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Abstract—In this work, we extend a common framework for graph-based image segmentation that includes the graph cuts, random

walker, and shortest path optimization algorithms. Viewing an image as a weighted graph, these algorithms can be expressed by

means of a common energy function with differing choices of a parameter q acting as an exponent on the differences between

neighboring nodes. Introducing a new parameter p that fixes a power for the edge weights allows us to also include the optimal

spanning forest algorithm for watershed in this same framework. We then propose a new family of segmentation algorithms that fixes p

to produce an optimal spanning forest but varies the power q beyond the usual watershed algorithm, which we term the power

watershed. In particular, when q ¼ 2, the power watershed leads to a multilabel, scale and contrast invariant, unique global optimum

obtained in practice in quasi-linear time. Placing the watershed algorithm in this energy minimization framework also opens new

possibilities for using unary terms in traditional watershed segmentation and using watershed to optimize more general models of use

in applications beyond image segmentation.

Index Terms—Combinatorial optimization, image segmentation, graph cuts, random walker, shortest paths, optimal spanning forests,

Markov random fields.

Ç

1 INTRODUCTION

GRAPH-BASED segmentation algorithms have become quite
popular and mature in recent years. The modern

variations on graph-based segmentation algorithms are
primarily built using a small set of core algorithms—graph
cuts (GC), random walker (RW), and shortest paths (SP),
which are reviewed shortly. Recently, these three algorithms
were all placed into a common framework that allows them
to be seen as instances of a more general seeded segmenta-
tion algorithm with different choices of a parameter q [80]. In
addition to these algorithms, the ubiquitous watershed
segmentation algorithm [12] shares a similar seeding inter-
face, but only recently was a connection made between the
watershed algorithm and graph cuts [28]. In this paper, we
show how this connection between watershed and graph
cuts can be used to further generalize the seeded segmenta-
tion framework of [80] such that watershed, graph cuts,
random walker, and shortest paths may all be seen as special
cases of a single general seeded segmentation algorithm. Our
more general formulation has several consequences which
form our contributions.

1. This more general formulation reveals a previously

unknown family of segmentation algorithms which

we term power watershed. In this paper, we give an

algorithm for solving the energy minimization

problem associated with the power watershed and

demonstrate that this new algorithm has the speed
of the standard watershed but performs almost as

well as or better than all of the other algorithms on

our benchmark segmentation tests.
2. Placing watershed in the same framework as graph

cuts, random walker, and shortest paths allows us to

easily incorporate data (unary) terms into conven-

tional watershed segmentation.
3. By placing the watershed algorithm in the same

generalized framework as graph cuts, random

walker, and shortest paths, it is possible to take

advantage of the vast literature on improving

watershed segmentation to also improve these other
segmentation approaches.

4. Defining an energy function for the watershed
optimization allows us to provide an MRF inter-

pretation for the watershed.
5. By incorporating unary terms, we can push

watershed beyond image segmentation into the

area of general energy minimization algorithms

which could be applied to any number of applica-

tions for which graph and MRF models have

become standard.

Before proceeding to the exposition of our technique,

we first review the graph-based segmentation literature in

more detail.
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2 A SHORT REVIEW OF GRAPH-BASED

SEGMENTATION

The algorithms that are reviewed in this section view the
image as a graph with each pixel corresponding to a node
and edges weighted to reflect changes in image intensity,
color, or other features.

2.1 Watershed

There exist many possible ways for defining a watershed
[88], [67], [71], [11], [28], [29]. Intuitively, the watershed of a
function (seen as a topographical surface) is composed of
the locations from which a drop of water could flow toward
different minima. The framework allowing the formaliza-
tion and proof of this statement is the optimal spanning forest
relative to the minima [27], [28]. For the purpose of seeded
image segmentation, the gradient of the image can be
considered as a relief map and, instead of minima, seeds
may be placed by the user or found automatically to specify
the segmentation of the image into desired regions. If the
gradient is inverted, the maxima are considered instead of
minima, and a thalweg is computed instead of watershed. A
thalweg is the deepest continuous line along a valley. In the
rest of the paper, we use by convention the term
“watershed” instead of “thalweg.”

A maximum spanning forest (MSF) algorithm computes
trees spanning all of the nodes of the graph, each tree being
connected to exactly one connected seed component and the
weight of the set of trees being maximum. If the seeds
correspond to the maxima, the segmentation obtained by
MSF is a watershed [28]. An optimal spanning forest can be
computed by Kruskal’s or Prim’s algorithm [52], [70] among
others in quasi-linear time. In Kruskal’s algorithm, the
edges are sorted by decreasing edge weight and chosen in
that order to be added to the forest if they do not create
cycles or join trees that are connected to different maxima.

Watersheds are widely used in image segmentation
because there exist numerous and efficient algorithms that
are easy to implement. However, segmentation results from
watershed may suffer from leaks and degeneracy of the
solution on the plateaus of the weight function.

2.2 Graph Cuts

The labeling produced by the GC algorithm is determined
by finding the minimum cut between the foreground and
background seeds via a maximum flow computation. The
original work on GC for interactive image segmentation
was produced by Boykov and Jolly [17], and this work has
been subsequently extended by several groups to employ
different features [14] or user interfaces [72], [57]. Although
GC is relatively new, the use of minimal surfaces in
segmentation has been a common theme in computer
vision for a long time [36], [15], [63] and other boundary-
based user interfaces have been previously employed [62],
[33], [22], [41]. Two concerns in the literature about the
original GC algorithm are metrication error (“blockiness”)
and the shrinking bias. Metrication error was addressed in
subsequent work on GC by including additional edges [19],
by using continuous max flows [7] or total variation [85].
These methods for addressing metrication error success-
fully overcome the problem, but may incur greater memory

and computation time costs than the application of
maximum flow on a 4-connected lattice. The shrinking bias
can cause overly small object segments because GC
minimizes boundary length. Although some techniques
have been proposed for addressing the shrinking bias [19],
[7], [86], these techniques all require additional parameters
for computation.

2.3 Random Walker

The RW algorithm [39] is also formulated on a weighted
graph and determines labels for the unseeded nodes by
assigning the pixel to the seed for which it is most likely to
send a random walker. This algorithm may also be
interpreted as assigning the unlabeled pixels to the seeds
for which there is a minimum diffusion distance [23], as a
semi-supervised transduction learning algorithm [31] or as
an interactive version of normalized cuts [77], [43].
Additionally, popular image matting algorithms based on
quadratic minimization with the Laplacian matrix may be
interpreted as employing the same approach for grouping
pixels, albeit with different strategies to determine the edge
weighting function [54]. Diffusion distances avoid segmen-
tation leaking and the shrinking bias, but the segmentation
boundary may be more strongly affected by seed location
than with graph cuts [80].

2.4 Shortest Paths (Geodesics)

The shortest path algorithm assigns each pixel to the
foreground label if there is a shorter path from that pixel to
a foreground seed than to any background seed, where
paths are weighted by image content in the same manner as
with the GC and RW approaches. This approach was
recently popularized by Bai and Sapiro [10], but variants of
this idea have appeared in other sources [30], [4], [32]. The
primary advantage of this algorithm is speed and preven-
tion of a shrinking bias. However, it exhibits stronger
dependence on the seed locations than the RW approach
[80], is more likely to leak through weak boundaries (since a
single good path is sufficient for connectivity), and exhibits
metrication artifacts on a 4-connected lattice.

All of the above models may be considered as addressing
energies comprising only unary and pairwise (binary)
energy terms. However, recent literature has found that
the addition of energy terms defined on higher order
cliques can help improve performance on a variety of tasks
[49], [50]. Although we do not address higher order cliques
specifically in this work, we note that all recent progress in
this area has been through an equivalent construction of
pairwise terms. Therefore, our results could also be useful
in that context. Despite the recent popularity of energies
defined on higher order cliques, pairwise terms (and
watershed) are still used ubiquitously in the computer
vision literature and any improvement to these models can
have a broad impact.

An earlier conference version of this work appeared
in [24].

3 A UNIFYING ENERGY MINIMIZATION FRAMEWORK

We begin our exposition by reviewing the unity framework
of [80] before showing how to further broaden this
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framework to provide a general seeded segmentation

scheme that includes the maximum spanning forest

algorithm for watershed as a special case. Examination of

the special cases of this general algorithm reveals a new

class of watershed segmentation models. We prove several

theoretical properties of this new class of watershed and

then give an algorithm for minimizing the energy asso-

ciated with this generalized watershed model.

3.1 A Review of the Existing Generalized
Segmentation Framework

In this section, we review the segmentation framework

introduced by Sinop and Grady in [80]. A graph consists

of a pair G ¼ ðV ;EÞ with vertices v 2 V and edges e 2
E � V � V with cardinalities n ¼ jV j and m ¼ jEj. An

edge, e, spanning two vertices, vi and vj, is denoted by eij.

In image processing applications, each pixel is typically

associated with a node and the nodes are connected locally

via a 4 or 8-connected lattice. A weighted graph assigns a

real value to each edge called a weight. In this work, the

weights are assumed to be nonnegative. The weight of an

edge eij is denoted by wðeijÞ or wij. We also denote wFi
and wBi as the unary weights penalizing foreground and

background affinity at node vi. In the context of

segmentation and clustering applications, the weights

encode nodal affinity such that nodes connected by an

edge with high weight are considered to be strongly

connected and edges with a low weight represent nearly

disconnected nodes. One common choice for generating

weights from image intensities is to set

wij ¼ expð��ðrIÞ2Þ; ð1Þ

where rI is the normalized gradient of the image I. The

gradient for a gray level image is Ii � Ij. Details on the

parameters used are given in the experimental section.

We use w to denote the vector of IRm that contains the

weights wij of every edge eij in G.
The generalized energy proposed in [80] is given by

min
x

X
eij2E
ðwijjxi � xjjÞq þ

X
vi2V
ðwijxi � yijÞq; ð2Þ

where y represents a measured configuration and x

represents the target configuration. In this equation, wij
can be interpreted as a weight on the gradient of the target

configuration such that the first term penalizes any

unwanted high-frequency content in x and essentially

forces x to vary smoothly within an object while allowing

large changes across the object boundaries. The second term

enforces fidelity of x to a specified configuration y, wi being

weights enforcing that fidelity.
For an image segmentation in two classes, given fore-

ground F and background B seeds, (2) may be included in

the following algorithm:

Step 1 : x ¼ arg min
x

X
eij2E
ðwijjxi � xjjÞq

þ
X
vi

ðwFijxijÞq þ
X
vi

ðwBijxi � 1jÞq;

s:t: xðF Þ ¼ 1; xðBÞ ¼ 0;

Step 2 : si ¼ 1 if xi �
1

2
; 0 if xi <

1

2
:

ð3Þ

In other words, we are looking for an optimum x? of (3)
that may be interpreted as a probability for a given pixel to
belong to either the foreground or the background, the final
decision (hard segmentation) s giving the segmentation
being taken by a threshold.

It was shown in [80] that graph cuts gives a solution to
this model when q ¼ 1, random walker gives the solution to
this model when q ¼ 2, and shortest paths (geodesics) gives
a solution to this model as q!1. The case of this model
with a fractional q was optimized in [79] via reweighted
least squares and it was shown that intermediate values of q
allowed for an algorithm which “interpolated” between the
graph cuts, random walker, or shortest paths algorithms.

In related work, Strang showed in [81] that minimization
of the ‘p norm of the gradients of a potential field with
boundary conditions (in continuous space with real-valued
potentials) also leads to (continuous) max flow (for an ‘1

norm of the gradients), the Dirichlet problem (for an ‘2

norm), and shortest paths (for an ‘1 norm). Therefore, the
framework of [80], which we now extend, may be seen as
presenting similar ideas defined on an arbitrary graph,
using the bridge between continuous PDEs and graph
theory provided by discrete calculus [42].

3.2 Broadening the Framework to Watershed

We now broaden the segmentation algorithm in (3) to
include watershed simply by separating the exponent on
the weights and the variables. Specifically, we introduce
parameter p to define a new segmentation model as

Step 1 : x ¼ arg min
x

X
eij2E

wpijjxi � xjj
q

þ
X
vi

wpFijxij
q þ

X
vi

wpBijxi � 1jq;

s:t: xðF Þ ¼ 1; xðBÞ ¼ 0;

Step 2 : si ¼ 1 if xi �
1

2
; 0 if xi <

1

2
:

ð4Þ

As before, the final segmentation s is being chosen via a
threshold.

We observe that (4) can be formulated in a general
manner by rewriting it as the minimization of a general
energy function Ep;qðxÞ by introducing auxiliary nodes (see
[44] for more details):

min
x
�
X
eij2E

wpijjxi � xjj
q|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

smoothness terms

þ
X
vi2V

wpi jxi � yij
q|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

data fidelity terms

: ð5Þ

For example, the unary term wpBi
jxi � 1jq can also be

rewritten as wpi jxi � yij
q, where yi is an auxiliary node and

the signal at this auxiliary node is fixed at yi ¼ 1.
As with (3), when p is a small finite value, then the

various values of q may be interpreted, respectively, as the
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graph cuts (q ¼ 1) and random walker (q ¼ 2) algorithms.

When q and p converge toward infinity with the same

speed, then a solution to (4) can be computed by the

shortest path (geodesics) algorithm. Those three algorithms

form the underpinning for many of the advanced image

segmentation methods in the literature.
It was shown in [2], [3] that when q ¼ 1 (graph cuts) and

p!1, then the solution of (4) is given by a maximum

spanning forest algorithm. Said differently, as the power of

the weights increases to infinity, then the graph cuts

algorithm produces a segmentation corresponding to a

segmentation by maximum spanning forest. Interpreted

from the standpoint of the Gaussian weighting function in

(1), it is clear that we may associate � ¼ p to understand

that the watershed equivalence comes from operating the

weighting function in a particular parameter range. An

important insight from this connection is that above some

value of �, we can replace the expensive max-flow computation

with an efficient maximum spanning forest computation. By

raising p!1 and varying the power q, we obtain a

previously unexplored family of segmentation models

which we refer to as power watershed. An important

advantage of power watershed with varying q is that the

main computational burden of these algorithms depends

on an MSF computation, which is extremely efficient [21].

In the next sections, we explore two cases that are, to the

best of our knowledge, unexplored. First, we show that

case p finite, q!1 corresponds to a Voronoi diagram

computation from the seeds. Second, we prove that when q

is finite, as p!1, there exists a value of p after which

any of the algorithms (regardless of q) may be computed

via an MSF. We then give an algorithm to minimize (4) for

any value of q when p!1. Table 1 gives a reference for

the different algorithms generated by various value of p

and q.

3.3 The Case p Finite, q!1: Voronoi Diagram

Intuitively, we see that when the power over the neighbor-

ing differences tends toward infinity, the weights become

negligible so that the problem obtained from (4) is a

Voronoi diagram of the seeds.
A proof showing that solving the minimization

problem (4) when p ¼ q and q!1 can be achieved by

shortest path computations is given in [80]. Here, we use

the same idea to prove that the problem (4) in the case p

finite, q!1, is equivalent to a Voronoi diagram problem.
As

ffiffi
:q
p

is monotonic, minimizing Ep;q is equivalent to

minimizing
ffiffiffiffiffiffiffiffi
Ep;q

q
p

.

First, we may factorize the objective function of our

problem (4):ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
eij2E

wpijjxi � xjj
q

q

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
eij2E

�
wij

p
qjxi � xjj

�q
q

s
: ð6Þ

Taking the limit limq!1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i X
q
i

q
p

of a q-norm yields the

maximum norm maxiXi.
Therefore, our objective function may be written as

lim
q!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
eij2E

wpijjxi � xjj
q

q

s
¼ lim

q!1
max
eij2E

wij
p
qjxi � xjj: ð7Þ

The minimization problem can be written as

min
x

max
eij2E

lim
q!1

w
p
q

ijjxi � xjj;

s:t: xðF Þ ¼ 1; xðBÞ ¼ 0:

ð8Þ

When q!1 and p is finite, pq converges toward 0, so wij
p
q

converges toward 1 for every edge of E. Also, for the case p
finite, q!1, can be brought back to the case p ¼ 0, q!1,
whose solution is a Voronoi diagram with an ‘1 norm (due
to the assumed 4-connectivity of the lattice).

3.4 The Case q Finite, p!1 Leading to Watershed

We now generalize the link between GC and MSF
established by Allène et al. [2], [3] by proving that GC,
RW, and generally all cuts resulting out of the minimization
of Ep;q converge to MSF cuts as p tends toward infinity
under the condition that all the maxima of the weight
function are seeded.

The following properties are presented in the special case
of segmentation into two classes, given two sets of labeled
nodes F and B. However, the following results generalize
easily to multilabel segmentation:

Definition 1 (qq-cut). In a graph G, let F and B be two disjoint

nonempty sets of nodes, p and q two real positive values, and

s the segmentation result defined in (4). The set of edges eij
such that si 6¼ sj is a q-cut.

Let Y be a subgraph of G. We say that Y is an extension of
F [B if each connected component of Y contains exactly one
vertex of F [B and each vertex of F [B is contained in a
connected component of Y . Consequently, it is possible to
define a label l on each vertex of Y , 0 to the vertices connected
to a vertex ofB, and 1 to the vertices connected to a vertex ofF .

Examples of extensions appear in Fig. 1, where F and B
are displayed in (a), and two possible extensions in bold in
(b) and (c), with their corresponding labels.

Let F be a subgraph of G. We say that F is a spanning
forest (relative to F [B) if:

1. F is an extension of F [B,
2. F contains no cycles, and
3. V ðFÞ ¼ V (F is spanning all vertices of G).

The weight wF of a forest F for w is the sum of the weight
of all edges belonging to F : wF ¼

P
eij2F wij.

Definition 2 (MSF, MSF cut). We say that a spanning forest F
is an MSF for w if the weight of F is maximum, i.e., greater or

equal to the weight of any other spanning forest.
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TABLE 1
Relationship of Algorithms to Parameter Choices in (4)

Our generalized scheme for image segmentation includes several
popular segmentation algorithms as special cases of the parameters p
and q. The power watershed is previously unknown in the literature, but
may be optimized efficiently with a maximum spanning forest calculation.
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Let F be an MSF for w, and l its associated label. An MSF
cut for w is the set of edges eij such that li 6¼ lj.
We call a subgraph M a maximum of w if M is connected,

all the edges of M have the same weight wM , and the weight

of any edge adjacent to M is strictly lower than wM .
Finally, a plateau is a subgraph of G consisting of a

maximal set of nodes connected with edges having the same

weight.
Those definitions are compatible with the watershed cut

framework of [28]. We may now introduce a general link

between the MSF segmentation result and the solution of

the optimization of (4) when the power of the weights

converges toward infinity.

Theorem 1. Let M be the subgraph of G composed of the union of

all maxima of the weight function w. If every connected

component of M contains at least a vertex of B [ F and q � 1,

then any q-cut when p!1 is an MSF cut for w.

Proof. The proof is based on the construction of a set of edges

that belong to the q-cut when p!1. During the

construction, we consider the edges of E in decreasing

order, following Kruskal’s algorithm for maximum

spanning forest construction. At the end of the construc-

tion, the q-cut obtained is an MSF cut forw. The successive

steps of the proof are illustrated in an example in Fig. 1.
At each step, we consider the set Emax of edges of

maximum weight wmax. We normalize all the weights by
dividing them by wmax, to obtain all the weights between
0 and 1 with the normalized weight of Emax equal to 1.
The energy to minimize is also

X
eij2E

wij
wmax

� �p
jxi � xjjq; s:t:

xðF Þ ¼ 1;
xðBÞ ¼ 0:

�
ð9Þ

As all maxima of the weight function contain seeds,
each connected component of Emax has at least one
labeled vertex. For every connected component Cmax of
Emax, two cases are possible:

If Cmax contains no vertices of different labels, the
edges of weight wmax cannot be a part of the minimum
q-cut energy when p tends toward infinity because all
the other normalized weights converge toward 0 and so
does any finite sum of these weights. Choosing xi ¼ xj
for all edges eij 2 Cmax is the only possibility to
eliminate the terms of maximum weight of (9). The
edges of Cmax are not included in the q-cut, and also do

not belong to the MSF cut as they have to be merged to
labeled nodes to form an MSF (e.g., Fig. 1b).

If Cmax contains vertices of different labels, any
labeling can be done on the plateau, because adding
edges of Cmax to the q-cut or not will always give an MSF
cut on the plateau (e.g., Figs. 1c and 1d).

Repeating the steps recursively until all of the vertices
are labeled, we find that in building a q-cut, we are also
building an MSF cut for w in exactly the same manner as
with Kruskal’s algorithm. tu

In Theorem 1, the condition for seeds to be the maxima of

the weight function is necessary as shown in Fig. 2.
We can note that if the weights are all different, the MSF

cut is unique and Theorem 1 is also true without the

condition for seeds to be the maxima of the weight function.
The next property states that when the power on the

neighboring node differences is strictly greater than one, the

minimization of Ep;q admits a unique solution.

Property 1. If q is a real number such that 1 < q <1, then the

solution x to problem (4) is unique.

Proof. Let A be the incidence matrix of the graph G and x a

vector of IRn
þ. We note by j � j the elementwise absolute

value operator. The function g : x! Ax is convex. The

function h : x! jxjq is convex and nondecreasing. The

function f : x! wTx is also convex and nondecreasing.

Note that Ep;qðxÞ can be written in the following way:
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Fig. 1. Illustration of different steps in the proof of Theorem 1 for q ¼ 2. The values on the nodes correspond to x, their color to s. The bold edges
represent edges belonging to an MSF. (a) A weighted graph with two seeds, all maxima of the weight function are seeded, (b) first step, the edges of
maximum weight are added to the forest, (c) after several steps, the next largest edge set belongs to a plateau connected to two labeled trees,
(d) minimize (4) on the subset (considering the merged nodes as a unique node) with q ¼ 2 (i.e., solution of the combinatorial Dirichlet problem),
(e) another plateau connected to three labeled vertices is encountered, and (f) final solutions x and s obtained after a few more steps. The q-cut,
which is also an MSF cut, is represented in dashed lines.

Fig. 2. Let x ¼ arg minEpq. When the maxima of the weight function
are not seeded, the threshold of limp!1 x can be different from the
limit limp!1 of the threshold of x. (a) Labeling x ¼ arg minEpq and
corresponding q-cut (q ¼ 2) when the weights are at the power p ¼ 1
and below for an arbitrary big value of p. The q-cut in dashed line
remains in the center. (b) Labeling x ¼ arg min limp!1 Epq and cut
(dashed) corresponding to the threshold of x. In this example, the q-cut
is not an MSF cut, justifying the condition in Theorem 1. Note that the
threshold of limp!1 x is an MSF cut, as stated later in Property 2.
(a) q-cuts for different p. (b) Cut on limp!1 x.
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Ep;qðxÞ ¼ f � h � gðxÞ ¼ wpT jAxjq: ð10Þ

As h is a nondecreasing convex function and g is convex,
h � g is convex. As f is a nondecreasing convex function,
Ep;q is convex.

If 1 < q <1, the function h � g is strictly convex, so
Ep;q is a strictly convex function, and hence the
minimization of Ep;q subject to the boundary constraints
is achieved by a unique x. tu
Before introducing in Section 4 an algorithm to compute

the solution x to the optimization of Ep;q when p!1, we
present an interpretation of the minimization of our general
energy as a maximum a posteriori approximation.

3.5 Interpretation as a Markov Random Field

An optimum x? of (5) may be interpreted as a probability for
each pixel to belong to the object (as opposed to back-
ground). More rigorously, as shown in [78], this segmenta-
tion model can be viewed as an estimation of a continuous-
valued MRF. By linking the watershed algorithm to this
framework, it becomes possible to view the watershed
algorithm as the MAP estimation of an MRF. However, note
that this analysis allows us to interpret the watershed as the
MAP estimate for a particular MRF, which is in contrast to
previous efforts to link a probabilistic framework with the
watershed (such as [6], which uses random placements
of seeds to define the most probable locations of the
watershed lines).

In this section, we follow the development of [78], with

modifications to incorporate the power watershed.
In the interpretation as an MRF, we define the binary

segmentation label si for node vi as a Bernoulli random

variable (i.e., si ¼ 1 if vi is foreground and si ¼ 0 if vi is

background), in which the variable xi denotes the success

probability for the distribution of si, i.e., pðsi ¼ 1jxiÞ. In this

case, the success probability may be written as

pðsi ¼ 1jxiÞ ¼ maxfminfxi; 1g; 0g ¼
1; if xi > 1;
xi; if 0 � xi � 1;
0; if xi < 0:

8<
:

ð11Þ

However, the generalized mean value theorem in [78]
guarantees that the optimal solution x? to (5), assuming that
the auxiliary nodes have values between 0 and 1, takes its
values between 0 and 1 when the weights are all positive-
valued. Consequently, in our context, we may simply set
pðsi ¼ 1jxiÞ ¼ xi without concern that xi will be outside the
interval ½0; 1	.

Our goal is now to infer the hidden variables xi from the
image content I. The hidden variables may be estimated in
a Bayesian framework by considering the posterior model

pðx; sjIÞ / pðxÞpðsjxÞpðIjsÞ ¼ pðxÞ
Y
vi2V

pðsijxiÞ
Y
vi2V

pðIijsiÞ;

ð12Þ

in which pðxÞ models how the parameters of the Bernoulli
variables vary spatially. The spatial smoothness prior is
parameterized by

pðxÞ / exp ��
X
eij2E

wpijjxi � xjj
q

0
@

1
A; ð13Þ

where � > 0 and the weights are strictly positive.
We can estimate the marginalized MAP criterion to

obtain the optimum x
 by setting

x
 ¼ arg max
x
pðxÞpðIjxÞ ¼ arg max pðxÞ

X
s

pðIjsÞpðsjxÞ:

ð14Þ

Unfortunately,
P

s pðIjsÞpðsjxÞ is not straightforward to
estimate. Therefore, we assume that we can parameterize
pðIijxiÞ as

pðIjxÞ / exp �
X
vi2V

wpi0jxi � 0jq �
X
vi2V

wpi1jxi � 1jq
 !

; ð15Þ

where wi0 � 0 and wi1 � 0, and these terms act to bias the
parameters xi toward 0 and 1. Similarly, these terms can be
used to encode the user interaction (seeding) by setting a
foreground seed vi to have weights ðwi0; wi1Þ ¼ ð0;1Þ and
a background seed to have weights ðwi0; wi1Þ ¼ ð1; 0Þ.
With this parameterization, then the MAP estimate
described in (14) is equal to our energy minimization
problem from (5).

While the use of binary variables (the s variable in our
formulation) is more common in recent work which applies
MRFs to image segmentation, our focus on estimating a
real-valued parameter or variable is far from unique in the
computer vision literature. For example, in Gaussian MRFs,
the variables each have a Gaussian distribution and the goal
is often to estimate the (real-valued) parameters of these
variables (i.e., mean and/or variance). These kinds of MRFs
have been applied in image segmentation and other pattern
recognition applications [48], [5], [83]. Beyond Gaussian
MRFs, anisotropic diffusion has been interpreted as a
continuous-valued MRF [61], [51] and MRFs requiring
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Fig. 3. Example of the behavior of the power watershed algorithm for q ¼ 2 with the formation of a plateau that was not present in the original graph.
(a) Initialization: A weighted graph with two seeds. (b), (c), (d) First steps: The nodes of edges of maximum weight are merged. (e) The next largest
edge set belongs to a plateau connected to two different labels. (f) Minimize (4) on the subset with q ¼ 2 (i.e., utilize the random walker algorithm on
the plateau). (g) Final segmentation obtained after one more step.
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continuous-valued estimations have appeared in both early

work on computer vision [55], [37], [35], [16] and also

recently [56], [74], [75].
We now introduce an algorithm to optimize Ep;q when

p!1, and show that the threshold s of that solution

produces an MSF cut.

4 ALGORITHM FOR OPTIMIZING THE CASE q FINITE,
p!1

The algorithm proposed in this section may be seen as

Kruskal’s algorithm for maximum spanning tree with two

main differences—a forest is computed in place of a tree,

and the optimization

min
x

X
eij2plateau

jxi � xjjq ð16Þ

is performed on the plateaus (the maximal set of nodes

connected with edges of same weight). The power watershed

algorithm is detailed in Algorithm 1, and an illustration of

different steps on an example is given in Fig. 3.

In Algorithm 1, the merge operation of a set of nodes S

consists of removing the nodes in S from the graph and

replacing these nodes with a single node such that any

edge spanning a node in S to nodes in S now connects the

merged node to the same nodes in S. Additionally, in the

above algorithm, the unary terms in (4) are treated as binary

terms connected to phantom seeds vF and vB, i.e.,

X
vi

wpFijxi � 0jq þ
X
vi

wpBijxi � 1jq

¼
X
vi

wpFijxi � xBj
q þ

X
vi

wpBijxi � xF j
q:

ð17Þ

We prove in the next section that the labeling x obtained

by Algorithm 1 optimizes (4).
An illustration for this section is given in Fig. 4. The

segmentation was performed with progressively larger

values of p, keeping q ¼ 2 and shows that the segmentation

result converges to the result given by the above algorithm

for the power watershed with q ¼ 2. The value q ¼ 2 was

employed for this example since it is known that q ¼ 2

forces a unique minimum to (4) regardless of the value of p.
An implementation of Algorithm 1 when q ¼ 2 can be

downloaded from sourceforge [1].

4.1 Justification of the Power Watershed Algorithm

We now prove that the algorithm we propose optimizes the

energy presented in our framework when q > 1 and p!1.
Let us define the labeling x
 as the solution x
 ¼

arg minxEp;qðxÞ defined in (4) subject to the boundary

constraints. We note the labeling obtained by Algorithm 1

by �x.
The two following theorems, i.e., Theorems 2 and 3, state

that the energy of the solution computed by the power

watershed algorithm converges to the energy which

minimizes Ep;q when p!1.

Theorem 2. Let p; q be real positive numbers. Let wM be the

maximum weight of the graph G. For every � > 0, there exists

a real k such that if p > k, then

0 � Ep;qð�xÞ
wMp

� Ep;qðx

Þ

wMp
� �: ð18Þ

The proof of this theorem is given in the Appendix.

Theorem 3. If q > 1, the potential x
 obtained by minimizing the

energy of (4) subject to the boundary constraints converges

toward the potential �x obtained by Algorithm 1 as p!1.

Proof. We prove that by optimizing (4), we are performing

the same steps as Algorithm 1. As in Theorem 1, at each

step we consider a set of connected edges of maximum

weight Emax of E, and we normalize all of the weights,

also minimizing (9).
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Fig. 4. Illustration of progressive convergence of the random walker
result to the power watershed result as p!1, using q ¼ 2. Top row:
Segmentation results obtained by random walker with weights at the
power p ¼ 1, p ¼ 8, p ¼ 25 and, finally, by the power watershed
algorithm. Bottom row: Corresponding potentials for p ¼ 1, p ¼ 8, p ¼
25 and the input seeds.
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If Emax contains no vertices of different labels, then
the weights wmax cannot be a part of the minimum
energy when p tends toward infinity because all of the
other normalized weights converge toward 0 and so
does any finite sum of these weights. Choosing xi ¼ xj
for every edge eij ¼ emax 2 Emax is the only possibility to
eliminate the only term(s) of maximum weight of (9).
This choice of �xi ¼ �xj is also performed by Algorithm 1
by the “merge” operation. From the standpoint of
energy minimization, having xi ¼ xj in the graph G
may be brought back to having one unique node instead
of vi, vj, and eij. We can also replace vi and vj by a
unique node.

If Emax contains vertices of a different label, as the
weights of Emax are arbitrarily greater than the weights of
the unprocessed edges, minimizing (9) boils down to
minimizing X

eij2Emax

jxi � xjjq; ð19Þ

with boundary conditions given by already labeled
nodes. It is exactly what is performed by Algorithm 1
in the “If” part.

Repeating the steps recursively until all the vertices
are labeled, we find that the Algorithm 1 procedure
agrees with the energy minimization of (5). tu

We can note that even if Algorithm 1 minimizes the
energy Ep;q in the case p!1, several solutions �x are
possible when q ¼ 1.

Property 2. For any q � 1, the cut C defined by the segmentation
s computed by Algorithm 1 is an MSF cut for w.

Proof. At each step of Algorithm 1, we consider a set of
connected edges of maximum weight Emax.

If Emax contains no vertices of different labels,
Algorithm 1 chooses xi ¼ xj for the edges eij 2 Emax.
The edges of Emax are not included in C, and also do not
belong to the MSF cut as they have to belong to an MSF
since their weight is maximum.

If Emax contains vertices of different labels, any
labeling can be done on the plateau because adding
edges of Emax to the q-cut or not will always give an MSF
cut on the plateau.

Repeating the steps of Algorithm 1 recursively until
all of the vertices are labeled, we find that we are
building an MSF cut for w. tu

4.2 Using Mathematical Morphology for an Efficient
Preprocessing Step

One difficulty in Algorithm 1 is dealing with the set of
merged nodes. More precisely, when solving (16), we need
to keep track of which nodes have merged (with some
nodes merged multiple times). If we look informally at the
“emergence” process underlying the algorithm, it will help
us to locate those maximal merged nodes. Using topogra-
phical references, we view the weights as the surface of a
terrain, with the weight of an edge corresponding to its
altitude. If the surface were completely covered by water
and the level of water slowly decreases, then islands
(regional maxima) would appear that grow and merge. At

a given level, when an island that does not contain a seeded

pixel meets an island containing one, we can give a value to

the (maximal) merged node. Indeed, we can see that any

merged node consists of a connected component of an

upper-level set of the weights. More precisely, let � 2 IRþ

and w be the weight function defined on E. We define

w½�	 ¼ fe 2 EjwðeÞ � �g: ð20Þ

The graph induced by w½�	 is called a section of w. A

connected component of a section w½�	 is called a component

of w (at level �).
The components of w can be used to find merged nodes.

Property 3. Any maximal merged node corresponds to a

component of w that:

. does not contain any seed and

. is not contained in a larger unseeded component of w.
Conversely, any component of w satisfying these two

properties corresponds to a maximal merged node in
Algorithm 1.

The components of w, ordered by the inclusion relation,

form a tree called the max-tree [73] or the component tree [46],

[47], [20]. Several efficient algorithms exist to compute the

component tree, some quasi-linear [66] (based on union-

find [84]) and some parallelized [89], [58]. From Property 3,

it is easy to see how to use this tree in Algorithm 1. Note

that such a tree, which keeps track of all components, can be

used when one wants to improve a given segmentation

result by adding extra seeds.
Another tool from mathematical morphology has been

used as a preprocessing step for watershed segmentation

with markers. It is called geodesic reconstruction from the

markers [59], [12], and is given as a function wR such that,

for every edge e, we set wRðeÞ to be equal to the level � of

the highest component of w containing e and at least one

seed node. Note that any component of wR contains at least

one seed.

Property 4. Any maximal merged node corresponds to a

connected set of edges eij that belong to a plateau of wR and

that satisfy wij > wRðeijÞ. The converse is also true.

Property 4 also suggests that geodesic reconstruction can

be used as preprocessing in Algorithm 1. Note that there

exist some very efficient and easy to implement algorithms

to compute a geodesic reconstruction [87], [68], [38]. Both

the component tree and the geodesic reconstruction have

the same theoretical complexity, so either approach could

be used profitably to reduce the bookkeeping necessary to

keep track of merged nodes.
Property 4 also suggests links between our framework

and the classical watershed-based segmentation frame-

work [12], [59], [60]. The framework of watershed cuts

[28], [29] allows us to make a precise statement about this

connection. The cut provided by a maximum spanning

forest with one different seed for every maxima is called

a watershed cut. Since geodesic reconstruction removes all

maxima, which are not connected to a seed, then we can

state the following:
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Property 5. Any q-cut is a watershed cut of the reconstructed
weights.

This statement ties the cuts produced by our power
watershed framework to the concept of watershed cuts in
the morphology literature.

4.3 Uniqueness of Solution

Most of the energy minimization problems in our frame-
work, i.e., the cases optimized by graph cuts, shortest path
forests, and maximum spanning forest algorithms (and
watershed in general [12], [26], [13], [71], [34]) have the
problem that the optimum solution may not be unique, for
example, on plateaus. That implies that the result of each
one of these algorithms depends on the implementation.

To remove such dependency, two approaches have been
proposed:

. A classical approach is to compute a geodesic
distance on the plateau [71] and to use that distance
as a way to distinguish between points of the plateau.
Generally, the cut is located on the “middle of the
plateau,” but other locations are possible according to
the application [26], [67].

. Another proposal is the tie-zone watershed [9]; it
takes into account all the possible solutions derived
from a shortest-path-based watershed to generate a
unique solution: When the multiple solutions dis-
agree with each other on the segmentation result of a
region (i.e., the label to be assigned), the region is
included in the tie-zone and a specific tie value is
assigned to each node, corresponding to the prob-
ability of assigning a label to the node according to
the number of all possible assignments. A major
drawback of that tie-zone approach is that nodes
with equal probability of belonging to different label
classes can appear.

In contrast to that approach, the power watershed computes
a probability map (consisting of x in (4)) by minimizing a
global energy function and, whenever q is finite and q > 1,
the solution is unique.

5 RESULTS

5.1 Generality of the Framework

5.1.1 Adding Unary Terms

We now present an application of the framework to unseeded
segmentation. Unary terms were first employed with graph
cuts in [44]. Since this initial work, many other applications
have used graph cuts with unary terms. Gathering watershed
and graph cuts into the same framework allows us to employ
unary terms for watershed computation.

The unary terms in (4) are treated as binary terms
connected to phantom seeds vF and vB as in (17).

For the example of image segmentation with two labels,
the weights wBi between vB and vi can be fixed to the
absolute difference of the pixel vi intensity with the mean
of the gray scales plus the variance, and wFi to the
absolute difference of the pixel vi intensity with the mean
of the gray scales minus the variance. An example of such
a weighted graph is given in Fig. 5. With this construction,
we can apply any of the algorithms in our framework to
the resulting graph. An example of the result is shown in
Fig. 6 for the purpose of segmenting blood cells. Note that
those examples show how to add two phantom seeds, but
this idea is extendable to more than two labels, as
explained in Section 4.1.2. To the best of our knowledge,
this is the first time that the watershed algorithm has been
used as an unseeded segmentation method (i.e., without
markers or seeds).

5.1.2 Multilabel Segmentation

Minimizing exactly the energy E1;1 is possible by using the
graph cuts algorithm in the case of two labels, but is NP-
hard if constraints impose more than two different labels.
However, the other algorithms presented in our framework
can perform seeded segmentation with as many labels as
desired efficiently.

We detail the method of multilabel segmentation in the
case of the power watershed algorithm. Let N represent the
number of different labels l ¼ 1; 2 . . . ; N . Instead of comput-
ing an x solution of the Foreground/Background as is done
for the two-labels segmentation, N solutions xl have to
be computed. In order to perform N-labels segmentation,
we may define seeds at a node i by setting xli ¼ 1 for a given
label l and x

�l ¼ 0 for any label other than l.
The segmentation result is obtained by affecting each

node vi to the label where xli is maximum:

si ¼ arg max
l
xli: ð21Þ

An example of the result is shown in Fig. 7.
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Fig. 5. Example of the unseeded segmentation of a 3� 3 image
computed with a maximum spanning forest (watershed).

Fig. 6. Unseeded segmentation using unary terms. (a) Original image of
blood cells. (b) Graph cuts. (c) MSF (watershed).
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5.2 Seeded Segmentation

We now demonstrate the performance of power watershed

with respect to the other seeded image segmentation

algorithms. In the introduction, we discussed how many

of the leading graph-based segmentation algorithms (e.g.,

Grabcut, lazy snapping, and closed-form matting) have

graph cuts, random walker, and shortest paths or

watershed as an underlying component. Consequently, we

will not compare the Power Watershed to any of the

complete segmentation systems listed above, but rather

against the comparable (component) algorithms of graph

cuts, random walker, shortest paths, and watershed.

Additionally, to simplify the comparison, we will not

employ unary terms in our segmentations.

5.2.1 Quantitative Assessment

Our experiments consist of testing five algorithms embody-

ing different combinations of p and q, consisting of GC, RW,

and SP, watersheds/MSF, and power watershed using the

power q ¼ 2. As before, we chose to employ the power

watershed algorithm with q ¼ 2 due to the uniqueness of

the solution to (4) for this setting.
We used the Microsoft “Grabcut” database available

online [72], which is composed of 50 images provided with

seeds. However, the seeds provided by the Grabcut

database are generally equidistant from the ground truth

boundary. To remove any bias from this seed placement on

our comparative results, we produced an additional set of

seeds by significantly eroding the original foreground

seeds. The weights are set for all algorithms according to

(1) with the value of � hand-optimized to provide the best

results independently for each algorithm. As only the order
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Fig. 7. Example segmentations with more than two labels. (a) Seeds. (b), (c) Power watershed result (q ¼ 2).

Fig. 8. Example segmentations using the provided (top images) and skeletonized (bottom images) set of seeds on the Grabcut database images:
(a) Seeds, (b) graph cuts, (c) random walker, (d) shortest path, (e) maximum spanning forest (standard watershed), and (f) power watershed (q ¼ 2).

TABLE 2
Mean Errors on the GrabCut Database

Using Symmetically Eroded Seeds

The weight parameter � was set to 600 for Graph cuts, 700 for random
walker, and 900 for shortest paths in order to maximize the
performances of each algorithm.

TABLE 3
Mean Errors on the GrabCut Database

Using Asymmetically Eroded Seeds
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of the weights is taken into account in the MSF and power
watershed algorithms, those two algorithms are indepen-
dent of �. We used the color gradient given byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

maxððRi �RjÞ2; ðGi �GjÞ2; ðBi �BjÞ2Þ
q

for a color image of red, green, and blue components,
R;G;B. The normalization is achieved by dividing the
gradient by the maximum value of the gradient over every
edge in the graph G. Example seeds and segmentations for
the five algorithms with the first seeding strategy are shown

at the top of Fig. 8a and with the second seeding strategy at
the bottom of Fig. 8a.

Tables 2 and 3 display the performance results for these
algorithms. We quantify the error in the results using four
different standard segmentation measures used in [90],
namely Boundary Error (BE), Rand Index (RI), Global
Consistency Error (GCE), and Variation of Information
(VoI). Good segmentation results are associated with low
BE, high RI, low GCE, and low VoI.

When segmenting with the first seeding strategy (the
seeds contained in the Grabcut database), the shortest path
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Fig. 9. Computation time for 2D and 3D seeded image segmentation. For each dimension, the times were generated by segmenting the same image
scaled down.

Fig. 10. Example of 3D image segmentation. The foreground seed used for this image is a small rectangle in one slice of each lung and the
background seed is the frame of the image.
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algorithm is the best performer, because this algorithm does
well when the seeds are placed roughly equidistant
from the desired boundary [80] as they are with the first
set of seeds.

The experiment on the second set of seeds shows that
shortest paths are not robust to the seeds’ number and
centering. In fact, with this set of seeds, shortest paths is the
worst performer. Graph cuts performs the best under this
second seeding strategy but was the worst performer on the
first one. Power watershed is in second position under the
second seeding strategy, showing a good robustness to both
seed quantity and location. It is interesting to note that with
the first set of seeds, power watershed and maximum
spanning forest results are quite similar, but with the
asymetrically eroded seeds, the power watershed results
outperform the standard maximum spanning forest (wa-
tershed) results. The second set of seeds contained many
areas where several contours could possibly be found,
given the seeds. The merging operation of the power
watershed gathers undetermined areas and, in performing
the random walker in these ambiguous regions, often
generates a better labeling than the arbitrary labeling
produced by the Prim’s or Kruskal algorithms when
computing the maximum spanning forest (watershed).

5.2.2 Computation Time

Computation times for segmenting 2D and 3D images using
the algorithms of the framework are shown in Fig. 9. For all
MSF algorithms, including the power watershed algorithm,
only the order of the weights is taken into consideration for
the segmentation. Also, there is no parameter choice to
make for � and no exponential to take in the weight
function, so it is possible to use a linear sort of the weights.

The worst-case complexity of the power watershed
algorithm (obtained if all of the edges weights are equal)
is given by the cost of optimizing (4) for the given q. In the

best-case scenario (all weights have unique values), the

power watershed algorithm has the same asymptotic

complexity as the algorithm used for MSF computation,

that is to say, quasi-linear. In practical applications where

the plateaus have size less than some fixed value K, then

the complexity of the power watershed algorithm matches

the quasi-linear complexity of the standard watershed

algorithm. In our experiments in Section 5 with practical

image segmentation tasks, the dependence of the computa-

tion time on the image size of the power watersheds is very

similar to the dependence in standard watersheds. For

generating the computation time for the graph cuts

algorithm, we used the software provided at http://

www.cs.ucl.ac.uk/staff/V.Kolmogorov/software.html and

described in [18]. Our implementation of the shortest path is

performed with a Fibonacci heap using double precision

weights. For the implementation of Prim’s algorithm,

weights with integer precision were used and red and

black tree as a sorting data structure. Finally, the random

walker algorithm was implemented following the multigrid

method described in [40] for 2D image segmentation, and

by a conjugate gradient descent method for 3D image

segmentation. An example of 3D segmentation of a CT

image of lungs is shown in Fig. 10.

5.2.3 Qualitative Assessment

Unlike most watershed algorithms, the power watershed
algorithm (with q ¼ 2) has the property of providing a
unique segmentation. Fig. 11 shows the behavior of the
algorithm of our framework in presence of a plateau.
Additionally, the power watershed (with q ¼ 2) is not
subject to the same shrinking bias exhibited by graph cuts
segmentation. Fig. 12 compares the results of graph cuts
and the power watershed on an example in which the
shrinking bias could substantially affect the result.

The power watershed is an MSF, and therefore it inherits
the standard properties of MSF, among others, contrast
invariance and scale invariance [3]. The contrast invariance
property means that if a strictly monotonic transformation is
applied to the weights of the graph, then the algorithm
produces exactly the same result. This property is due to the
fact that only the order or the weights is used to build a
maximum spanning forest. The scale invariance property
means that if we extend the image or graph in a way that does
not change the relative ordering of weights, for example, by
linear interpolation, the result is invariant.

We summarize the performance of the algorithms of the

framework:
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Fig. 11. (a) Image with foreground (red) and background (blue) seeds,
(b) a segmentation obtained with graph cuts, (c) segmentation obtained
with Prim’s algorithm for maximum spanning forest, and with a shortest
path algorithm, (d) segmentation obtained with random walker, as well
as power watershed with q ¼ 2.

Fig. 12. Example comparison of Graph cuts and Power watershed faced
to a weak foreground seeds quantity. (a) Seeds (the foreground seed is
in red, indicated by an arrow), (b) graph cuts segmentation result,
(c) power watershed (q ¼ 2) result.
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. GC is a good fit for 2D image segmentation into two
labels when the seeds are far away from the
boundary (asymmetric seeding), but is too slow to
be used for 3D segmentation.

. SPF (geodesics) may be used if the object to segment
is well-centered around foreground and background
seeds.

. The RW is efficient and performs well for both
seeding strategies (equidistant seeds and strongly
asymmetric seeds).

. Maximum Spanning Forest (watershed) algorithms
provide better segmentations than SPF when seeds
are not centered, and their fast computation time
makes the algorithm suitable for 3D segmentation.

. The power watershed algorithm when q ¼ 2 has the
additional property of a well-defined behavior in
the presence of plateaus improving also the quality of
the segmentation compared to standard MSF. As an
MSF, it is still sensitive to leaking, but less so than
traditional algorithms due to the random walk
behavior. The computational speed of the power
watershed is faster than all of the algorithms except
the pure MSF.

6 CONCLUSION

In this paper, we clarified, simplified, and extended the
recent work connecting graph cuts and watershed [2], [3].
Extending the framework of [80], we have proposed a
general framework encompassing graph cuts, random
walker, shortest path segmentation, and watersheds. This
connection allowed us to define a new family of optimal
spanning forests for watershed segmentation algorithms
using different exponents, which we termed the “power
watershed.” We produced an algorithm for computing the
power watershed and our experiments showed that the
power watershed with q ¼ 2 retains the speed of the MSF
algorithm while producing improved segmentations. In
addition to providing a new image segmentation algorithm,
this work also showed how unary terms could be employed
with a standard watershed algorithm to improve segmenta-
tion performance.

Viewed as energy minimization algorithms, graph cuts,
random walker, and shortest paths have found many
different applications in the computer vision field that go
beyond image segmentation, such as stereo correspon-
dence, optical flow, and image restoration (e.g., [82], [76],
[53]). By placing the optimal spanning forest algorithm for
watersheds in the same energy minimization framework as
these other algorithms, watershed algorithms may find new
uses and applications within the computer vision field
beyond its traditional domain of image segmentation. Due
to the relative speed of the optimal spanning forest
algorithms, we believe that it may be an attractive
alternative to current systems in these other applications
of energy minimization.

Future work will develop along several directions. One
direction is the further improvement of image segmentation
algorithms using power watersheds as a component to
larger systems in a similar manner as graph cuts, random
walker, and shortest paths have been used. Additionally,
we hope to use the common framework for these algorithms

to leverage existing ideas from the watershed literature into

these other algorithms. In particular, hierarchical schemes

[68], [64], [65], [8], [45] look like an interesting topic that can

take advantage of the power watershed uniqueness. A

second direction for future work will be to characterize the

limits of the watershed algorithm as an energy minimiza-

tion procedure [25]. Ultimately, we hope to employ power

watersheds as a fast, effective alternative to the energy

minimization algorithms that currently pervade the wide

variety of applications in computer vision.

APPENDIX

Proof of Theorem 2.

Ep;q xð Þ
wMp

¼
X
eM

jxi � xjjq þ
X
eij 6¼eM

wij
wM

� �p
jxi � xjjq:

Ep;qð�xÞ
wMp

� Ep;qðx

Þ

wMp
¼
X
eM

j �xi � �xjjq �
X
eM

jx
i � x
j j
q

þ
X
eij 6¼eM

wij
wM

� �p
j �xi � �xjjq �

X
eij 6¼eM

wij
wM

� �p
jx
i � x
j j

q:

ð22Þ

The first part of (22) is bounded by 0, i.e.,X
eM

j �xi � �xjjq �
X
eM

jx
i � x
j j
q � 0; ð23Þ

because the energy obtained with �x cannot be greater

than the one obtained by the optimal solution x
. More

precisely, if there are no plateaus with different labels,

the x
i , x


j computed on the edges eM with Algorithm 1

are equal, leading to a sum equal to 0. Else (if there are

plateaus with different labels),
P

eM
jxi � xjjq subject to

the boundary constraints is minimized on the plateaus,

so the solution is optimal.
The last part of (22) is also negative, i.e.,

�
X
eij 6¼eM

wij
wM

� �p
jx
i � x
j j

q � 0: ð24Þ

It only remains to bound the middle part of (22),

X
eij 6¼eM

wij
wM

� �p
j �xi � �xjjq �

X
eij 6¼eM

wij
wM

� �p
�M2

wM2

wM

� �p
;

ð25Þ

with M2, the number of edges of weight inferior to wM ,

and wM2
, the second maximum weight.

Thus, we have

Ep;qð�xÞ
wMp

�Ep;qðx
Þ
wMp

�M2
wM2

wM

� �p
; ð26Þ

p � k ¼
log �

M2

log
wM2

wM

: ð27Þ

tu
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