 12? : (Left) An objective function that is hard to optimize using local
search (Right) An objective function that is possible to optimize using local
search.

Very large-scale neighborhood search

To avoid getting trapped in poor local minima, it is desirable to use
as large neighborhoods as possible.

...but large neighborhoods lead to slow computations.

For some problems, we can find efficient algorithms for computing
globally optimal solution within a subset of S. If we use this subset as
our local neighborhood, we can do best-improvement search!

Erik Wernersson will talk about one such technique in his lecture.

Summary, interactive segmentation

We define the segmentation problem relative to a given segmentation
task.

We can divide the segmentation problem into recognition and
delineation.

Interactive segmentation methods use human input to solve the
recognition problem.

Many different paradigms for user input have been proposed.

Evaluation of semi-automatic methods differs slightly from evaluation
of automatic methods.

Summary, combinatorial optimization

Many image processing problems, including segmentation, can be
formulated as optimization problems.

For arbitrary problems, finding a global optimum requires exhaustive
search of the (huge) solution set.

For restricted classes of problems, we may be able to find global
optima. (More on that in upcoming lectures!)
For other problems, we may be able to use hill-climbing techniques to
find local optima.

Next lecture

Optimal trees and forests.

First example of a combinatorial optimization problem for which
efficient global algorithms exist.

