
The Mutex Watershed and its
Objective: Efficient, Parameter-Free

Graph Partitioning
Steffen Wolf , Alberto Bailoni , Constantin Pape , Nasim Rahaman, Anna Kreshuk ,

Ullrich K€othe , and Fred A. Hamprecht

Abstract—Image partitioning, or segmentation without semantics, is the task of decomposing an image into distinct segments, or

equivalently to detect closed contours. Most prior work either requires seeds, one per segment; or a threshold; or formulates the task as

multicut / correlation clustering, an NP-hard problem. Here, we propose an efficient algorithm for graph partitioning, the “Mutex

Watershed”. Unlike seeded watershed, the algorithm can accommodate not only attractive but also repulsive cues, allowing it to find a

previously unspecified number of segments without the need for explicit seeds or a tunable threshold. We also prove that this simple

algorithm solves to global optimality an objective function that is intimately related to the multicut / correlation clustering integer linear

programming formulation. The algorithm is deterministic, very simple to implement, and has empirically linearithmic complexity. When

presented with short-range attractive and long-range repulsive cues from a deep neural network, the Mutex Watershed gives the best

results currently known for the competitive ISBI 2012 EM segmentation benchmark.

Index Terms—Image segmentation, partitioning algorithms, greedy algorithms, optimization, integer linear programming, machine learning,

convolutional neural networks

Ç

1 INTRODUCTION

MOST image partitioning algorithms are defined over a
graph encoding purely attractive interactions. No mat-

ter whether a segmentation or clustering is then found
agglomeratively (as in single linkage clustering / water-
shed) or divisively (as in spectral clustering or iterated nor-
malized cuts), the user either needs to specify the desired
number of segments or a termination criterion. An even
stronger form of supervision is in terms of seeds, where one
pixel of each segment needs to be designated either by a
user or automatically. Unfortunately, clustering with auto-
mated seed selection remains a fragile and error-fraught
process, because every missed or hallucinated seed causes
an under- or oversegmentation error. Although the learning
of good edge detectors boosts the quality of classical seed
selection strategies (such as finding local minima of the
boundary map, or thresholding boundary maps), non-local
effects of seed placement along with strong variability in
region sizes and shapes make it hard for any learned predic-
tor to place exactly one seed in every true region.

In contrast to the above class of algorithms, multicut /
correlation clustering partitions vertices with both attractive
and repulsive interactions encoded into the edges of a
graph. Multicut has the great advantage that a “natural”
partitioning of a graph can be found, without needing to
specify a desired number of clusters, or a termination crite-
rion, or one seed per region. Its great drawback is that its
optimization is NP-hard.

The main insight of this paper is that when both attractive
and repulsive interactions between pixels are available, then
a generalization of the watershed algorithm can be devised
that segments an image without the need for seeds or stop-
ping criteria or thresholds. It examines all graph edges,
attractive and repulsive, sorted by their weight and adds
these to an active set iff they are not in conflict with previous,
higher-priority, decisions. The attractive subset of the result-
ing active set is a forest, with one tree representing each seg-
ment. However, the active set can have loops involvingmore
than one repulsive edge. See Fig. 1 for a visual abstract.

In summary, our principal contributions are, first, a fast
deterministic algorithm for graph partitioning with both
positive and negative edge weights that does not need prior
specification of the number of clusters (Section 4); and sec-
ond, its theoretical characterization, including proof that it
globally optimizes an objective related to the multicut corre-
lation clustering objective (4).

Combined with a deep net, the algorithm also happens to
define the state-of-the-art in a competitive neuron segmen-
tation challenge (Section 5).

This is an extended version of [1], with the second princi-
pal contribution (Section 4) being new.

� S. Wolf, A. Bailoni, N. Rahaman, U. K€othe, and F.A. Hamprecht are with
HCI/IWR, Heidelberg University, 69120 Heidelberg, Germany.
E-mail: {steffen.wolf, alberto.bailoni, nasim.rahaman, ullrich.koethe, fred.
hamprecht}@iwr.uni-heidelberg.de.

� C. Pape and A. Kreshuk are with EMBL, 69117 Heidelberg, Germany.
E-mail: {constantin.pape, anna.kreshuk}@embl.de.

Manuscript received 17 Nov. 2018; revised 26 Feb. 2020; accepted 1 Mar. 2020.
Date of publication 16 Mar. 2020; date of current version 2 Sept. 2021.
(Corresponding author: Fred A. Hamprecht.)
Recommended for acceptance by O. Veksler.
Digital Object Identifier no. 10.1109/TPAMI.2020.2980827

3724 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 10, OCTOBER 2021

0162-8828 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-9639-2509
https://orcid.org/0000-0002-9639-2509
https://orcid.org/0000-0002-9639-2509
https://orcid.org/0000-0002-9639-2509
https://orcid.org/0000-0002-9639-2509
https://orcid.org/0000-0002-0569-8044
https://orcid.org/0000-0002-0569-8044
https://orcid.org/0000-0002-0569-8044
https://orcid.org/0000-0002-0569-8044
https://orcid.org/0000-0002-0569-8044
https://orcid.org/0000-0001-6562-7187
https://orcid.org/0000-0001-6562-7187
https://orcid.org/0000-0001-6562-7187
https://orcid.org/0000-0001-6562-7187
https://orcid.org/0000-0001-6562-7187
https://orcid.org/0000-0003-1334-6388
https://orcid.org/0000-0003-1334-6388
https://orcid.org/0000-0003-1334-6388
https://orcid.org/0000-0003-1334-6388
https://orcid.org/0000-0003-1334-6388
https://orcid.org/0000-0001-6036-1287
https://orcid.org/0000-0001-6036-1287
https://orcid.org/0000-0001-6036-1287
https://orcid.org/0000-0001-6036-1287
https://orcid.org/0000-0001-6036-1287
mailto:steffen.wolf@iwr.uni-heidelberg.de
mailto:alberto.bailoni@iwr.uni-heidelberg.de
mailto:nasim.rahaman@iwr.uni-heidelberg.de
mailto:ullrich.koethe@iwr.uni-heidelberg.de
mailto:fred.hamprecht@iwr.uni-heidelberg.de
mailto:fred.hamprecht@iwr.uni-heidelberg.de
mailto:constantin.pape@embl.de
mailto:anna.kreshuk@embl.de

2 RELATED WORK

In the original watershed algorithm [2], [3], seeds were auto-
matically placed at all local minima of the boundary map.
Unfortunately, this leads to severe over-segmentation. Defin-
ing better seeds has been a recurring theme of watershed
research ever since. The simplest solution is offered by the
seededwatershed algorithm [4]: It relies on an oracle (an exter-
nal algorithm or a human) to provide seeds and assigns each
pixel to its nearest seed in terms ofminimax path distance.

In the absence of an oracle, many automatic methods for
seed selection have been proposed in the last decades with
applications in the fields of medicine and biology. Many of
these approaches rely on edge feature extraction and edge
detection like gradient calculation [5], [6]. Other types of
methods generate seeds by first performing feature extraction
[7], [8], whereas others first extract region of interests and
then place seeds inside these regions by using thresholding
[9], binarization [10], k-means [11] or other strategies [12], [13].

In applications where the number of regions is hard to
estimate, simple automatic seed selection methods, e.g.,
defining seeds by connected regions of low boundary prob-
ability, don’t work: The segmentation quality is usually
insufficient because multiple seeds are in the same region
and/or seeds leak through the boundary. Thus, in these
cases seed selection may be biased towards over-segmenta-
tion (with seeding at all minima being the extreme case).
The watershed algorithm then produces superpixels that
are merged into final regions by more or less elaborate post-
processing. This works better than using watersheds alone
because it exploits the larger context afforded by superpixel
adjacency graphs. Many criteria have been proposed to
identify the regions to be preserved during merging, e.g.,
region dynamics [14], the waterfall transform [15], extinc-
tion values [16], region saliency [17], and ða;vÞ-connected
components [18]. A merging process controlled by criteria
like these can be iterated to produce a hierarchy of segmen-
tations where important regions survive to the next level.
Variants of such hierarchical watersheds are reviewed and
evaluated in [19].

These results highlight the close connection of watersheds
to hierarchical clustering and minimum spanning trees/for-
ests [20], [21], which inspired novel merging strategies and
termination criteria. For example, [22] simply terminated
hierarchical merging by fixing the number of surviving

regions beforehand. [23] incorporate predefined sets of gen-
eralized merge constraints into the clustering algorithm.
Graph-based segmentation according to [24] defines a mea-
sure of quality for the current regions and stops when the
merge costs would exceed this measure. Ultrametric contour
maps [25] combine the gPb (global probability of boundary)
edge detector with an oriented watershed transform. Super-
pixels are agglomerated until the ultrametric distance
between the resulting regions exceeds a learned threshold.
An optimization perspective is taken in [26], [27], which
introduces h-increasing energy functions and builds the hier-
archy incrementally such that merge decisions greedily min-
imize the energy. The authors prove that the optimal cut
corresponds to a different unique segmentation for every
value of a free regularization parameter.

An important line of research is given by partitioning of
graphs with both attractive and repulsive edges [28]. Solu-
tions that optimally balance attraction and repulsion do not
require external stopping criteria such as predefined num-
ber of regions or seeds. This generalization leads to the NP-
hard problem of correlation clustering or (synonymous)
multicut (MC) partitioning. Fortunately, modern integer lin-
ear programming solvers in combination with incremental
constraint generation can solve problem instances of consid-
erable size [29], and good approximations exist for even
larger problems [30], [31] Reminiscent of strict minimizers
[32] with minimal L1-norm solution, our work solves the
multicut objective optimally when all graph weights are
raised to a large power.

Related to the proposedmethod, the greedy additive edge
contraction (GAEC) [33] heuristic for the multicut also
sequentially merges regions, but we handle attractive and
repulsive interactions separately and define edge strength
between clusters by a maximum instead of an additive rule.
The greedy fixation algorithm introduced in [34] is closely
related to the proposed method; it sorts attractive and repul-
sive edges by their absolute weight, merges nodes connected
by attractive edges and introduces no-merge constraints for
repulsive edges. However, similar to GAEC, it defines edge
strength by an additive rule, which increases the algorithm’s
runtime complexity compared to the presented Mutex
Watershed. Also, it is not yet known what objective the algo-
rithm optimizes globally, if any.

Another beneficial extension is the introduction of addi-
tional long-range edges. The strength of such edges can
often be estimated with greater certainty than is achievable
for the local edges used by watersheds on standard 4- or 8-
connected pixel graphs. Such repulsive long-range edges
have been used in [35] to represent object diameter con-
straints, which is still an MC-type problem. When long-
range edges are also allowed to be attractive, the problem
turns into the more complicated lifted multicut (LMC) [36].
Realistic problem sizes can only be solved approximately
[33], [37], but watershed superpixels followed by LMC post-
processing achieve state-of-the-art results on important
benchmarks [38]. Long-range edges are also used in [39], as
side losses for the boundary detection convolutional neural
network (CNN); but they are not used explicitly in any
downstream inference.

In general, striking progress in watershed-based segmen-
tation has been achieved by learning boundary maps with

Fig. 1. Left: Overlay of raw data from the ISBI 2012 EM segmentation
challenge and the edges for which attractive (green) or repulsive (red)
interactions are estimated for each pixel using a CNN. Middle: vertical /
horizontal repulsive interactions at intermediate / long range are shown
in the top / bottom half. Right: Active mutual exclusion (mutex) con-
straints that the proposed algorithm invokes during the segmentation
process.

WOLF ET AL.: MUTEX WATERSHED AND ITS OBJECTIVE: EFFICIENT, PARAMETER-FREE GRAPH PARTITIONING 3725

CNNs. This is nicely illustrated by the evolution of neuro-
segmentation for connectomics, an important field we also
address in the experimental section. CNNs were introduced
to this application in [40] and became, in much refined form
[41], the winning entry of the ISBI 2012 Neuro-Segmentation
Challenge [42]. Boundary maps and superpixels were fur-
ther improved by progress in CNN architectures and data
augmentation methods, using U-Nets [43], FusionNets [44]
or inception modules [38]. Subsequent postprocessing with
the GALA algorithm [45], [46], conditional random fields
[47] or the lifted multicut [38] pushed the envelope of final
segmentation quality. MaskExtend [48] applied CNNs to
both boundary map prediction and superpixel merging,
while flood-filling networks [49] eliminated superpixels
altogether by training a recurrent neural network to per-
form region growing one region at a time.

Most networks mentioned so far learn boundary maps
on pixels, but learning works equally well for edge-based
watersheds, as was demonstrated in [50], [51] using edge
weights generated with a CNN [52], [53]. Tayloring the
learning objective to the needs of the watershed algorithm
by penalizing critical edges along minimax paths [53] or
end-to-end training of edge weights and region growing
[54] improved results yet again.

Outside of connectomics, [55] obtained superior bound-
arymaps fromCNNs by learning not just boundary strength,
but also its gradient direction. Holistically-nested edge
detection [56], [57] couples the CNN loss at multiple resolu-
tions using deep supervision and is successfully used as a
basis for watershed segmentation of medical images in [58].

We adopt important ideas from this prior work (hierarchi-
cal single-linkage clustering, attractive and repulsive interac-
tions, long-range edges, and CNN-based learning). The
proposed efficient segmentation framework can be inter-
preted as a generalization of [23], because we also allow for
soft repulsive interactions (which can be overridden by strong
attractive edges), and constraints are generated on-the-fly.

3 THE MUTEX WATERSHED ALGORITHM AS AN

EXTENSION OF SEEDED WATERSHED

In this section we introduce the MutexWatershed Algorithm,
an efficient graph clustering algorithm that can ingest both
attractive and repulsive cues. We first reformulate seeded
watershed as a graph partitioning with infinitely repulsive
edges and then derive the generalized algorithm for finitely
repulsive edges, which obviates the need for seeds.

3.1 Definitions and Notation

Let G ¼ ðV;E;wÞ be a weighted graph. The scalar attribute
w : E ! R associated with each edge is a merge affinity: the
higher this number, the higher the inclination of the two inci-
dent vertices to be assigned to the same cluster. Conversely,
large negative affinity indicates a greater desire of the incident
vertices to be in different clusters. In our application, each ver-
tex corresponds to one pixel in the image to be segmented.We
call an edge e 2 E repulsive if we < 0 andwe call it attractive
if we > 0 and collect them in E� ¼ fe 2 E jwe < 0g and
Eþ ¼ fe 2 E j we > 0g respectively.

In our application, each vertex corresponds to one pixel
in the image to be segmented. The Mutex Watershed

algorithm, defined in Section 3.3, maintains disjunct active
sets Aþ � Eþ, A� � E�, Aþ \A� ¼ ; that encode merges
and mutual exclusion constraints, respectively. Clusters are
defined via the “connected” predicate

8i; j 2 V :

Pi!j ¼ fpaths p from i to j with p � Eþg
connectedði; j;AþÞ , 9 path p 2 Pi!j with p � Aþ

clusterði;AþÞ ¼ fig [fj : connectedði; j;AþÞg:

Conversely, the active subset A� � E� of repulsive edges
defines mutual exclusion relations by using the following
predicate:

mutexði; j;Aþ; A�Þ , 9 e ¼ ðk; lÞ 2 A� with

k 2 clusterði;AþÞ and
l 2 clusterðj;AþÞ and
clusterði;AþÞ 6¼ clusterðj;AþÞ:

Admissible active edge sets Aþ and A� must be chosen such
that the resulting clustering is consistent, i.e., nodes
engaged in a mutual exclusion constraint cannot be in the
same cluster: mutex ði; j;Aþ; A�Þ) not connectedði; j;AþÞ.
The “connected” and “mutex” predicates can be efficiently
evaluated using a union find data structure.

3.2 Seeded Watershed From a Mutex Perspective

One interpretation of the proposed method is in terms of a
generalization of the edge-based watershed algorithm [20],
[59], [60] or image foresting transform [61]. This algorithm
can only ingest a graph with purely attractive interactions,
E� ¼ ;. Without further constraints, the algorithm would
yield only the trivial result of a single cluster comprising all
vertices. To obtain more interesting output, an oracle needs
to provide seeds (e.g., one node per cluster). These seed ver-
tices are all connected to an auxiliary node (see Fig. 2a) by
auxiliary edges with infinite merge affinity. A maximum
spanning tree (MST) on this augmented graph can be found
in linearithmic time; and the maximum spanning tree (or in
the case of degeneracy: at least one of the maximum span-
ning trees) will include the auxiliary edges. When the auxil-
iary edges are deleted from the MST, a forest results, with
each tree representing one cluster [20], [59], [61].

We now reformulate this well-known algorithm in a way
that will later emerge as a special case of the proposed

Fig. 2. Two equivalent representations of the seeded watershed cluster-
ing obtained using (a) a maximum spanning tree computation or (b)
Algorithm 1. Both graphs share the weighted attractive (green) edges
and seeds (hatched nodes). The infinitely attractive connections to the
auxiliary node (gray) in (a) are replaced by infinitely repulsive (red)
edges between each pair of seeds in (b). The two final clusterings are
defined by the active sets (bold edges) and are identical. Node colors
indicate the clustering result, but are arbitrary.

3726 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 10, OCTOBER 2021

Mutex Watershed: we eliminate the auxiliary node and
edges, and replace them by a set of infinitely repulsive
edges, one for each pair of seeds (Fig. 2b). Algorithm 1 is a
variation of Kruskal’s MST algorithm operating on the seed
mutex graph just defined, and gives results identical to
seeded watershed on the original graph.

This algorithm differs from Kruskal’s only by the check
for mutual exclusion in the if-statement. Obviously, the
modified algorithm has the same effect as the original algo-
rithm, because the final set Aþ is exactly the maximum
spanning forest obtained after removing the auxiliary edges
from the original solution.

In the sequel, we generalize this construction by admit-
ting less-than-infinitely repulsive edges. Importantly, these
can be dense and are hence much easier to estimate auto-
matically than seeds with their strict requirement of only-
one-per-cluster.

3.3 Mutex Watersheds

We now introduce our core contribution: an algorithm that
is empirically no more expensive than a MST computation;
but that can ingest both attractive and repulsive cues and
partition a graph into a number of clusters that does not
need to be specified beforehand. Neither seeds nor hyper-
parameters that implicitly determine the number of result-
ing clusters are required.

The Mutex Watershed, Algorithm 2, proceeds as follows.
Given a graph G ¼ ðV;EÞ with signed weights w : E ! R, do
the following: sort all edgesE, attractive or repulsive, by their
absolute weight in descending order into a priority queue.
Iteratively pop all edges from the queue and add them to the
active set one by one, provided that a set of conditions are sat-
isfied. More specifically, assuming connect_all is False, if the
next edge popped from the priority queue is attractive and its
incident vertices are not yet in the same tree, then connect the
respective trees provided this is not ruled out by a mutual
exclusion constraint. If on the other hand the edge popped is
repulsive, and if its incident vertices are not yet in the same
tree, then add a mutual exclusion constraint between the two
trees. The output clustering is defined by the connected com-
ponents of the final attractive active setAþ.

The crucial difference to Algorithm 1 is that mutex con-
straints are no longer pre-defined, but created dynamically
whenever a repulsive edge is found. However, new exclusion
constraints can never override earlier, high-priority merge
decisions. In this case, the repulsive edge in question is simply
ignored. Similarly, an attractive edgemust never override ear-
lier and thus higher-prioritymust-not-link decisions.

The boolean value of the connect_all input parameter of
the algorithm does not influence the final output clustering,
but defines the internal cluster connectedness: when it is set
to True, the algorithm adds all attractive intra-cluster edges
to the active set Aþ. When it is set to False, then a maximum
spanning tree is built for each cluster similarly to the seeded
watershed. This variant of the algorithm will be helpful in
the next section 4 to highlight the relation between the
Mutex Watershed and the multicut problem.

Fig. 3 illustrates the proposed algorithm: Figs. 3a and 3b
show examples of an unconstrained merge and an added
mutex constraint, respectively; Figs. 3c and 3d show, respec-
tively, an example of an attractive edge (we ¼ 14) and repul-
sive edge (we ¼ �13) that are not added to the active set
because their incident vertices are already “connected” and
belong to the same tree of the forest Aþ; finally, Fig. 3e
shows an attractive edge (we ¼ 12) that is ruled out by a pre-
viously introduced mutual exclusion relation.

3.4 Time Complexity Analysis

Before analyzing the time complexity of Algorithm 2 we
first review the complexity of Kruskal’s algorithm. Using a
union-find data structure (with path compression and
union by rank) the time complexity of mergeði; jÞ and

Algorithm 1. Mutex Version of Seeded Watershed Algo-
rithm. The Output Clustering is Defined by the Con-
nected Components of the Final Attractive Active Set Aþ

Seeded Watershed:
WS

�GðV;EÞ; pos. weights w : E ! Rþ, seeds S � V
�
:

Aþ ;;
A� fðs; tÞ 2 S � S j s 6¼ tg;

" Equivalent to introducing infinitely repulsive edges
between seeds

for ði; jÞ ¼ e 2 E in descending order of we do
if not connected ði; j;Aþ) and notmutexði; j;Aþ; A�) then
Aþ Aþ [e;

" merge i and j and inherit the mutex constraints of
the parent clusters

end
end
return Aþ [A�

Algorithm 2. Mutex Watershed Algorithm. The Output
Clustering is Defined by the Connected Components of
the Final Attractive Active Set Aþ. The Connect All
Parameter Changes the Internal Cluster Connectedness
From Trees to Fully Connected, but does not Change the
Output Clustering. The Connected Predicate can be Effi-
ciently Evaluated Using Union Find Data Structures

Mutex Watershed:
MWS

�GðV;EÞ, w : E ! R, boolean connect all
�
:

Aþ ;; A� ;;
for ði; jÞ ¼ e 2 E in descending order of jwej do
if e 2 Eþ then
if notmutexði; j;Aþ; A�) then
if not connected ði; j;Aþ) or connect_all then
merge ði; jÞ: Aþ Aþ [e;

" merge i and j and inherit the mutex constraints
of the parent clusters

end
end

else
if not connected ði; j;Aþ) then
addmutexði; jÞ: A� A� [e;

" add mutex constraint between i and j
end

end
end
return Aþ [A�

WOLF ET AL.: MUTEX WATERSHED AND ITS OBJECTIVE: EFFICIENT, PARAMETER-FREE GRAPH PARTITIONING 3727

connectedði; jÞ is OðaðV ÞÞ, where a is the slowly growing
inverse Ackerman function, and the total runtime complex-
ity is dominated by the initial sorting of the edges
OðE logEÞ [62].

To check for mutex constraints efficiently, we maintain a
set of all active mutex edges

M½Ci� ¼ fðu; vÞ 2 A�ju 2 Ci _ v 2 Cig;

for every Ci ¼ clusterðiÞ using hash tables, where insertion of
newmutex edges (i.e., addmutex) and search have an average
complexity of Oð1Þ. Note that every cluster can be efficiently
identified by its union-find root node. For mutex ði; jÞ we
check if M½Ci� \M½Cj� ¼ ; by searching for all elements of
the smaller hash table in the larger hash table. Therefore
mutex ði; jÞ has an average complexity of OðminðjM½Ci�j;
jM½Cj�jÞ. Similarly, duringmerge ði; jÞ, mutex constraints are
inherited bymerging two hash tables, which also has an aver-
age complexityOðminðjM½Ci�j; jM½Cj�jÞ.

In conclusion, the average runtime contribution of attrac-
tive edges OðmaxðjEþj � aðV Þ; jEþj �MÞÞ (checking mutex
constraints and possibly merging) and repulsive edges
OðmaxðjE�j � aðV Þ; jE�jÞÞ (insertion of one mutex edge)
result in a total average runtime complexity of Algorithm 2

OðmaxðE logE ; EMÞÞ: (1)

where M is the expected value of minðjM½Ci�j; jM½Cj�jÞ and
aðV Þ 2 OðlogV Þ 2 OðlogEÞ.1

In the worst case OðMÞ 2 OðEÞ, the Mutex Watershed
Algorithm has a runtime complexity of OðE2Þ. Empirically,
we find that OðEMÞ � OðE logEÞ by measuring the run-
time of Mutex Watershed for different sub-volumes of the
ISBI challenge (see Fig. 4), leading to a

Empirical Mutex Watershed Complexity: OðE logEÞ:
(2)

4 THEORETICAL CHARACTERIZATION

Towards the Multicut Framework. In Section 3.3, we have
introduced the Mutex Watershed (MWS) algorithm as a
generalization of seeded watersheds and the Kruskal algo-
rithm in particular. However, since we are considering
graphs with negative edge weights, the MWS is conceptu-
ally closer to the multicut problem and related heuristics
such as GAEC and GF [34]. Fortunately, due to the structure
of the MWS it can be analyzed using dynamic program-
ming. This section summarizes our second contribution, i.e.,
the proof that the Mutex Watershed Algorithm globally
optimizes a precise objective related to the multicut.

4.1 Review of the Multicut Problem and its Objective

In the following, we will review the multicut problem not in
its standard formulation but in the Cycle Covering Formulation
introduced in [63], which is similar to the MWS formulation
as it also considers the set of attractive and repulsive edges sep-
arately. Previously, in Section 3.1, we defined a clustering by

Fig. 3. Some iterations of the Mutex Watershed Algorithm 2 applied to a
graph with weighted attractive (green) and repulsive (red) edges. Edges
accumulated in the active set A after a given number of iterations are
shown in bold. The connect_all parameter of the algorithm is set to
False, so that only the positive edges belonging to the maximum span-
ning tree of each cluster are added to the active set. Once the algorithm
terminates, the final active set (f) defines the final clustering (indicated
using arbitrary node colors). Some edges are not added to the active set
because they are mutex constrained (yellow highlight) or because the
associated nodes are already connected and in the same cluster (blue
highlight).

Fig. 4. Runtime T of Mutex Watershed (without sorting of edges) mea-
sured on sub-volumes of the ISBI challenge of different sizes (thereby
varying the total number of edges E). We plot T

jEj over jEj in a logarithmic

plot, which makes T 	 jEjlogðjEjÞ appear as straight line. A logarithmic

function (blue line) is fitted to the measured T
jEj (blue circles) with

(R2 ¼ 0:9896). The good fit suggests that empirically T � OðE logEÞ.

1. In the worst case G is a fully connected graph, with jEj ¼ jV j2,
hence log jV j ¼ 1

2 log jEj.

3728 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 10, OCTOBER 2021

introducing the concept of an active set of edges A ¼ Aþ[
A� � E and the connected/mutex predicates. In particular,
an active set describes a valid clustering if it does not include
both a path of only attractive edges and a pathwith exactly one
repulsive edge connecting any two nodes i; j 2 V

connectedði; j;AþÞ ¼) not mutexði; j;Aþ; A�Þ: (3)

In other words, an active set is consistent and describes a
clustering if it does not contain any cycle with exactly one
repulsive edge (known as conflicted cycles).

Definition 4.1 (Conflicted cycles). We call a cycle of G con-
flicted w.r.t. ðG; wÞ if it contains precisely one repulsive edge
e 2 E�, s.t. we < 0. We denote by C�ðG; wÞ � CðG; wÞ the set
of all conflicted cycles. Furthermore, given a set of edges
A � E, we denote by C�ðA;G; wÞ � C�ðG; wÞ the set of con-
flicted cycles involving only edges in A.

From now on, in order to describe different clustering solu-
tions in the framework of (integer) linear programs,we associ-
ate each active setAwith the following edge indicator xA

xA :¼ 1fe =2 AÞg 2 f0; 1gjEj: (4)

In this way, the cycle-free property C�ðA;G; wÞ ¼ ; of an
active set can be reformulated in terms of linear inequalities

8C 2 C�ðG; wÞ :
X
e2EC

xAe
 1 () C�ðA;G; wÞ ¼ ;:

(5)

In words, the active set cannot contain conflicted cycles; or
vice versa, every conflicted cycle must contain at least one
edge that is not part of the active set. Following [63], via this
property we describe the space of all possible clustering sol-
utions by defining the convex hull SCðG; wÞ of all edge indi-
cators corresponding to valid clusterings of ðG; wÞ:
Definition 4.2. Let SCðG; wÞ denote the convex hull of all edge

indicators x 2 f0; 1gjEj satisfying the following system of
inequalities

8C 2 C�ðG; wÞ :
X
e2EC

xe
 1: (6)

That is, SCðG; wÞ contains all edge labelings for which every
conflicted cycle is broken at least once. We call SCðG; wÞ the

set covering polyhedron with respect to conflicted cycles, simi-
larly to [63].

Fig. 5 summarizes these definitions and provides an
example of consistent and inconsistent active sets with their
associated clusterings and edge indicators.

As shown in [63], the multicut optimization problem can be
formulated with constraints over conflicted cycles in terms of
the following integer linear program (ILP), which isNP-hard

min
x2SCðG;wÞ

X
e2E
jwejxe: (7)

The solution of the multicut problem is given by the clus-
tering associated to the connected components of the
active set Âþ ¼ fe 2 Eþjx̂e ¼ 0g, where x̂ 2 f0; 1gjEj is the
solution of (7).

4.2 Mutex Watershed Objective

We now define the Mutex Watershed objective that is
minimized by the Mutex Watershed Algorithm (proof in
Section 4.3) and show how it is closely related to the multi-
cut problem defined in Eq. (7). Lange et al. [63] introduce
the concept of dominant edges in a graph. For example, an
attractive edge f 2 Eþ is called dominant if there exists a
cut B with f 2 EB such that jwf j

P
e2EBnffg wej j. These

highlight an aspect of the multicut problem that can be used
to search for optimal solutions more efficiently. Not all
weighted graphs contain dominant edges; but if, assuming
no ties, we raise all graph weights to a large enough power
a similar property emerges.

Definition 4.3 (Dominant Power). Let G ¼ ðV;E;wÞ be an
edge-weighted graph, with unique weights w : E ! R. We call
p 2 Nþ a dominant power if

jwejp >
X

t2E; wt <we

jwtjp 8e 2 E; (8)

In contrast to dominant edges [63], we do not consider
edges on a cut but rather all edges with smaller absolute
weight. Note that there exists a dominant power for any
finite set of edges, since for any e 2 E we can divide (8) by
jwejp and observe that the normalized weights jwtjp=jwejp
(and any finite sum of these weights) converges to 0 when p
tends to infinity.

Fig. 5. Consistent and inconsistent active sets – Two different active edge sets A1 � E (on the left) and A2 � E (on the right) on identical toy graphs
with six nodes, attractive (green) and repulsive (red) edges. The value of the edge indicator xA 2 f0; 1gjEj defined in Eq. (4) is shown for every edge.
Members of the active sets are shown as solid lines. On the left, the active set A1 is consistent, i.e., does not include any conflicted cycle C�ðG; wÞ
(see Definition 4.1): Therefore, it is associated with a clustering (represented by arbitrary node colors).On the right, the active set A2 is not consistent
and includes at least one conflicted cycle (highlighted in yellow), thus it cannot be associated with a node clustering.

WOLF ET AL.: MUTEX WATERSHED AND ITS OBJECTIVE: EFFICIENT, PARAMETER-FREE GRAPH PARTITIONING 3729

By considering the multicut problem in Eq. (7) and rais-
ing the weights jwej to a dominant power p, we fundamen-
tally change the problem structure:

Definition 4.4 (Mutex Watershed Objective). Let
G ¼ ðV;E;wÞ be an edge-weighted graph, with unique weights
w : E ! R and p 2 Nþ a dominant power. Then the Mutex
Watershed Objective is defined as the integer linear program

min
x2SCðG;wÞ

X
e2E
jwejp xe; (9)

where SCðG; wÞ is the convex hull defined in Definition 4.2.

In the following section, we will prove that this modified
version of the multicut objective, which we call Mutex
Watershed Objective, is indeed optimized by the Mutex
Watershed Algorithm:

Theorem 4.1. Objective Let G ¼ ðV;E;wÞ be an edge-weighted
graph, with unique weights w : E ! R and p 2 Nþ a domi-
nant power. Then the edge indicator given by the Mutex Water-
shed Algorithm 2

xMWS :¼ 1
n
e =2MWS

�
G; w; connect all ¼ True

�o
;

minimizes the Mutex Watershed Objective in Eq. (9).

4.3 Proof of Optimality via Dynamic Programming

In this section we prove Theorem 4.1, i.e., that the Mutex
Watershed Objective defined in Definition 4.4 is solved to
optimality by the Mutex Watershed Algorithm 3. Particu-
larly, in the following Section 4.3.1 we show that the edge
indicator associated to the solution of the MWS algorithm
lies in SCðG; wÞ, whereas in Section 4.3.2 we prove that it
solves Eq. (9) to optimality.

4.3.1 Cycle Consistency

The Mutex Watershed algorithm introduced in Section 3
iteratively builds an active set A ¼ Aþ [A� such that nodes
engaged in a mutual exclusion constraint (encoded by edges
in A�) are never part of the same cluster. In other words,
this means that the active set built by the Mutex Watershed
at every iteration does never include a conflicted cycle and is

always consistent. In particular, for any attractive edge
ði; jÞ ¼ eþ 2 Eþ and any consistent set A that fulfills
C�ðA;G; wÞ ¼ ;

not mutexði; j; Aþ; A�Þ , C�ðA [feþg;G; wÞ ¼ ;:
Similarly, for any repulsive edge ðs; tÞ ¼ e� 2 E�

not connectedðs; t; AþÞ , C�ðA [fe�g;G; wÞ ¼ ;:
Therefore, we can rewrite Algorithm 2 in the form of Algo-
rithm 3. This new formulation makes it clear that

C�
�
MWS

�G; w; connect all=True
�� ¼ ;: (10)

Thus, thanks to Eq. (5) and Definition 4.2, it follows that the
MWS edge indicator xMWS defined in Theorem 4.1 lies in
SCðG; wÞ

xMWS 2 SCðG; wÞ: (11)

4.3.2 Optimality

We first note that the Mutex Watershed Objective 4.4 and
Theorem 4.1 can easily be reformulated in terms of active
sets to minimize

argmin
A�E

�
X
e2A
jwejp s.t. C�ðA;G; wÞ ¼ ;: (12)

We now generalize the Mutex Watershed (see Algorithm 4)
and the objective such that an initial consistent set of active
edges ~A � E is supplied:

Definition 4.5 (Energy optimization subproblem). Let
G ¼ ðV;E;wÞ be an edge-weighted graph. Define the optimal
solution of the subproblem as

SðG; ~AÞ :¼ argmin
A�ðEn ~AÞ

T ðAÞ with T ðAÞ :¼ �
X
e2A
jwejp;

(13)

s.t. C�ðA [~A;G; wÞ ¼ ;; (14)

where ~A � E is a set of initially activated edges such that
C�ð ~A;G; wÞ ¼ ;.

Algorithm 3. Equivalent Formulation of the MutexWater-
shed Algorithm 2, With Input Parameter connect_all =
True. The Set of Conflicted Cycles C�ðA;G; wÞ is Defined in
Definition 4.1. The Output Clustering is Defined by the
Connected Components of the Final Attractive Active set
Aþ ¼ A \ Eþ

Conflicted-Cycles Mutex Watershed:
CCMWS

�GðV;EÞ; w : E ! R
�
:

A ;;
for ði; jÞ ¼ e 2 E in descending order of jwej do
if C�ðA [feg;G; wÞ ¼ ; then
A A [e;

end
end
return A;

Algorithm 4.Mutex Watershed Algorithm Starting From
Initial Active set ~A. An Initial Set ~A of Active Edges is
Given as Additional Input and the Final Active Set is
Such That A � E n ~A. Note That Algorithm 3 is a Special
Case of This Algorithm When ~A ¼ ;. Differences With
Algorithm 3 are Highlighted in Blue.

Initialized Mutex Watershed:
IMWS

�GðV;EÞ; w : E ! R, initial active set ~A:
A ;;
for e 2 E n ~A in descending order of weight do
if C�ðA [~A [feg;G; wÞ ¼ ; then
A A [e;

end
end
return A;

3730 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 10, OCTOBER 2021

We note that for ~A ¼ ;, the optimal solution SðG; ;Þ is
equivalent to the solution minimizing the Mutex Watershed
Objective and Eq. (12).

Definition 4.6 (Incomplete, consistent initial set). For an
edge-weighted graph G ¼ ðV;E;wÞ a set of edges ~A � E is con-
sistent if

C�ð ~A;G; wÞ ¼ ;: (15)

~A is incomplete if it is not the final solution and there exists a
consistent edge ~e that can be added to ~A without violating the
constraints.

9 ~e 2 E n ~A s.t. C�ð ~A [f~eg;G; wÞ ¼ ;: (16)

Definition 4.7 (First greedy step). Let us consider an incom-
plete, consistent initial active set ~A � E on G ¼ ðV;E;wÞ. We
define

g :¼ argmax
e2ðEn ~AÞ

jwðeÞj s.t. C�ð ~A [feg;G; wÞ ¼ ;:

(17)

as the feasible edge with the highest weight, which is always the
first greedy step of Algorithm 4.

In the following two lemmas, we prove that the Mutex
Watershed problem has an optimal substructure property and
a greedy choice property [62], which are sufficient to prove
that the Mutex Watershed algorithm finds the optimum of
the Mutex Watershed Objective.

Lemma 4.2 (Greedy-choice property). For an incomplete,
consistent initial active set ~A of the Mutex Watershed, the first
greedy step g is always part of the optimal solution

g 2 SðG; ~AÞ:
Proof. We will prove the theorem by contradiction by

assuming that the first greedy choice is not part of the
optimal solution, i.e., g =2 SðG; ~AÞ. Since g is by definition
the feasible edge with highest weight, it follows that:

jwðeÞj < jwðgÞj 8e 2 SðG; ~AÞ: (18)

We now consider the alternative active set A0 ¼ fgg, that
is a consistent solution, with

T ðA0Þ ¼ �jwgjp <
ð8Þ �

X
t2SðG; ~AÞ

jwtjp ¼ T
�
SðG; ~AÞ

�
; (19)

which contradicts the optimality of SðG; ~AÞ. tu
Lemma 4.3 (Optimal substructure property). Let us con-

sider an initial active set ~A, the optimization problem defined
in Equation (13), and assume to have an incomplete, consistent
problem (see Definition 4.6). Then it follows that:

1) After making the first greedy choice g, we are left with
a subproblem that can be seen as a new optimization
problem of the same structure;

2) The optimal solution SðG; ~AÞ is always given by the
combination of the first greedy choice and the optimal
solution of the remaining subproblem.

Proof. After making the first greedy choice and selecting
the first feasible edge g defined in Equation (17), we are
clearly left with a new optimization problem of the same
structure that has the following optimal solution:
SðG; ~A [fggÞ.

In order to prove the second point of the theorem, we
now show that

SðG; ~AÞ ¼ fgg [SðG; ~A [fggÞ: (20)

Since Algorithm 4 fulfills the greedy-choice property,
g 2 SðG; ~AÞ and we can add the edge g as an additional
constraint to the optimal solution

SðG; ~AÞ ¼ argmin
A�ðEn ~AÞ

T ðAÞ

s. t. C�ðA [~A;G; wÞ ¼ ;; g 2 A:

(21)

Then it follows that:

SðG; ~AÞ ¼ fgg [argmin
A� Enð ~A[fggÞ

T ðAÞ

s. t. C�
�
A [fgg [~A;G; w

�
¼ ;;

(22)

which is equivalent to Equation (20). tu
Proof of Theorems 4.1 In Lemmas 4.2 and 4.3 we have

proven that the optimization problem defined in (12)
has the optimal substructure and a greedy choice prop-
erty. It follows through induction that the final active
set MWS

�G; w;connect_all = True
�
found by the Mutex

Watershed Algorithm 3 is the optimal solution for the
Mutex Watershed objective (12) [62]. tu

4.4 Relation to the Extended Power Watershed
Framework

The Power Watershed [64] is an important framework for
graph-based image segmentation that includes several algo-
rithms like seeded watershed, random walker and graph
cuts. Recently, [65] extended the framework to even more
general types of hierarchical optimization algorithms thanks
to the use of G-theory and G-convergence [66], [67]. In this
section, we show how the Mutex Watershed algorithm can
also be included in this extended framework2 and how the
framework suggests an optimization problem that is solved
by the Mutex Watershed.

4.4.1 Mutex Watershed as Hierarchical Optimization

Algorithm

We first start by introducing the extended Power Watershed
framework and restating the main theorem from [65]:

Theorem 4.4 ([65] Extended Power Watershed Frame-
work). Consider three strictly positive integers p;m; t 2 Nþ

and t real numbers

1
 �0 > �1 > . . .�t�1 > 0: (23)

2. The connection between the Mutex Watershed and the extended
PowerWatershed framework was kindly pointed out by an anonymous
reviewer.

WOLF ET AL.: MUTEX WATERSHED AND ITS OBJECTIVE: EFFICIENT, PARAMETER-FREE GRAPH PARTITIONING 3731

Given t continuous functions Qk : R
m ! R with 0 � k < t,

define the function

QpðxÞ :¼
X

0�k< t

�p
kQkðxÞ: (24)

Then, if any sequence ðxpÞp> 0 of minimizers xp of QpðxÞ is
bounded (i.e., there exists C > 0 such that for all p > 0,
jjxpjj1 � C), the sequence is convergent, up to taking a subse-
quence, toward a point of Mt�1, which is the set of minimizers
recursively defined in Algorithm 5.

Proof. See [65] (Theorem 3.3). tu
We now show that the Mutex Watershed algorithm can

be seen as a special case of the generic hierarchical Algo-
rithm 5, for a specific choice of scales �k and functions
QkðxÞ : Rm ! R (see definitions ((25), (26)) below) .

Scales �k: Let ~wk be the signed edge weights w : E ! R

ordered by decreasing absolute value j ~w1j > j ~w2j > . . . >
j ~wt�1j. If two edges share the same weight, then the weight
is called ~wk for both and Ek � E denotes the set of all edges
with weight ~wk. We then define the scales �k as

�k :¼
1 if k ¼ 0
~wk
2 ~w1

��� ��� otherwise.

(
(25)

The continuous functions QkðxÞ : RjEj ! R are defined as fol-
lows

QkðxÞ :¼
jEj �minx02ISCðG;wÞjjx0 � xjj if k ¼ 0P

e2Ek
xe otherwise,

(

(26)

where ISCðG; wÞ is defined as

ISCðG; wÞ :¼ SCðG; wÞ \ f0; 1gjEj: (27)

In words, Q0ðxÞ is proportional to the distance between x
and the closest point on the set ISCðG; wÞ, whereas QkðxÞ
depends only on the indicators xe of edges in Ek, for k > 0.

Algorithm 6 is obtained by substituting the scales �k and
functions QkðxÞ (respectively defined in Eqs. (25) and (26))
into Algorithm 5 . The algorithm starts by setting M0 to
ISCðG; wÞ, i.e., by restricting the space of the solutions only
to integer edge labelings x that do not include any conflicted
cycles. Then, in the following iterations k 2 1; . . . ; t� 1, the
algorithm solves a series of minimization sub-problems that
in the most general case are NP-hard, even though they

involve a smaller set of edges Ek � E. Nevertheless, if we
assume that all weights are distinct, then jEkj ¼ 1 for all k
and the solution to the sub-problems amounts to checking if
the new edge can be labeled with xe ¼ 0 without introduc-
ing any conflicted cycles. This procedure is identical to
Algorithm 2: at every iteration, the Mutex Watershed tries
to add an edge to the active set A, provided that no mutual
exclusion constraints are violated.

In summary, the framework in [65] provides a new for-
mulation of the Mutex Watershed Algorithm that is even
applicable to graphs with tied edge weights. In practice,
when edge weights are estimated by a CNN, we do not
expect tied edge weights.

4.4.2 Convergence of the Sequence of Minimizers

In this section, we see how Theorem 4.4 also suggests a min-
imization problem that is solved by the Mutex Watershed
algorithm. A short summary is given in the final paragraph
of the section.

First, we make sure that the conditions of Theorem 4.4
are satisfied when we apply it to Algorithm 6:

Lemma 4.5. boundedsequence Let us consider the scales �k and
continuous functions QkðxÞ : RjEj ! R respectively defined in
Eqs. (25) and (26). For any value of p 2 Nþ, let xp 2 RjEj be a
minimizer of the function QpðxÞ defined in Eq. (24). Then, the
minimizer xp lies in the set ISCðG; wÞ. From this, it follows
that any sequence of minimizers ðxpÞp> 0 is bounded and the
conditions of Theorem 4.4 are satisfied.

Proof. See Appendix A,which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPAMI.2020.2980827. tu
Then, given any p 2 Nþ and the Definition ((25), (26)), we

have that the minimization of the function QpðxÞ defined in
Eq. (24) is given by the following problem:

argmin
x2Rm

QpðxÞ ¼ argmin
x2Rm

X
0�k< t

�p
kQkðxÞ (28)

¼ argmin
x2ISCðG;wÞ

X
1�k< t

~wk

2 ~w1

����
����
pX
e2Ek

xe (29)

¼ argmin
x2ISCðG;wÞ

1

j2 ~w1jp
X
e2E
jwejp xe; (30)

Algorithm 5. Generic Hierarchical Optimization Algo-
rithm Introduced in [65]. The Sequence of Continuous
Functions Qk : R

m ! R is Sorted According to the Asso-
ciated Scales �k (Eq. (23))

Generic hierarchical optimization:
GHO(Q0; . . . ; Qt�1):
M0 ¼ argminx2Rm Q0ðxÞ
for k 2 1; . . . ; t� 1 do
Mk ¼ argminx2Mk�1 QkðxÞ

end
Return: some x� 2Mt�1

Algorithm 6. Special Case of the General Hierarchical
Algorithm 5 Obtained by Substituting Definition (25)
and (26). With the Additional Assumption of Unique
Signed Weights w : E ! R, This Algorithm is Equivalent
to the Mutex Watershed Algorithm 3. The Sequence of
Functions Qk : R

m ! R Defined in Eq. (26) is Sorted
According to the Associated Scales �k in Eq. (25).
ISCðG; wÞ is Defined in Eq. (27)

PWSMWS(Q0; . . . ; Qt�1):
M0 ¼ argminx2RjEj Q0ðxÞ ¼ ISCðG; wÞ
for k 2 1; . . . ; t� 1 do
Mk ¼ argminx2Mk�1

P
e2Ek

xe

end
Return: some x� 2Mt�1

3732 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 10, OCTOBER 2021

http://doi.ieeecomputersociety.org/10.1109/TPAMI.2020.2980827
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2020.2980827

where we used Lemma 4.5 and restricted the domain of the
argmin operation to ISCðG; wÞ, so that Q0ðxÞ ¼ 0 for all
x 2 ISCðG; wÞ.

It follows from Lemma 4.5 and Theorem 4.4 that a
sequence of minimizers ðxpÞp> 0 of the problem (30) con-
verge, up to taking a subsequence, to the solution x�

returned by Algorithm 6. More specifically, we know that
any minimizer xp of (30) is in the discrete set ISCðG; wÞ.
Hence, the convergent sequence of minimizers ðxpÞp> 0

eventually becomes constant and there exists a p0 2 Nþ large
enough such that xp ¼ x� for all p
 p0. In other words, in
the case of unique weights and p
 p0 large enough, the
solution x� of the Mutex Watershed Algorithm 6 solves the
problem (30), which is just a rescaled version of the Mutex
Watershed Objective we introduced in Section 4.2.

To summarize, we used the extended Power Watershed
framework to show that the Mutex Watershed provides a
solution to the minimization problem in Eq. (30) for p large
enough. In particular, this problem suggested by the Power
Watershed framework is the same one previously derived
in Section 4.2 by linking the Mutex Watershed Algorithm to
the multicut optimization problem.

5 EXPERIMENTS

We evaluate the Mutex Watershed on the challenging task
of neuron segmentation in electron microscopy (EM) image
volumes. This application is of key interest in connectomics,
a field of neuro-science that strives to reconstruct neural
wiring digrams spanning complete central nervous systems.
The task requires segmentation of neurons from electron
microscopy images of neural tissue–a challenging endeavor,
since segmentation has to be based only on boundary infor-
mation (cell membranes) and some of the boundaries are
not very pronounced. Besides, cells contain membrane-
bound organelles, which have to be suppressed in the seg-
mentation. Some of the neuron protrusions are very thin,
but all of those need to be preserved in the segmentation to
arrive at the correct connectivity graph. While a lot of prog-
ress is being made, currently only manual tracing or proof-
reading yields sufficient accuracy for correct circuit recon-
struction [68].

We validate the Mutex Watershed algorithm on the most
popular neural segmentation challenge: ISBI2012 [42]. We
estimate the edge weights using a CNN as described in
Section 5.1 and compare with other entries in the leader-
board as well as with other popular post-processing meth-
ods for the same network predictions in Section 5.2.

5.1 Estimating Edge Weights With a CNN

The common first step to EM segmentation is to predict
which pixels belong to a cell membrane using a CNN. Dif-
ferent post-processing methods are then used to obtain a
segmentation, see Section 2 for an overview of such meth-
ods. The CNN can either be trained to predict boundary
pixels [38], [41] or undirected affinities [39], [69] which
express how likely it is for a pixel to belong to a different
cell than its neighbors in the 6-neighborhood. In this case,
the output of the network contains three channels, corre-
sponding to left, down and next imaging plane neighbors in
3D. The affinities do not have to be limited to immediate

neighbors–in fact, [39] have shown that introduction of
long-range affinities is beneficial for the final segmentation
even if they are only used to train the network. Building on
the work of [39], we train a CNN to predict short- and long-
range affinities and then use those directly as weights for
the Mutex Watershed algorithm.

We estimate the affinities / edge weights for the neigh-
borhood structure shown in Fig. 6. To that end, we define
local attractive and long-range repulsive edges. When
attractive edges are only short-range, the solution will con-
sist of spatially connected segments that cannot comprise
“air bridges”. This holds true for both (lifted) multicut and
for Mutex Watershed. We use a different pattern for in-
plane and between-plane edges due to the great anisotropy
of the data set. In more detail, we pick a sparse ring of in-
plane repulsive edges and additional longer-range in-plane
edges which are necessary to split regions reliably (see
Fig. 6a). We also added connections to the indirect neigh-
bors in the lower adjacent slice to ensure correct 3D connec-
tivity (see Fig. 6b). In our experiments, we pick a subset of

Fig. 6. Local neighborhood structure of attractive (green) and
repulsive (red) edges in the Mutex Watershed graph.

WOLF ET AL.: MUTEX WATERSHED AND ITS OBJECTIVE: EFFICIENT, PARAMETER-FREE GRAPH PARTITIONING 3733

repulsive edges, by using strides of 2 in the XY-plane in
order to avoid artifacts caused by occasional very thick
membranes. Note that the stride is not applied to local
(attractive) edges, but only to long-range (repulsive) edges.
The particular pattern used was selected after inspecting
the size of typical regions. The specific pattern is the only
one we have tried and was not optimized over.

In total, Cþ attractive and C� repulsive edges are defined
for each pixel, resulting in Cþ þ C� output channels in the
network. We partition the set of attractive / repulsive edges
into subsets Hþ and H� that contain all edges at a specific
offset: Eþ ¼ S Cþ

c¼1H
þ
c for attractive edges, with H� defined

analogously. Each element of the subsets Hþc and H�c corre-
sponds to a specific channel predicted by the network. We
further assume that weights take values in [0,1].

Network Architecture and Training
We use the 3D U-Net [43], [70] architecture, as proposed
in [69].

Our training targets for attractive / repulsive edgesw
� can

be derived from a groundtruth label imageL
�
according to

wþe¼ði;jÞ
�
¼ 1; if Li

�
¼Lj

�

0; otherwise

(
(31)

w�e¼ði;jÞ
� ¼ 0; if Li

�
¼Lj

�

1; otherwise

(
: (32)

Here, i and j are the indices of vertices / image pixels.
Next, we define the loss terms

Jþc ¼ �
P

e2Hþc ð1� wþe Þð1� w
� þ
e ÞP

e2Hþc ðð1� wþe Þ2 þ ð1� w
� þ
e Þ2Þ

(33)

J�c ¼ �
P

e2H�c w�e w
� �
eP

e2H�c ððw�e Þ
2 þ ðw� �e Þ2Þ

; (34)

for attractive edges (i.e., channels) and repulsive edges (i.e.,
channels).

Equation (33) is the Sørensen-Dice coefficient [71], [72]
formulated for fuzzy set membership values. During train-
ing we minimize the sum of attractive and repulsive loss
terms J ¼PCþ

c Jþc þ
PC�

c J�c . This corresponds to sum-
ming up the channel-wise Sørensen-Dice loss. The terms of
this loss are robust against prediction and / or target spar-
sity, a desirable quality for neuron segmentation: since
membranes are locally two-dimensional and thin, they
occupy very few pixels in three-dimensional the volume.
More precisely, if wþe or wþe

�
(or both) are sparse, we can

expect the denominator
P

eððwþe Þ2 þ ðw
� þeÞ2Þ to be small,

which has the effect that the numerator is adaptively
weighted higher. In this sense, the Sørensen-Dice loss at
every pixel i is conditioned on the global image statistics,
which is not the case for a Hamming-distance based loss
like Binary Cross-Entropy or Mean Squared Error.

We optimize this loss using the Adam optimizer [73] and
additionally condition learning rate decay on the Adapted
Rand Score [42] computed on the training set every 100

iterations. During training, we augment the data set by per-
forming in-plane rotations by multiples of 90 degrees, flips
along the X- and Y -axis as well as elastic deformations. At
prediction time, we use test time data augmentation, pre-
senting the network with seven different versions of the
input obtained by a combination of rotations by a multiple
of 90 degrees, axis-aligned flips and transpositions. The net-
work predictions are then inverse-transformed to corre-
spond to the original image, and the results averaged.

5.2 ISBI Challenge

The ISBI 2012 EM Segmentation Challenge [42] is the neu-
ron segmentation challenge with the largest number of com-
peting entries. The challenge data contains two volumes of
dimensions 1.5 � 2 � 2 microns and has a resolution of 50 �
4 � 4 nm per pixel. The groundtruth is provided as binary
membrane labels, which can easily be converted to a 2D,
but not 3D segmentation. To train a 3D model, we follow
the procedure described in [38].

The test volume has private groundtruth; results can be
submitted to the leaderboard. They are evaluated based on
the Adapted Rand Score (Rand-Score) and the Variation of
Information Score (VI-Score) [42].

Our method holds the top entry in the challenge’s leader
board3 at the time of submission, see Table 1 a. This is espe-
cially remarkable insofar as it is simpler than the methods
holding the other top entries. Three out of four rely on a
CNN to predict boundary locations and postprocess its out-
put with the complex pipeline described in [38]. This post-
processing first generates superpixels via distance trans-
form watersheds. Then it computes a merge cost for local
and long-range connections between superpixels. Based on
this, it defines a lifted multicut partioning problem that is

TABLE 1
Results on the ISBI 2012 EM Segmentation Challenge

3. http://brainiac2.mit.edu/isbi_challenge/leaders-board-new

3734 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 10, OCTOBER 2021

http://brainiac2.mit.edu/isbi_challenge/leaders-board-new

solved approximately. In contrast, our method finds an
optimal solution of its objective purely on the pixel level.
Comparison With Other Segmentation Methods
The weights predicted by the CNN described above can be
post-processed directly by the Mutex Watershed algorithm.
To ensure a fair comparison, we transform the same CNN
predictions into a segmentation using basic and state-of-
the-art post-processing methods. We start from simple
thresholding (THRESH) and seeded watershed. Since these
cannot take long-range repulsions into account, we generate
a boundary map by taking the maximum4 values over the
attractive edge channels. Based on this boundary map, we
introduce seeds at the local minima (WS) and at the maxima
of the smoothed distance transform (WSDT). For both var-
iants, the degree of smoothing was optimized such that
each region receives as few seeds as possible, without how-
ever causing severe under-segmentation. The performance
of these three baseline methods in comparison to Mutex
Watershed is summarized in Table 1 b. The methods were
applied only in 2D, because the high degree of anisotropy
leads to inferior results when applied in 3D. In contrast, the
Mutex Watershed can be applied in 3D out of the box and
yields significantly better 2D segmentation scores.

Qualitatively, we show patches of results in Fig. 7. The
major failure case for WS (Fig. 7e) and WSDT (Fig. 7f) is
over-segmentation caused by over-seeding a region. The
major failure case for THRESH is under-segmentation due
to week boundary evidence (see Fig. 7d). In contrast, the
Mutex Watershed produces a better segmentation, only
causing minor over-segmentation (see Fig. 7a and 7b).

Note that, in contrast to most pixel-based postprocess-
ing methods, our algorithm can take long range predic-
tions into account. To compare with methods which share
this property, we turn to the multicut and lifted multicut-
based partitioning for neuron segmentations as introduced
in [29] and [36]. As proposed in [74], we compute costs
corresponding to edge cuts from the affinities estimated
by the CNN via

se ¼
log wþe

1�wþe
; if e 2 Eþ

log
1�w�e
w�e

; otherwise;

8<
: (35)

We set up two multicut problems: the first is induced only
by the short-range edges (MC-LOCAL), the other by short-
and long-range edges together (MC-FULL). Note that the
solution to the full connectivity problem can contain “air
bridges”, i.e., pixels that are connected only by long-range
edges, without a path along the local edges connecting
them. However, we found this not to be a problem in prac-
tice. In addition, we set up a lifted multicut problem from
the same edge costs.

Both problems are NP-hard, hence it is not feasible to
solve them exactly on large grid graphs. For our experi-
ments, we use the approximate Kernighan Lin [33], [75]
solver. Even this allows us to only solve individual 2D prob-
lems at a time. The results for MC-LOCAL and MC-FULL
can be found in Table 1 b. The MC-LOCAL approach scores
poorly because it under-segments heavily. This observation

emphasizes the importance of incorporating the longer-
range edges. The MC-FULL and LMC approaches perform
well. Somewhat surprisingly, the Mutex Watershed yields a
better segmentation still, despite being much cheaper in
inference. We note that both MC-FULL, LMC and the Mutex
Watershed are evaluated on the same long-range affinity
maps (i.e., generated by the same CNN with the same set of
weights).

6 CONCLUSION AND DISCUSSION

We have presented a fast algorithm for the clustering of
graphs with both attractive and repulsive edges. The ability
to consider both gives a valid alternative to other popular
graph partitioning algorithms that rely on a stopping crite-
rion or seeds. The proposed method has low computational
complexity in imitation of its close relative, Kruskal’s algo-
rithm. We have shown which objective this algorithm

Fig. 7. Mutex Watershed and baseline segmentation algorithms applied
on the ISBI Challenge test data. Red arrows point out major errors.
Orange arrows point to difficult, but correctly segmented regions. All
methods share the same input maps.

4. The maximum is chosen to preserve boundaries.

WOLF ET AL.: MUTEX WATERSHED AND ITS OBJECTIVE: EFFICIENT, PARAMETER-FREE GRAPH PARTITIONING 3735

optimizes exactly, and that this objective emerges as a spe-
cific case of the multicut objective. It is possible that recent
interesting work [63] on partial optimal solutions may open
an avenue for an alternative proof.

Finally, we have found that the proposed algorithm,
when presented with informative edge costs from a good
neural network, outperforms all known methods on a com-
petitive bioimage partitioning benchmark, including meth-
ods that operate on the very same network predictions.

ACKNOWLEDGMENTS

This work was partially funded by the Deutsche Forschungs-
gemeinschft (DFG, German Research Foundation) – Projekt-
nummer 240245660 - SFB 1129 and the Baden-W€urttemberg
Stiftung Elite PostDoc Program. Steffen Wolf and Alberto
Bailoni contributed equally to thiswork.

REFERENCES

[1] S. Wolf et al., “The mutex watershed: Efficient, parameter-free
image partitioning,” in Proc. Eur. Conf. Comput. Vis., 2018,
pp. 571–587.

[2] L. Vincent and P. Soille, “Watersheds in digital spaces: An effi-
cient algorithm based on immersion simulations,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 13, no. 6, pp. 583–598, Jun. 1991.

[3] S. Beucher and C. Lantu�ejoul, “Use of watersheds in contour
detection,” in Proc. Int. Workshop Image Process., 1979, pp. 2.1–2.12.

[4] S. Beucher and F. Meyer, “The morphological approach to seg-
mentation: The watershed transformation,” Opt. Eng., vol. 34,
pp. 433–433, 1992.

[5] R. Pohle and K. D. Toennies, “Segmentation of medical images
using adaptive region growing,” in Proc. Med. Imag.: Image Process.,
2001, pp. 1337–1346.

[6] M. A. Alattar, N. F. Osman, and A. S. Fahmy, “Myocardial seg-
mentation using constrained multi-seeded region growing,” in
Proc. Int. Conf. Image Anal. Recognit., 2010, pp. 89–98.

[7] S. Poonguzhali and G. Ravindran, “A complete automatic region
growing method for segmentation of masses on ultrasound
images,” in Proc. Int. Conf. Biomed. Pharm. Eng., 2006, pp. 88–92.

[8] J. Wu, S. Poehlman, M. D. Noseworthy, and M. V. Kamath,
“Texture feature based automated seeded region growing in
abdominal MRI segmentation,” in Proc. Int. Conf. BioMed. Eng.
Informat., 2008, vol. 2, pp. 263–267.

[9] A.Q.Al-Faris, U.K.Ngah,N.A.M. Isa, and I. L. Shuaib, “Computer-
aided segmentation system for breast MRI tumour using modified
automatic seeded region growing (BMRI-MASRG),” J. Digit. Imag.,
vol. 27, no. 1, pp. 133–144, 2014.

[10] J. Shan, H.-D. Cheng, and Y. Wang, “A novel automatic seed point
selection algorithm for breast ultrasound images,” in Proc. 19th
Int. Conf. Pattern Recognit., 2008, pp. 1–4.

[11] D. M. N. Mubarak, M. M. Sathik, S. Z. Beevi, and K. Revathy, “A
hybrid region growing algorithm for medical image segmentation,”
Int. J. Comput. Sci. Inf. Technol., vol. 4, no. 3, 2012, Art. no. 61.

[12] M. Abdelsamea, “An enhancement neighborhood connected seg-
mentation for 2D-Cellular Image,” Int. J. Biosci., Biochemistry
Bioinf., vol. 1, no. 4, pp. 256–260, 2011.

[13] A. Q. Al-Faris, U. K. Ngah, N. A. M. Isa, and I. L. Shuaib, “Breast
MRI tumour segmentation using modified automatic seeded
region growing based on particle swarm optimization image
clustering,” in Proc. Soft Comput. Ind. Appl., 2014, pp. 49–60.

[14] M. Grimaud, “New measure of contrast: The dynamics,” in Proc.
Image Algebra Morphological Process., 1992, vol. 1769, pp. 292–305.

[15] S. Beucher, “Watershed, hierarchical segmentation and waterfall
algorithm,” in Proc. Int. Symp. Memory Manage., 1994, vol. 94,
pp. 69–76.

[16] C. Vachier and F. Meyer, “Extinction value: A new measurement
of persistence,” in Proc. Workshop Nonlinear Signal Image Process.,
1995, vol. 1, pp. 254–257.

[17] L. Najman and M. Schmitt, “Geodesic saliency of watershed con-
tours and hierarchical segmentation,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 18, no. 12, pp. 1163–1173, Dec. 1996.

[18] P. Soille, “Constrained connectivity for hierarchical image decom-
position and simplification,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 30, no. 7, pp. 1132–1145, Jul. 2008.

[19] B. Perret, J. Cousty, S. J. F. Guimaraes, and D. S. Maia, “Evaluation
of hierarchical watersheds,” IEEE Trans. Image Process., vol. 27,
no. 4, pp. 1676–1688, Apr. 2018.

[20] F. Meyer, “Morphological multiscale and interactive segmentation,”
in Proc. Workshop Image Anal. Multimedia Interactive Services, 1999,
pp. 369–377.

[21] L. Najman, “On the equivalence between hierarchical segmenta-
tions and ultrametric watersheds,” J. Math. Imag. Vis., vol. 40,
no. 3, pp. 231–247, 2011.

[22] P. Salembier and L. Garrido, “Binary partition tree as an efficient
representation for image processing, segmentation, and informa-
tion retrieval,” IEEE Trans. Image Process., vol. 9, no. 4, pp. 561–576,
Apr. 2000.

[23] F. Malmberg, R. Strand, and I. Nystr€om, “Generalized hard con-
straints for graph segmentation,” in Proc. Scandinavian Conf. Image
Anal., 2011, pp. 36–47.

[24] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based
image segmentation,” Int. J. Comput. Vis., vol. 59, no. 2, pp. 167–181,
2004.

[25] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “Contour detec-
tion and hierarchical image segmentation,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 33, no. 5, pp. 898–916, May 2011.

[26] B. R. Kiran and J. Serra, “Global–local optimizations by hierarchi-
cal cuts and climbing energies,” Pattern Recognit., vol. 47, no. 1,
pp. 12–24, 2014.

[27] L. Guigues, J. P. Cocquerez, and H. Le Men, “Scale-sets image
analysis,” Int. J. Comput. Vis., vol. 68, no. 3, pp. 289–317, 2006.

[28] M. Keuper, S. Tang, Y. Zhongjie, B. Andres, T. Brox, and B. Schiele,
“A multi-cut formulation for joint segmentation and tracking of
multiple objects,” 2016, arXiv:1607.06317.

[29] B. Andres et al., “Globally optimal closed-surface segmentation for
connectomics,” in Proc. Eur. Conf. Comput. Vis., 2012, pp. 778–791.

[30] J. Yarkony, A. Ihler, and C. C. Fowlkes, “Fast planar correlation
clustering for image segmentation,” in Proc. Eur. Conf. Comput.
Vis., 2012, pp. 568–581.

[31] C. Pape, T. Beier, P. Li, V. Jain, D. D. Bock, and A. Kreshuk,
“Solving large multicut problems for connectomics via domain
decomposition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2017, pp. 1–10.

[32] Z. Levi and D. Zorin, “Strict minimizers for geometric opti-
mization,” ACM Trans. Graph., vol. 33, no. 6, pp. 185:1–185:14,
Nov. 2014.

[33] M. Keuper, E. Levinkov, N. Bonneel, G. Lavou�e, T. Brox, and
B. Andres, “Efficient decomposition of image and mesh graphs by
lifted multicuts,” in Proc. IEEE Int. Conf. Comput. Vis., 2015,
pp. 1751–1759.

[34] E. Levinkov, A. Kirillov, and B. Andres, “A comparative study of
local search algorithms for correlation clustering,” in Proc. German
Conf. Pattern Recognit., 2017, pp. 103–114.

[35] C. Zhang, J. Yarkony, and F. A. Hamprecht, “Cell detection
and segmentation using correlation clustering,” in Proc. Int.
Conf. Med. Image Comput. Comput.-Assisted Intervention, 2014,
pp. 9–16.

[36] A. Hor�n�akov�a, J.-H. Lange, and B. Andres, “Analysis and optimi-
zation of graph decompositions by lifted multicuts,” in Proc. Int.
Conf. Mach. Learn., 2017, pp. 1539–1548.

[37] T. Beier, B. Andres, U. K€othe, and F. A. Hamprecht, “An efficient
fusion move algorithm for the minimum cost lifted multicut prob-
lem,” in Proc. Eur. Conf. Comput. Vis., 2016, pp. 715–730.

[38] T. Beier, C. Pape, N. Rahaman, and T. E. A. Prange, “Multicut
brings automated neurite segmentation closer to human perform-
ance,”Nature Methods, vol. 14, no. 2, pp. 101–102, 2017.

[39] K. Lee, J. Zung, P. Li, V. Jain, and H. S. Seung, “Superhuman accu-
racy on the SNEMI3D connectomics challenge,” 2017, arXiv pre-
print arXiv: 1706.00120.

[40] V. Jain, J. F. Murray, F. Roth, S. Turaga, V. Zhigulin, K. L. Briggman,
M. N. Helmstaedter, W. Denk, and H. S. Seung, “Supervised learn-
ing of image restorationwith convolutional networks,” in Proc. IEEE
Int. Conf. Comput. Vis., 2007, pp. 1–8.

[41] D. C. Ciresan, A. Giusti, L. M. Gambardella, and J. Schmidhuber,
“Deep neural networks segment neuronal membranes in electron
microscopy images,” in Proc. 25th Int. Conf. Neural Inf. Process.
Syst., 2012, pp. 2843–2851.

3736 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 10, OCTOBER 2021

[42] I. Arganda-Carreras et al., “Crowdsourcing the creation of image
segmentation algorithms for connectomics,” Front. Neuroanatomy,
vol. 9, 2015, Art. no. 142.

[43] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional
networks for biomedical image segmentation,” Proc. Int. Conf. Med.
Image Comput. Comput.-Assisted Intervention, 2015, pp. 234–241.

[44] T. M. Quan, D. G. Hilderbrand, and W.-K. Jeong, “FusionNet: A
deep fully residual convolutional neural network for image seg-
mentation in connectomics,” 2016, arXiv:1612.05360.

[45] J. Nunez-Iglesias, R. Kennedy, T. Parag, J. Shi, and D. Chklovskii,
“Machine learning of hierarchical clustering to segment 2D and
3D images,” PLoS One, vol. 8, 2013, Art. no. e71715.

[46] S. Knowles-Barley et al., “RhoanaNet pipeline: Dense automatic
neural annotation,” 2016, arXiv:1611.06973.

[47] M. G. Uzunbaş, C. Chen, and D. Metaxas, “Optree: A learning-
based adaptive watershed algorithm for neuron segmentation,” in
Proc. Int. Conf. Med. Image Comput. Comput.-Assisted Intervention,
2014, pp. 97–105.

[48] Y. Meirovitch et al., “A multi-pass approach to large-scale con-
nectomics,” 2016, arXiv preprint:1612.02120.

[49] M. Januszewski et al., “High-precision automated reconstruction
of neurons with flood-filling networks,” Nature Methods, vol. 15,
pp. 605–610, 2018.

[50] A. Zlateski and H. S. Seung, “Image segmentation by size-depen-
dent single linkage clustering of a watershed basin graph,” 2015,
arXiv:1505.00249.

[51] T. Parag et al., “Anisotropic EM segmentation by 3D affinity learn-
ing and agglomeration,” 2017, arXiv preprint 1707.08935.

[52] S. C. Turaga et al., “Convolutional networks can learn to generate
affinity graphs for image segmentation,” Neural Comput., vol. 22,
no. 2, pp. 511–538, 2010.

[53] K. Briggman, W. Denk, S. Seung, M. N. Helmstaedter, and
S. C. Turaga, “Maximin affinity learning of image segmentation,”
in Proc. Int. Conf. Neural Inf. Process. Syst., 2009, pp. 1865–1873.

[54] S. Wolf, L. Schott, U. K€othe, and F. Hamprecht, “Learned water-
shed: End-to-end learning of seeded segmentation,” Proc. IEEE
Int. Conf. Comput. Vis., 2017, pp. 2030–2038.

[55] M. Bai and R. Urtasun, “Deep watershed transform for instance
segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2017, pp. 2858–2866.

[56] S. Xie and Z. Tu, “Holistically-nested edge detection,” in Proc.
IEEE Int. Conf. Comput. Vis., 2015, pp. 1395–1403.

[57] I. Kokkinos, “Pushing the boundaries of boundary detection using
deep learning,” 2015, arXiv:1511.07386.

[58] J. Cai, L. Lu, Z. Zhang, F. Xing, L. Yang, and Q. Yin, “Pancreas seg-
mentation in MRI using graph-based decision fusion on convolu-
tional neural networks,” in Proc. Int. Conf. Med. Image Comput.
Comput.-Assisted Intervention, 2016, pp. 442–450.

[59] F. Meyer, “Topographic distance and watershed lines,” Signal Pro-
cess., vol. 38, no. 1, pp. 113–125, 1994.

[60] F. Meyer, “Minimum spanning forests for morphological
segmentation,” in Mathematical Morphology and its Applications to
Image Processing, Berlin, Germany: Springer, 1994, pp. 77–84.

[61] A. X. Falc~ao, J. Stolfi, and R. de Alencar Lotufo, “The image forest-
ing transform: Theory, algorithms, and applications,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 26, no. 1, pp. 19–29, Jan. 2004.

[62] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduc-
tion to Algorithms, Third Edition, 3rd ed., Cambridge, MA, USA:
The MIT Press, 2009.

[63] J.-H. Lange, A. Karrenbauer, and B. Andres, “Partial optimality
and fast lower bounds for weighted correlation clustering,” in
Proc. Int. Conf. Mach. Learn., 2018, pp. 2898–2907.

[64] C. Couprie, L. Grady, L. Najman, and H. Talbot, “Power watershed:
A unifying graph-based optimization framework,” IEEE Trans. Pat-
tern Anal.Mach. Intell., vol. 33, no. 7, pp. 1384–1399, Jul. 2011.

[65] L. Najman, “Extending the power watershed framework thanks to
G-convergence,” SIAM J. Imag. Sci., vol. 10, no. 4, pp. 2275–2292, 2017.

[66] G. Dal Maso, An Introduction to G-Convergence, vol. 8. Berlin,
Germany: Springer, 2012.

[67] A. Braides, “A handbook of g-convergence,” in Handbook of Differ-
ential Equations: Stationary Partial Differential Equations, vol. 3.
Amsterdam, Netherlands: Elsevier, 2006, pp. 101–213.

[68] P. Schlegel, M. Costa, andG. S. X. E. Jefferis, “Learning from connec-
tomics on the fly,” Current Opinion Insect Sci., vol. 24, pp. 96–105,
2017.

[69] J. Funke et al., “Large scale image segmentation with structured loss
based deep learning for connectome reconstruction,” IEEE Trans.
PatternAnal.Mach. Intell., vol. 41, no. 7, pp. 1669–1680, Jul. 2019.

[70] €O. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and
O. Ronneberger, “3D U-Net: Learning dense volumetric segmen-
tation from sparse annotation,” in Proc. Int. Conf. Med. Image Com-
put. Comput.-Assisted Intervention, 2016, pp. 424–432.

[71] L. R. Dice, “Measures of the amount of ecologic association
between species,” Ecology, vol. 26, no. 3, pp. 297–302, 1945.

[72] T. Sørensen, “A method of establishing groups of equal amplitude
in plant sociology based on similarity of species and its applica-
tion to analyses of the vegetation on danish commons,” Biol. Skr.,
vol. 5, pp. 1–34, 1948.

[73] D. P. Kinga and J. Ba, “Adam: A method for stochastic opti-
mization,” in Proc. Int. Conf. Learn. Representations, 2015. [Online].
Available: https://iclr.cc/archive/www/doku.php?id=iclr2015:
accepted-main.html

[74] B. Andres et al., “Globally optimal closed-surface segmentation for
connectomics,” in Proc. Eur. Conf. Comput. Vis., 2012, pp. 778–791.

[75] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for
partitioning graphs,” The Bell Syst. Tech. J., vol. 49, no. 2, pp. 291–307,
1970.

[76] C. Xiao, J. Liu, X. Chen, H. Han, C. Shu, and Q. Xie, “Deep contex-
tual residual network for electron microscopy image segmenta-
tion in connectomics,” in Proc. IEEE 15th Int. Symp. Biomed. Imag.,
2018, pp. 378–381.

[77] M. Weiler, F. A. Hamprecht, and M. Storath, “Learning steerable
filters for rotation equivariant CNNs,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., 2018, pp. 849–858.

[78] W. Shen, B. Wang, Y. Jiang, Y. Wang, and A. L. Yuille, “Multi-
stage multi-recursive-input fully convolutional networks for neu-
ronal boundary detection,” in Proc. IEEE Int. Conf. Comput. Vis.,
2017, pp. 2410–2419.

Steffen Wolf is currently working toward the
PhD degree in the Interdisciplinary Center for
Scientific Computing, at Heidelberg University.
His research interests include computer vision,
structured prediction, and deep learning with
applications in image segmentation.

Alberto Bailoni is currently working toward the
PhD degree in the Interdisciplinary Center for
Scientific Computing, at Heidelberg University. His
research interests include computer vision, image
segmentation, deep learning and clustering algo-
rithms, with a focus on their application to auto-
mated reconstruction of neural circuit connectivity.

Constantin Pape is currently working toward the
PhD degree at Heidelberg University, visting the
EMBL Heidelberg. His research interests include
biomedical imaging with a focus on deep learning
and instance segmentation for large EM datasets.

WOLF ET AL.: MUTEX WATERSHED AND ITS OBJECTIVE: EFFICIENT, PARAMETER-FREE GRAPH PARTITIONING 3737

https://iclr.cc/archive/www/doku.php?id=iclr2015:accepted-main.html
https://iclr.cc/archive/www/doku.php?id=iclr2015:accepted-main.html

Nasim Rahaman is currently working toward his
PhD degree at Max-Planck-Institute for Intelligent
Systems T€ubingen andMila, Qu�abec. His research
interests lie in the intersection of causal inference,
deep representation learning and applications to
spatiotemporal modeling of partially observable
systems.

Anna Kreshuk received the diploma degree in
maths from Lomonosov Moscow State Univer-
sity, Moscow, Russia, and the PhD degree in
computer science in Heidelberg. She is currently
a group leader in EMBL Heidelberg. Her research
focuses on automating analysis of microscopy
images with machine learning.

Ullrich K€othe received the diploma degree in
physics from the University of Rostock, Rostock,
Germany, and the PhD degree in computer sci-
ence from the University of Hamburg, Hamburg,
Germany. He is currently an associate professor
for computer science in the Interdisciplinary Center
for Scientific Computing, at Heidelberg University.
His research focuses on the connection between
image analysis andmachine learning, and in partic-
ular on the interpretability of machine learning
results.

Fred A. Hamprecht is professor for image analy-
sis and learning, at Heidelberg University. His pri-
mary research interests are algorithms and how
they can be used to solve biological problems.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

3738 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 10, OCTOBER 2021

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

