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Abstract
Dijkstra’s algorithm (DA) is one of themost useful and efficient graph-search algorithms, which can bemodified to solvemany
different problems. It is usually presented as a tool for finding a mapping which, for every vertex v, returns a shortest-length
path to v from a fixed single source vertex. However, it is well known that DA returns also a correct optimal mapping when
multiple sources are considered and for path-value functionsmore general than the standard path-length. The use of DA in such
general setting can reduce many image processing operations to the computation of an optimum-path forest with path-cost
function defined in terms of local image attributes. In this paper, we describe the general properties of a path-value function
defined on an arbitrary finite graph which, provably, ensure that Dijkstra’s algorithm indeed returns an optimal mapping. We
also provide the examples showing that the properties presented in a 2004 TPAMI paper on the image foresting transform,
which were supposed to imply proper behavior of DA, are actually insufficient. Finally, we describe the properties of the
path-value function of a graph that are provably necessary for the algorithm to return an optimal mapping.

Keywords Dijkstra’s algorithm · Graph-search algorithms · Image foresting transform · Connectivity functions

1 Introduction

In 1959, EdsgerWybeDijkstra presented a note [18] describ-
ing the solutions of two graph-search problems for connected
edge-weighted graphs. The solution of the second problem,
on finding the shortest-length path from a single source ver-
tex s to another vertex v, can be trivially extended to multiple
sources, that is, given a non-empty subset S of vertices, to
finding a path from a u ∈ S to vwhose length does not exceed
the length of any other path from aw ∈ S to v. This extension
can be done by adding to the original graph the dummy ver-
tex s, connecting it to each vertex in S by an edge of weight
zero, and finding for this extended graph the shortest-length
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path from s to v. Ever since, the solution of the shortest path
problem from [18] is known as Dijkstra’s algorithm. It has
been applied, in the original or a modified form, in the mul-
titude of different practical tasks, like routing phone calls in
telephone networks, finding the best flights between airports
for a given departure time, and designating file servers in the
local computer networks.

The modified versions of Dijkstra’s algorithm usually
rely on some monotone path-value function [24], and they
can either minimize or maximize an optimum path-value
map. In [21] the authors proposed the image foresting
transform, IFT, a methodology to design image processing
operators based on the modifications of Dijkstra’s algo-
rithm to multiple sources and more general path-value
functions. The IFT essentially reduces image processing
operators to the computation of an optimum-path for-
est in a graph derived from the image, followed by a
local processing of its attributes. Its applications include
boundary-based [22,23,29], region-based [1,4,5,15,16,25,
27,28,41,42], and hybrid [10,37] image segmentation, mor-
phological reconstructions [20], simultaneous connected
filtering and watershed transforms [26], fast binary morphol-
ogy [33], linear time exact Euclidean distance transform and
one-pixel-wide connected multiscale skeletonization [19],
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shape description [3,39,40], clustering [6,35], and classifi-
cation [2,31,32,36].

In this paper, we describe the properties that a path-value
function of a graph must satisfy in order to ensure that Dijk-
stra’s algorithm returns an optimum path-value map, provide
examples to show that the path-value function properties pre-
sented in [21] are insufficient to ensure the “proper” behavior
of the algorithm, and present a simple variant of Dijkstra’s
algorithm that guarantees its output to be a spanning forest.
Note that the published IFT-based image operators either sat-
isfy the sufficient condition [5,6,15,19,20,23,26,27,31,41] or
have been proposed by using the aforementioned variant that
guarantees a spanning forest [1,11,25,27,29,38]. Therefore,
the main contribution of this work is the formulation of the
general conditions of the path-value functions that provably
ensure that the algorithm returns an optimumpath-valuemap.

This paper is organized as follows: Sect. 2 presents the
basic definitions and notation, with examples of the most
commonly used path-value functions, especially in image
processing. The characterization theorem for Dijkstra’s algo-
rithm and its aforementioned variant are presented in Sects. 3
and 4. Section 5 shows that the properties given in [21] as
sufficient for ensuring that the algorithm works correctly
are actually insufficient. Comments on optimization and the
proofs are presented in Sects. 6 and 7, respectively. Conclu-
sions are stated in Sect. 8.

2 Basic Definitions and Examples Pertinent
to the Algorithm

LetG = ⟨V , E⟩ be a directed graph, where V is a non-empty
finite set of its vertices and E ⊂ V ×V is the set of its edges.
We assume also that G has no loops, that is, ⟨v, v⟩ /∈ E for
every v ∈ V . A path (in G), with terminus v = vℓ and of
length ℓ ≥ 0, is any sequence pv = ⟨v0, . . . , vℓ⟩ of vertices
such that ⟨v j , v j+1⟩ ∈ E for any j < ℓ; it is from S ⊂ V
to v ∈ V when v0 ∈ S and vℓ = v; and if ⟨v,w⟩ ∈ E ,
then pvˆw denotes the path ⟨v0, . . . , vℓ, w⟩. Let ΠG be the
family of all paths in G and consider a path-value function
ψ : ΠG → [−∞,∞], where [−∞,∞]—the extended real
line—is considered with the curly order relation ψ(pv) ≼
ψ(qv), being eitherψ(pv) ≤ψ(qv) orψ(pv) ≥ ψ(qv). The
choice of ≼ as either ≤or ≥ depends on the application, and
it is always clear from the context.

Commonly, the path-value function ψ is defined from an
edge-weight map ωE : E → R (i.e., G is an edge-weighted
graph G = ⟨V , E,ωE ⟩) which, in different applications, is
referred to as the local distance, cost, or affinity function,
see Examples 1 and 2. Also, in some cases, ψ is defined
from a vertex-weight map ωV : V → R, see Examples 3
and 4. However, we assume here only that the function ψ

is computable by a readily available algorithm. In particular,

the definition ofψ need not depend on either edge- or vertex-
weight map, see Examples 6 and 10. Also, in general, a set
S ⊂ V of seeds (i.e., of vertices where all cost-effective
paths must start) need not be specified, see Examples 3, 6,
and 7.

A Dijkstra-type algorithm associated with ψ is con-
cerned with finding, for every v ∈ V , the cost/strength
ψ(pv) of a ψ-optimal path in ΠG to v. We say that a
map σ : V → [−∞,∞] is a ψ-optimal map provided,
for every v ∈ V , σ [v] = ψ(pv) for some ψ-optimal
path pv to v. Since “optimal” may mean either standard-
order minimal (e.g., as in Example 1) or standard-order
maximal (e.g., as in Example 2), we will define ≼ as ≤
in the former case and as ≥ in the latter case. This will
allow us to talk uniformly on the ≼-minimization task,
independently on which of the two situations we con-
sider.

Typically, a Dijkstra-type algorithm actually finds a map
π : V → ΠG such that, for every v ∈ V , π [v] is a path
to v. This map induces the map σ : V → [−∞,∞] as a
composition σ = ψ ◦ π , that is, σ is given via formula
σ [v] = ψ(π [v]). The family P = {π [v] : v ∈ V } usually
forms a forest in the graph, that is, it has the properties: (i)
For every v ∈ V there exists a unique path pv ∈ P to v;
(ii) every initial segment of a p = ⟨v0, . . . , vℓ⟩ ∈ P (i.e.,
⟨v0, . . . , vk⟩ for k ≤ℓ) also belongs to P .

Most applications define the costmapψ so that all optimal
paths must start from an explicitly given non-empty set S ⊂
V of seeds. In such cases, the fact that all ψ-optimal paths
indeed start at S is ensured by requiring thatψ(pv) ≺ ψ(qv)
whenever pv ∈ ΠG is from S and qv ∈ ΠG is from V \S.
See examples of commonly used path-value functions below.
However, in what follows, we do not require that the cost
functions are defined with an explicitly specified seed set.
(However, one can always consider the entire set V as being a
set of seeds.) In image processing,G = ⟨V , E⟩ is commonly
a grid graph, with V being the image domain and the set E
of edges the connectors of adjacent pixels.

Example 1 The classicDijkstra’s shortest path algorithm [18]
searches, for every v ∈ V , for a path from a fixed non-
empty set S ⊂ V of seeds to v of minimal weighted length.
So, ≼ is interpreted as ≤. The algorithm uses the path-
value function—the length—defined from the local distance
ωE : E → [0,∞) as follows. Whenever v0 ∈ S we put
ψsum(⟨v0, . . . , vℓ⟩) =

∑
1≤j≤ℓ ωE (v j−1, v j ) for ℓ > 0 and

ψsum(⟨v0⟩) = 0; otherwise, ψsum(⟨v0, . . . , vℓ⟩) = ∞.

In image processing, an optimum contour tracking oper-
ation constrained to a set of strokes across the object’s
boundary, geodesic dilations of a binary set, and some
approaches for region-based image segmentation [1,4,21–
23] rely on the modifications of ωE in ψsum for one or
multiple sources.
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Example 2 Another example is the path-value functionψmin.
In the fuzzy connectedness applications [7–9,12–15,25,41,
42], this function ψmin is used to measure the “strength
of connectivity” between vertices, as a function of a local
connectivity (i.e., affinity) map ωE : E → [0, 1] defined as
follows. If v0 ∈ S, then

ψmin(⟨v0, . . . , vℓ⟩) = min
1≤j≤ℓ

ωE (v j−1, v j ) ∈ [0, 1]

for ℓ > 0 andψmin(⟨v0⟩) = 1. Otherwise, for v0 /∈ S, we put
ψmin(⟨v0, . . . , vℓ⟩) = −∞. Its applications are concerned
with the paths ofmaximal strength of connectedness. So, for
ψmin, we will interpret ≼ as ≥.

Example 3 A path-value function can also be defined from
a vertex altitude map ωV : V → [−∞,∞) via formula
ψpeak(⟨v0, . . . , vℓ⟩) = max1≤j≤ℓ{h(v0),ωV (v j )} for ℓ > 0,
and ψpeak(⟨v0⟩) = h(v0) for some handicap value h(v0) ≥
ωV (v0) for all v0 ∈ V . In image processing, its applications
involve superior morphological reconstructions and water-
shed transforms [20,21,26], which are concerned with the
paths of minimal peak. So, for ψpeak, we will interpret ≼
as ≤.

The handicap values may be defined as h(v0) = ωV (v0)

for v0 ∈ S, and h(v0) = ∞ otherwise, as is the case in the
watershed transform from a set S of labeled markers [21].
For superior reconstruction [20], wemay define h ≥ ωV and,
for watershed transforms from a grayscale marker, h > ωV
as discussed in [26]. In both cases, the set S can only be
discovered on the fly, as derived from the minima of the
resulting ψpeak-minimal map σ [ ].

Example 4 Another example of a path-value function based
on a vertex altitude map ωV : V → [0,∞) is defined as
follows. If v0 ∈ S, then

ψdif(⟨v0, . . . , vℓ⟩) = max
0≤j≤ℓ

ωV (v j ) − min
0≤j≤ℓ

ωV (v j )

for ℓ > 0 and ψdif(⟨v0⟩) = 0. Otherwise, for v0 /∈ S,
ψdif(⟨v0, . . . , vℓ⟩) = ∞. Its applications are concerned
with the paths of minimal height (difference between maxi-
mum and minimum altitudes). So, for ψdif , we will interpret
≼ as ≤.

In image processing, ψdif defines a minimal barrier dis-
tance between vertices, which is useful in some image
segmentation applications [11,38].

Example 5 Yet another example of a path-value function
based on a vertex altitude map ωV : V → [0,∞) is the map
ψlast : V → [0,∞), which is defined as ψlast(⟨v0, . . . , vℓ⟩)
= ωV (vℓ) when v0 ∈ S and as ψlast(⟨v0, . . . , vℓ⟩) = ∞ oth-
erwise. Its applications seek the paths of minimal strength.
Examples are a particular case of the riverbedboundary track-
ing [29] and the imposition of connectivity constraints in

region-based image segmentation [28]. Thus, for ψlast, we
will interpret ≼ as ≤.

3 Dijkstra’s Algorithm (DA) and the
Correctness Theorem

In the following algorithm, any time during its execution and
for any v ∈ V , π [v] is a path to v with σ [v] = ψ(π [v]). The
algorithm, putting aside notational differences, is identical to
the one studied in [21]with aminor exception—the paths that
we store in the array π [ ] were indicated in [21] via prede-
cessor map P[ ]: A path π [vℓ] = ⟨v0 . . . , vℓ⟩ was indicated
through the assignments P[v0] = nil and P[vi ] = vi−1 for
any i ∈ {1, . . . , ℓ}. In the algorithm, we use the operation
arg ≼ -opt that finds a vertex v in H for which the value of
ψ(π [v]) has a≼-minimal value, that is, consists of the (stan-
dard) minimum value in case of standard-order minimization
and the (standard) maximum value in case of standard-order
maximization.

Algorithm 1: Dijkstra’s algorithm DA, aiming to find
the ψ-optimal map
Data: A finite graph G = ⟨V , E⟩ and a path-value function ψ

from ΠG to ⟨[−∞,∞],≼ ⟩
Result: An array σ [ ] of numbers, aiming for being ψ-optimal

map
Additional Structure: A variable σ ′, a set H, and an
array π [ ] of paths, such that, at any time and for any v ∈ V ,
π [v] is a path to v with σ [v] = ψ(π [v])

1 foreach v ∈ V do π [v] ← ⟨v⟩; σ [v] ← ψ(π [v])
/* initialization loop */

2 H ← V
3 while H ̸= ∅ do /* the main loop */
4 remove an element w of arg ≼ -optu∈Hσ [u] from H
5 foreach x such that ⟨w , x⟩ ∈ E do
6 σ ′ ← ψ(π [w ]ˆx)
7 if σ ′ ≺ σ [x] then σ [x] ← σ ′; π [x] ← π [w ]ˆx

Notice that Algorithm 1, referred in what follows as DA,
requires precisely |V |-many executions of the main loop,
since, after the execution of line 2, nothing is ever inserted
again into H. Also, the order of performed operations in the
algorithm is not uniquely determined by its structure, since
the execution of line 4 may result in choosing different ≼-
minimal elements w . This is the reason for the use of phrases
“is guaranteed” and “cannot be” in the theorems that follow.

To state our main theorem, on the correctness of DA, we
will need the following additional terminology and notation.
For G = ⟨V , E⟩ and a value-path function ψ : ΠG →
[−∞,∞] define a max-value path function Ψ : ΠG →
[−∞,∞] by putting, for every ⟨v0, . . . , vℓ⟩ ∈ ΠG ,
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Ψ (⟨v0, . . . , vℓ⟩) = max{ψ(⟨v0, . . . , vi ⟩) : i = 0, 1, . . . , ℓ},

where maximum is with respect to the order relation ≼.
We say that a path pv = ⟨v0, . . . , vℓ⟩ ∈ ΠG to v = vℓ:

– isψ-optimal if it is≼-minimal, that is, providedψ(pv) ≼
ψ(qv) for any other pathqv ∈ ΠG to v;

– is hereditarily ψ-optimal, provided ⟨v0, . . . , vk⟩ is ψ-
optimal for every k ≤ℓ;

– is hereditarily optimal, HO, provided it is hereditarily
ψ-optimal andΨ (⟨v0, . . . , vk⟩) ≼ Ψ (p) for every hered-
itarily ψ-optimal p to vk and all k ≤ℓ;

– is Ψ -minimal (in a strong sense) provided Ψ (pv) ≺
Ψ (q̂v) for every q̂v ∈ ΠG such that ψ(pv) ≺ ψ(q̂v)

andqis either empty or HO;
– has the replacement property when ψ(⟨v0, . . . , vi ⟩) =

ψ(qvi−1ˆvi ) for every HO path qvi−1 ∈ ΠG to vi−1 and
all i ∈ {1, . . . , ℓ};

– is monotone when ψ(⟨v0, . . . , vi ⟩) ≼ ψ(⟨v0, . . . , v j ⟩)
for all i ≤ j ≤ℓ;

– is hereditarilyψ-optimal monotone, HOM, provided it is
both hereditarily ψ-optimal and monotone.

Now,we are ready for ourmain theoremon the correctness
of DA.

Theorem 1 Let G = ⟨V , E⟩ be a finite directed graph with
no loops andψ : ΠG → [−∞,∞] be a path-value function.
If

(E) for every v ∈ V there exists a Ψ -minimal HO path to v
with the replacement property,

then the array σ [ ] returned by DA is guaranteed to be the
ψ-optimal map. Moreover, the array π [ ] returned by DA
has the property that, for every v ∈ V , π [v] = ⟨v0, . . . , vℓ⟩
is an HO path to v = vℓ and π [vi ] = ⟨v0, . . . , vi ⟩ every
i ∈ {0, . . . , ℓ} (i.e., {π [v] : v ∈ V } is an optimal forest).

Conversely, if the following monotonicity property holds

(M) ψ(⟨v0, . . . , vi ⟩) ≼ ψ(⟨v0, . . . , vℓ⟩) for every path
⟨v0, . . . , vℓ⟩ ∈ ΠG and 0 ≤i < ℓ,

then the function σ [ ] returned by DA cannot be ψ-optimal,
unless for every v ∈ V there exists a hereditarily ψ-optimal
path to v.

The proof of Theorem1 is presented in Sect. 7. In themean
time,wewill discussDA and the consequences ofTheorem1.

The two notions involving explicitly the max-value path
function Ψ (i.e., HO and Ψ -minimal, used to express (E))
are, at first, hard to fully grasp. Luckily, in most of the appli-
cations, they can be replaced by the considerable simpler

s a

b-2
t

2

2

5

Fig. 1 For this graph, with S = {s}, indicated weight map ωE , and
path-value functionψsum, (E) is clearly satisfied for every vertex v ̸= t .
It is also satisfied for v = t by a path pt = ⟨s, a, b, t⟩: It is the only
ψsum-optimal path, as ψsum(pt ) = 2 < 5 = ψsum(⟨s, t⟩) and also
Ψsum(pt ) = 4 < 5 = Ψsum(⟨s, t⟩). However, t does not admit HOM
path, as pt is not monotone

notion of an HOM path, as it can be seen from the following
simple result and the fact that property (M) is satisfied for
the vast majority of path-value functions (see, for example,
Corollary 2).

Remark 1 Every HOM path p = ⟨v0, . . . , vℓ⟩ ∈ ΠG is a
Ψ -minimal HO path.

Proof Let p = ⟨v0, . . . , vℓ⟩ ∈ ΠG be an HOM path and q
as in the definition of Ψ -minimality. Then, the monotonicity
of p implies that Ψ (p) = ψ(p). Thus, Ψ (p) = ψ(p) ≺
ψ(q̂v) ≼ Ψ (q̂v), that is, p is indeed Ψ -minimal. It is HO
since, for every k ≤ℓ and hereditarilyψ-optimal p to vk , we
have Ψ (⟨v0, . . . , vk⟩) = ψ(⟨v0, . . . , vk⟩) ≼ ψ(p) ≼ Ψ (p).

⊓3
Since in the majority of the application of DA the Ψ -

minimal HO paths that satisfy (E) are actually HOM paths,
one might wonder if in all applications of the theorem the
phrase “Ψ -minimal HO” can be replacedwith “HOMpaths.”
The simplest example that negates such a claim is givenby the
path-value function ψlast from Example 5: Every path from
S is optimal with respect to ψlast (so, (E) is satisfied and, in
fact, any spanning forest rooted at S is optimal), while for
V = {s, c}, E = {⟨s, c⟩, ⟨c, s⟩}, S = {s}, and ωV (s) = 1,
ωV (c) = 0, the vertex c admits no HOM path.

Another example of a path-value function on a graph,
which satisfies (E) but has a vertex admitting no HOM path,
is presented in Fig. 1. This example uses path-value function
ψsum (Example 1), in which we allow negative values for the
edge-weight map ωE .

FromTheorem 1 and Remark 1 it is easy to deduce the fol-
lowing characterization of path-value functions ψ for which
DA must return the expected optimal map.

Corollary 1 If G = ⟨V , E⟩ andψ : ΠG → [−∞,∞] satisfy
(M) and the following replacement property

(R) ψ(pvℓ) = ψ(qvℓ−1ˆvℓ) for every HOM path
pvℓ = ⟨v0, . . . , vℓ⟩ to vℓ and qvℓ−1 to vℓ−1,

then σ [ ] returned by DA is the ψ-optimal map if, and only
if, for every v ∈ V there exists a hereditarily ψ-optimal path
to v.
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s

b

a

c

.5

.4 .5 d .8

.7

Fig. 2 For the graph, with S = {s}, neither pd = ⟨s, a, c, d⟩, nor
qd = ⟨s, b, c, d⟩ from s to d is hereditarily ψdif -optimal: Only pd is
optimal, since ψdif (pd ) = .8 − .5 < .8 − .4 = ψdif (qd ); but the initial
segment ⟨s, a, c⟩ of pd is suboptimal, as ψdif (⟨s, a, c⟩) = .7 − .5 >
5 − .4 = ψdif (⟨s, b, c⟩)

Proof The existence of hereditarilyψ-optimal paths to every
v ∈ V is a sufficient condition, since, by (M) and (R), every
such path is HOM and has the replacement property. So, by
Remark 1, (E) holds and Theorem 1 implies that σ [ ] returned
by DA is as needed.

The necessity of the existence of hereditarily ψ-optimal
paths follows immediately from the second part of Theo-
rem 1. ⊓3

Theusefulness ofTheorem1andCorollary 1 canbe appre-
ciated, when noticing how easily one can deduce from them
the following two results.

Corollary 2 The path-value functions ψsum, ψmin, and ψpeak
satisfy the properties (M) and (R). In particular, theDA algo-
rithm works correctly for these functions.

Proof The definitions of these functions immediately imply
that every path is monotone and that the following strong
version (R*) of the replacement property (R) holds:

(R*) ψ(qvℓ−1ˆvℓ) ≼ ψ(pvℓ) for all paths pvℓ = ⟨v0, . . . , vℓ⟩
to vℓ andqvℓ−1 to vℓ−1 with ψ(qvℓ−1) ≼ ψ(pvℓ−1).

If ψ satisfies (M) and (R*), then every v ∈ V admits a
hereditarilyψ-optimal path to v, see Proposition 2. So, every
such path is HOM satisfying the replacement property, and
(E) holds. ⊓3

At the same time, Theorem1 easily implies that the reverse
is true for the barrier path-value function ψdif from Exam-
ple 4. (Compare also [11,38].)

Proposition 1 TheDA need not return an optimal map, when
executed for the path-value function ψdif .

Proof For a weighted graph depicted in Fig. 2, which comes
from [11], there is no hereditarily ψdif -optimal path from
S = {s} to d. Since ψdif clearly satisfies (M), the result
follows from Theorem 1. ⊓3

4 Another Variant DA* of Dijkstra’s
Algorithm

It would have been nice if it had been possible to prove about
DA that, independently of any extra assumptions on the path-
value function ψ ,

(•) the family {π [v] : v ∈ V } returned by the algorithm is
always a forest.

Actually, it was claimed in [21, Lemma 2] that DA (in their
formalism) indeed satisfies (•) (i.e., never returns a cycle) for
any path-value function ψ .1 However, the following simple
example shows that a family {π [v] : v ∈ V } returned by DA
need not be a forest. The example also shows that the second
part of Theorem 1 indeed requires some assumptions on the
map ψ .

Example 6 Consider G = ⟨V , E⟩ with V = {s, a} and
E = {⟨s, a⟩, ⟨a, s⟩}. Identify ≼ with ≤. Define ψ(p) = 0
for any path p from s of nonzero length, and ψ(p) = 1 for
any other path. Then, DA returns paths π [s] = ⟨s, a, s⟩ and
π [a] = ⟨s, a⟩ (as we start with the initialization π [s] = ⟨s⟩,
π [a] = ⟨a⟩ and, after the first execution of the loop, we have
π [s] = ⟨s⟩, π [a] = ⟨s, a⟩).

In particular,DA returns a non-trivial circular pathπ [s] =
⟨s, a, s⟩, which cannot belong to any forest, so (•) is not sat-
isfied. (In the formalism of [21], DA returns the predecessor
indicators P[s] = a and P[a] = s, also a cycle.)

Moreover, DA returns π [s] = ψ(⟨s, a, s⟩) = 0 and
π [a] = ψ(⟨s, a⟩) = 0, that is, an optimal map π , in spite
of the fact that there is no hereditarily ψ-optimal path in
the graph (as any path of length 0 is suboptimal). Thus, the
second part of Theorem 1 indeed requires some additional
assumptions on ψ .

The property (•) can be ensured by the following sim-
ple modification of DA, obtained by replacing condition
“⟨w , x⟩ ∈ E” in line 5 with “⟨w , x⟩ ∈ E and x ∈ H.” This
leads to:

We have the following modification of Theorem 1 for
DA*.

Theorem 2 Let G = ⟨V , E⟩ be a directed graph with no
loops and ψ : ΠG → R be a path-value function. If π [ ] is
returned byDA*, then, for every v ∈ V , π [v] = ⟨v0 . . . , vℓ⟩
is a path with no repeated vertices such that π [vi ] =
⟨v0 . . . , vi ⟩ for every i ∈ {0, . . . , ℓ} (i.e., {π [v] : v ∈ V }

1 Apparently, there was a typo in the version of DA from [21], since
they defined a set F , never used, to avoid reprocessing the vertices in
the inner loop of the algorithm. A proper use of F would make [21,
Lemma 2] valid.
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Algorithm 2:Dijkstra’s algorithmDA*, aiming to find
the ψ-optimal map
Data: A finite graph G = ⟨V , E⟩ and a path-value function ψ

from ΠG to ⟨[−∞,∞],≼ ⟩
Result: An array σ [ ] of numbers, aiming for being ψ-optimal

map
Additional Structure: A variable σ ′, a set H, and an
array π [ ] of paths, such that, at any time and for any v ∈ V ,
π [v] is a path to v with σ [v] = ψ(π [v])

1 foreach v ∈ V do π [v] ← ⟨v⟩; σ [v] ← ψ(π [v])
/* initialization loop */

2 H ← V
3 while H ̸= ∅ do /* the main loop */
4 remove an element w of arg ≼ -optu∈Hσ [u] from H
5 foreach x such that ⟨w , x⟩ ∈ E and x ∈ H do
6 σ ′ ← ψ(π [w ]ˆx)
7 if σ ′ ≺ σ [x] then σ [x] ← σ ′; π [x] ← π [w ]ˆx

is a forest). If (E) holds, then σ [ ] returned by DA* is guar-
anteed to be theψ-optimal map.Moreover, the returnedmap
π [ ] consists of hereditarily ψ-optimal paths.

Conversely, if there exists a v ∈ V such that there is
no hereditarily ψ-optimal path to v, then the function σ [ ]
returned by DA* cannot be ψ-optimal.

The proof of Theorem 2 is presented in Sect. 7. However,
notice that the last part follows immediately from the first
part of the theorem, that DA* satisfies (•).

Of course, by Theorem 2, if (E) is satisfied, then DA*
returns an optimum-path forest. But it is worth mentioning
that even when the sufficient conditions are not satisfied, the
resulting spanning forest fromDA* (not necessarily optimal)
has been useful as an effective image segmentation, see, for
example, [1,11,25,27,30,38].

5 Discussion of Properties (E) and “Smooth
Function” from [21]

Considering our notation, the propertiesC1–C3of path-value
functions in [21], called smooth functions, can be stated as
follows: For any vℓ ∈ V there exists a ψ-optimal path pvℓ =
⟨v0 . . . , vℓ⟩ ∈ ΠG , with ℓ ≥ 0, such that for ℓ > 0, if
pvℓ−1 = ⟨v0 . . . , vℓ−1⟩, then

C1. ψ(pvℓ−1) ≼ ψ(pvℓ),
C2. pvℓ−1 is ψ-optimal, and
C3. ψ(qvℓ−1ˆvℓ) = ψ(pvℓ) for any ψ-optimalqvℓ−1 ∈ ΠG .

The authors claimed in the paper that for any path-value
function ψ that satisfies properties C1–C3, DA returns the
ψ-optimal map σ [ ].

The proof of this claim is presented in the appendix of
paper [21], where the authors first claim, without a proof,

s s'a'a

b b'

Fig. 3 Graph for Example 8

that C1–C3 implies C1*–C3*, which can be stated as fol-
lows: For any vℓ ∈ V there exists a ψ-optimal path pvℓ =
⟨v0 . . . , vℓ⟩ ∈ ΠG , with ℓ ≥ 0, such that for 0 ≤k ≤ℓ − 1
and ℓ > 0,

C1*. ψ(⟨v0, . . . , vk⟩) ≼ ψ(pvℓ),
C2*. ⟨v0, . . . , vk⟩ is ψ-optimal, and
C3*. ψ(qvkˆ⟨vk+1, . . . , vℓ⟩) = ψ(pvℓ) for any ψ-optimal

pathqvk .

Then, they proceed in proving that for any path-value func-
tion satisfyingC1*–C3*DAmust return anoptimalmapping.

Unfortunately, neither implication “C1–C3 4⇒
C1*–C3*,” nor the claim that conditions C1*–C3* are
enough to ensure the optimized output of DA is true,
as shown by the following three examples.

Example 7 Let G = ⟨V , E⟩ be a simple planar grid with
V = {0, . . . , 5} × {0, . . . , 5} considered with 4-adjacency,
that is, ⟨(k, ℓ), (m, n)⟩ ∈ E preciselywhen |k−m|+|ℓ−n| =
1. Let s0 = (0, 0) and consider standard minimization, that
is, ≼ being ≤.

For a path pvℓ = ⟨v0, . . . , vℓ⟩ ∈ ΠG in which s0 appears
only at place v0 we put ψ(pvℓ) = ℓ provided ℓ ≤ 3 and
ψ(pvℓ) = 0 otherwise. For a path pvℓ in which s0 appears
more than once, or does not appear at all, we put ψ(pvℓ) =
100. Thenψ(⟨s0⟩) = 0 is optimal. Also, every vℓ ∈ V a one-
to-one path pvℓ of length ℓ ≥ 5, which achieves ≼-minimal
value of 0. In addition, the properties C1–C3 are satisfied for
any path pvℓ of length ℓ ≥ 5. However, only s0 admits HOM
path, so the properties C1*–C2* are not satisfied. Moreover,
for any v1 adjacent to s0, DA returns a suboptimal value 1.

Example 8 Let G = ⟨V , E⟩ be as in Fig. 3, that is,
with vertices V = {s, s′, a, a′, b, b′} and directed edges
E = {⟨s, a⟩, ⟨a, b⟩, ⟨s′, a′⟩, ⟨a′, b′⟩, ⟨a, a′⟩, ⟨a′, a⟩, ⟨b, b′⟩,
⟨b′, b⟩}.We use the standardminimization (i.e., with≼ being
≤), S= {s, s′}, and defineψ(pv) = 0 for any pv ∈ ΠG from
S of the following form:

– v ∈ {s, s′, a, a′} or having repeated vertices (i.e., not a
simple path);

– ⟨ . . . , a′, b′, b⟩, ⟨s, a, a′, b′⟩, ⟨ . . . , a, b, b′⟩, ⟨s′, a′, a, b⟩.
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Fig. 4 Graph for Example 9

For all other paths pv ∈ ΠG we put ψ(pv) = 1.

The path-value functionψ satisfies conditions C1*–C3* The
path pb = ⟨s, a, a′, b′, b⟩ satisfies the properties for b: C1*
and C2* since it is HOM (as ψ(⟨s, a, a′, b′⟩) = 0) and C3*,
since the only replacement of ⟨s, a, a′, b′⟩ in pb with an opti-
mal path to b′ that does not have repeated vertices is pb itself,
while the replacements of any shorter initial segments of pb
are also of the optimal form ⟨ . . . , a′, b′, b⟩. The symmetric
argument shows that the path pb′ = ⟨s′, a′, a, b, b′⟩ also sat-
isfies conditions C1*–C3*. It is also easy to see that any path
from S to v ∈ {b, b′, c, c′} satisfies C1*–C3* as well.
DA and DA* may terminate with a suboptimal path Indeed,
if the first two vertices removed from H are s and s′, then the
algorithm will terminate with suboptimal π [b] = ⟨s, a, b⟩
and π [b′] = ⟨s′, a′, b′⟩.
DA and DA* may terminate with the optimal map Indeed, if
the first two vertices removed from H are s and a, then the
algorithm will terminate with the hereditary optimal π [b] =
⟨s, a, a′, b′, b⟩.

Note that the two last claims may happen depending on
the tie-breaking policy for removing vertices from H. (In
practice, the implementations usually follow the first-in, first-
out rule, which ensures that s and s′ would be removed first.)
Apart from that, we provide next an even stronger example,
inwhich the path-value function satisfies C1*–C3* forwhich
the algorithms cannot return the optimal map.

Example 9 LetG ′ = ⟨W , E⟩ be as in Fig. 4, and consider the
standard minimization (so that ≼ is ≤) with S= {s, s′} and
ψ(pv) = 0 for any pv ∈ ΠG ′ from S of the form:

– v ∈ {s, s′, a, a′} or having repeated vertices (i.e., not a
simple path);

– ⟨ . . . , a′, b′, b⟩, ⟨s, a, a′, b′⟩, ⟨ . . . , a, b, b′⟩, ⟨s′, a′, a, b⟩;
– ⟨ . . . , a′, c′, c⟩, ⟨s′, a′, c′⟩, ⟨ . . . , a, c, c′⟩, or ⟨s, a, c⟩.

For all other paths pv ∈ ΠG ′ we put ψ(pv) = 1.

The path-value functionψ satisfies conditions C1*–C3* The
graph G ′ restricted to the vertices in V = {s, s′, a, a′, b, b′}
becomes the graph G from Example 8 with the same path-
value function. Since, inG ′, there are no edges from {c, c′} to

s

s'

x b'

b

Fig. 5 Graph for Example 10

V , the same paths as in Example 8 show that the conditions
C1*–C3* are satisfied for any v ∈ V . The conditions are
satisfied for c by apath pc = ⟨s′, a′, c′, c⟩: C1* andC2* since
it is HOM and C3*, since the only replacement of ⟨s′, a′, c′⟩
in pc with an optimal path to c′ is ⟨s, a, a′, c′, c⟩, of optimal
format ⟨ . . . , a′, c′, c⟩. Similarly, C1*–C3* are satisfied for
c′ by a path pc′ = ⟨s, a, c, c′⟩.
DA and DA* must terminate with a suboptimal path Indeed,
if the algorithm terminates with π [a] = ⟨s, a⟩ and π [a′] =
⟨s′, a′⟩, then, by Example 8, we end up with suboptimal π [b]
and π [b′]. Also, termination with π [a] = ⟨s′, a′, a⟩ implies
that we end up with suboptimal π [c], while termination with
π [a′] = ⟨s, a, a′⟩ ensures suboptimality of π [c′].

The following example shows that the full replacement
propertywe use in Theorem1 is not necessary forDA towork
properly. Nevertheless, it is not clear how this assumption
could be weakened while keeping the theorems valid.

Example 10 Let G be as in Fig. 5 and use the standard mini-
mization (i.e., with ≼ being ≤), S = {s, s′} and ψ(pv) = 0
for any pv ∈ ΠG being one of the two paths ⟨s, x, b, b′⟩
and ⟨s′, x, b′, b⟩ or their initial segment. For all other paths
pv ∈ ΠG we put ψ(pv) = 1. Then neither b nor b′

admits an optimal path with the replacement property. How-
ever, DA, as well as DA*, returns optimal maps: either with
π [b] = ⟨s′, x, b′, b⟩ or with π [b′] = ⟨s, x, b, b′⟩.

6 On Optimization of the Algorithms

Remark 2 For the path-value functionsψ satisfying the prop-
erty (M),2 the condition “x ∈ H” in line 5 of DA* is
redundant. On the other hand, under such assumption, it
makes sense to keep the condition in line 5 of DA* (or even
add it to DA), since this may reduce an unnecessary compu-
tation of ψ(π [w ]ˆx).

2 Actually, it is enough to assumeonly that every hereditarilyψ-optimal
path is monotone.
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Note also that, for most path-value functions ψ , it is not
necessary to keep track of the entire paths π [w ] to calcu-
late ψ(π [w ]ˆx). For example, in the case of the path-value
functions ψsum, ψmin, and ψpeak, from Examples 1–3, we
have the equations ψsum(π [w ]ˆx) = σ [w ] + ωE (w , x),
ψmin(π [w ]ˆx) = min{σ [w ],ωE (w , x)}, and ψpeak(π [w ]ˆx)
= max{σ [w ],ωV (x)}, respectively.

Similar simplification is also possible for the barrier dis-
tance from Example 4, though in this case, it is necessary to
keep record of two functions,

ψ+
dif(⟨v0, . . . , vℓ⟩) = max

0≤j≤ℓ
ωV (v j )

and

ψ−
dif(⟨v0, . . . , vℓ⟩) = min

0≤j≤ℓ
ωV (v j ),

updated via ψ+
dif(π [w ]ˆx) = max{ψ+

dif(π [w ]),ωV (x)} and
ψ−
dif(π [w ]ˆx) = min{ψ−

dif(π [w ]),ωV (x)}, from which ψdif
is evaluated as ψdif(pv) = ψ+

dif(pv) − ψ−
dif(pv).

Remark 3 In general, assuming that the path value can be
found in O(1)-time and that graph degree is of the O(1)-
order of magnitude, the algorithms can be implemented with
H being a binary heap [17] to ensure their termination in
O(n ln n)-time, where n is the number of vertices in the
graph. This follows from the fact that the main loop is exe-
cuted preciselyn-times and that its execution, finding a vertex
with ≼ minimal value of π , takes at most ln n operations.

The linear time implementation of the algorithms is also
possible for sparse graphs and integer path-value functions
ψ , as long as the finite initial values ψ(⟨v0⟩) and differences
|ψ(pvi ) − ψ(pvi−1)| for 0 < i ≤ l are less than a number
K > 0 for any path pvℓ ∈ ΠG [21]. This requires an efficient
bucket sort implementation of H , as the one described in [23].

Remark 4 In some applications, it makes sense for the algo-
rithms to terminate before the main loop is executed for
every vertex, giving additional gain in optimization. Exam-
ples involve the computation of geodesic paths from a source
set to a destination set and shape dilation [21]. In the first case,
early termination can occur when a vertex from the destina-
tion set is removed from H and, in the second case, when the
removed vertex w has optimum-path value ψ(π [w ]) above
a given threshold.

7 Proofs

The followingnotation and results are for eitherDA andDA*.
For k ∈ {1, . . . , |V |}, let Hk be the state of H immedi-

ately before the kth execution of line 5, let w k be the vertex
removed from H = Hk during the kth execution of line 5,

and let πk be π [w k] at that time.3 First, notice the following
lemma that makes no use of the property (E).

Lemma 1 During the execution of DA or DA* and after the
initialization loop,

(i) for every v ∈ V , π [v] is a path to v with σ [v] =
ψ(π [v]);

(ii) the value of σ [v] never increases (in the ≼ sense) and
π [v] changes only when σ [v] decreases;

(iii) for every v ∈ V and k ∈ {0, . . . , |V |}, directly after the
kth execution of the main loop, either π [v] = ⟨v⟩ or
π [v] = π jˆv for some j ∈ {1, . . . , k − 1};

(iv) for every πk = ⟨v0, . . . , vℓ⟩ and i = 1, . . . , ℓ − 1, if
vi = w j , then π j = ⟨v0, . . . , vi ⟩;

(v) Ψ (πi ) ≼ Ψ (π j ) for every i, j ∈ {1, . . . , |V |}, i ≤ j .

Proof (i) Certainly, this holds directly after the initializa-
tion loop. Also, the property is preserved when line 7 is
executed.

(ii) The values of σ [v] or π [v] can change only by the execu-
tion of line 7 with x = v, when σ [v] = σ [x] decreases.

(iii) Certainly, this holds directly after the initialization loop.
Also, the property is preserved when line 7 is executed.

(iv) Let k ∈ {1, . . . , |V |}. By recursion, it is enough to prove
that (iv) holds for this k, as long as it holds for every
k′ ∈ {1, . . . , k − 1}. To see that (iv) holds for such a k,
notice that, by (iii), either πk = ⟨v⟩ or πk = πiˆv for
some i ∈ {1, . . . , k − 1}. Now, if πk = ⟨v⟩, then (iv)
holds in void, since there is no i for which the condition
needs to be checked. On the other hand, if πk′ = πiˆv
for some k′ = i ∈ {1, . . . , k − 1}, then the condition is
satisfied by the recursive assumption.

(v) It is enough to prove, by induction on k ∈ {1, . . . , |V |},
that the following property

Ik : Ψ (πi ) ≼ Ψ (π j ) for every 1 ≤i ≤ j ≤k holds.

This clearly holds for k = 1. So, assume that it holds for
some k < |V |. We will show that it holds also for k + 1. For
this, it is enough to prove that Ψ (πk) ≼ Ψ (πk+1).

So, letqbe the shortest initial segment of πk withψ(q) =
Ψ (πk). Then ψ(q) = Ψ (q) and, by (iii),qterminates at w j
for some j ≤k. In particular, by (iv), π j = qand Ψ (π j ) =
Ψ (q) = ψ(q) = Ψ (πk). Also, by (iii), πk+1 is either ⟨w k+1⟩
or πiˆw k+1 for some i ∈ {1, . . . , k}.

First, assume the latter case, that πk+1 = πiˆw k+1.
If j ≤ i , then, by the inductive assumption, Ψ (πk) =
Ψ (π j ) ≼ Ψ (πi ) ≼ Ψ (πiˆw k+1) = Ψ (πk+1), as needed.

3 Notice that in case of the algorithm DA, the value of π [w k ] can still
further change, as shown in Example 6. But, in the presented argument,
πk remains fixed.
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So, assume that i < j . Then, after the i th execution of
the main loop, we have σ [w k+1] ≼ ψ(πiˆw k+1). Since,
by (ii), the value of σ [w k+1] never decreases, the inequal-
ity σ [w k+1] ≼ ψ(πiˆw k+1) remains true after the j − 1th
execution of the main loop of the algorithm. In particu-
lar, the minimality choice of w j , ensured in line 4, gives
ψ(π j ) = σ [w j ] ≼ σ [w k+1] ≼ ψ(πiˆw k+1). Therefore, we
have the following inequalities Ψ (πk) = Ψ (π j ) = ψ(π j )≼
ψ(πiˆw k+1) ≼ Ψ (πiˆw k+1) = Ψ (πk+1), as needed.

Finally, assume that πk+1 = ⟨w k+1⟩. Then, after the ini-
tialization, σ [πk+1] = ψ(⟨w k+1⟩) = ψ(πk+1) and, by (ii),
the inequality σ [w k+1] ≼ ψ(πk+1) remains true after j−1th
execution of the main loop. So, the minimality choice of w j ,
ensured in line 4, gives ψ(π j ) = σ [w j ] ≼ σ [w k+1] ≼
ψ(πk+1). Thus, Ψ (πk) = Ψ (π j ) = ψ(π j ) ≼ ψ(πk+1) ≼
Ψ (πk+1), as needed. ⊓3

The following lemma is the key step in the proof of the
theorems.

Lemma 2 If (E) holds, then after the execution of DA or
DA*, for every k ∈ {1, . . . , |V |}:

(Pk) πk = π [w k] is HO.

Proof Choose a k ∈ {1, . . . , |V |} such that (Pj ) holds for
every j ∈ {1, . . . , k − 1}. By the power of recursion, it is
enough to prove that (Pk) holds as well.

To see (Pk), choose, using (E), a Ψ -minimal HO path
p = ⟨v0, . . . , vℓ⟩ to w k with the replacement property and
notice that it is enough to prove that

(∗) ψ(πk) ≼ ψ(p) and Ψ (πk) ≼ Ψ (p).

Indeed, by Lemma 1(iii), πk = q̂w k ∈ ΠG , where q is
either empty or equal to π j for some j ∈ {1, . . . , k − 1}.
Hence, by the inductive assumption, q is either empty or
HO. Thus, the hereditary ψ-optimality of πk follows from
the inequality ψ(πk) ≼ ψ(p), as p is a ψ-optimal path to
w k . Also, hereditary Ψ -optimality of πk follows from its Ψ -
optimality, that is, the property that

Ψ (πk) ≼ Ψ (π) for every hereditarily ψ-optimal path
π to w k .

But this Ψ -optimality of πk follows from the inequality
Ψ (πk) ≼ Ψ (p), since the HO property of p ensures that
Ψ (p) ≼ Ψ (π) for every hereditarily ψ-optimal path π to
w k .

To prove (∗) first, notice that it holds when ℓ = 0.
Indeed, then we have p = ⟨w k⟩ and, right after the initial-
ization, π [w k] is ψ-optimal. Hence, by the parts (i) and (ii)
of Lemma 1, the value of π [w k] remains unchanged during
the execution of the algorithm. In particular, πk = π [w k] =

p = ⟨w k⟩ and Ψ (πk) = ψ(πk) = ψ(p) = Ψ (p), giving us
(∗). Therefore, in what follows we assume that ℓ > 0.

Next, notice that vℓ = w k ∈ Hk . So, there exists the
smallest i ≤ ℓ such that vi ∈ Hk . Let t ∈ {k, . . . , |V |} be
such that vi = w t . We will consider several cases.

Case0 < i = ℓ. Then vℓ−1 /∈ Hk andπ [vℓ−1] = π j for some
j < k. So, by the inductive assumption,π j = π [vℓ−1] is HO.
In particular,Ψ (π j ) ≼ Ψ (⟨v0, . . . , vℓ−1⟩), as ⟨v0, . . . , vℓ−1⟩
is hereditarily ψ-optimal to vℓ−1 = w j . Moreover, by the
replacement property, ψ(πk) = ψ(π jˆw k) = ψ(p). Thus,
we have Ψ (πk) = Ψ (π jˆw k) = max{Ψ (π j ),ψ(πk)} ≼
max{Ψ (⟨v0, . . . , vℓ−1⟩),ψ(p)} = Ψ (p), proving (∗). So,
in the rest of the argument we will assume that i < ℓ.

In the rest of the proof we will assume, by way of contra-
diction, that (∗) is false. Notice that this implies that

(∗∗) Ψ (p) ≺ Ψ (πk) = Ψ (q̂w k), and there exists an s ∈
{1, . . . , k} such that πs is an initial segment of πk =
q̂w k for which Ψ (πs) = ψ(πs) = Ψ (πk).

Indeed, if (∗) is false, then either Ψ (p) ≺ Ψ (πk) or ψ(p) ≺
ψ(πk). However, the second of these inequalities implies that
ψ(p) ≺ ψ(πk) = ψ(q̂w k) and, by the Ψ -minimality of p,
also Ψ (p) ≺ Ψ (q̂w k) = Ψ (πk). This shows the first part of
(∗∗). To see the second part, notice that if π is the shortest
initial segment of πk for which ψ(π) = Ψ (πk) and π is a
path to w s , then s is as needed.

Case0 = i < ℓ. Then ⟨v0⟩ isψ-optimal, as an initial segment
of HO path p, and so, right after the initialization, π [w t ] =
π [v0] = ⟨v0⟩ is ψ-optimal. Hence, by the parts (i) and (ii) of
Lemma 1, the value of π [v0] remains unchanged during the
execution of the algorithm. In particular, πt = ⟨v0⟩. More-
over, s ≤k ≤t so that w t = v0 belongs to Hs . In particular,
the choice of w s during the sth execution of the algorithm’s
loop ensures that ψ(πs) ≼ ψ(⟨v0⟩). Hence, using (∗∗),
ψ(πs) ≼ ψ(⟨v0⟩) ≼ Ψ (p) ≺ Ψ (q̂w k) = Ψ (πk) = ψ(πs),
a desired contradiction.

Case 0 < i < ℓ. Then vi−1 /∈ Hk and vi−1 = w r for some
r ∈ {1, . . . , k − 1}. Hence, by the inductive assumption,
the path πr = π [w r ] = π [vi−1] is HO. Therefore, by the
replacement property, we have ψ(πrˆvi ) = ψ(⟨v0, . . . , vi ⟩),
that is, any time after the r th execution of the main loop
the path πrˆvi to vi = w t is already ψ-optimal. Hence,
πt = π [w t ] = π [vi ] = πrˆvi .

If r < s, then the choice of w s during the sth execution
of the loop ensures that ψ(πs) ≼ ψ(πt ) and, using (∗∗),
ψ(πs) ≼ ψ(πt ) = ψ(πrˆvi ) = ψ(⟨v0, . . . , vi ⟩) ≼ Ψ (p) ≺
Ψ (q̂w k) = Ψ (πk) = ψ(πs), a desired contradiction. So,
assume that r ≥ s. Then, by Lemma 1(v), the property
(Pr ), and (∗∗), we have ψ(πs) ≼ Ψ (πs) ≼ Ψ (πr ) ≼
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Ψ (⟨v0, . . . , vr ⟩) ≼ Ψ (p) ≺ Ψ (q̂w k) = Ψ (πk) = ψ(πs),
once again a desired contradiction. ⊓3

Proof of Theorems 1 and 2 First notice that the family
{π1, . . . ,π|V |} forms a forest: This follows fromLemma1(iv)
and the fact that each πi is a path to different vertex w i .

The extra condition “x ∈ H” in line 5 of DA* ensures that
the value of π [w k] does not change from the value of πk
during the j th execution of the loop for every j ≥ k. Thus,
DA* returns {π1, . . . ,π|V |} as {π [v] : v ∈ V }, which is a
forest, as claimed.

Moreover, when condition (E) holds, Lemma 2 ensures
that, after the execution of DA or DA*, the forest
{π1, . . . ,π|V |} is optimal. In particular, by Lemma 1(ii), the
value of π [w k] = πk does not change during the j th execu-
tion of the loop for every j ≥ k. So, both algorithms, DA
as well as DA*, return {π1, . . . ,π|V |} as {π [v] : v ∈ V }, the
optimal forest.

The last part of Theorem 2 follows immediately from
its first part, that for path returned DA* among P =
{π [v] : v ∈ V }, all its initial segments must be also in P ,
so that, if all paths in P are ψ-optimal, then they must be
also hereditarily ψ-optimal.

Similarly, to prove the last part of Theorem 1 it is
enough to show that, under the assumption of (M), the fam-
ily P = {π [v] : v ∈ V } returned by DA coincides with
{π1, . . . ,π|V |}, which is a forest. But this immediately fol-
lows from Lemma 3 below. ⊓3

Lemma 3 DA executed with a path-value function satisfy-
ing (M) returns the map π [ ] such that for every vℓ ∈ V , if
π [vℓ] = ⟨v0 . . . , vℓ⟩, then π [vi ] = ⟨v0 . . . , vi ⟩ for every
i ∈ {0, . . . , ℓ}.

Proof Since the algorithm terminates with H empty, it is
enough to prove that the following properties hold any time
after the initialization loop.

(i) For every vℓ ∈ V \H, if π [vℓ] = ⟨v0 . . . , vℓ⟩, then,
for every i ∈ {0, . . . , ℓ}, vi ∈ V \H and π [vi ] =
⟨v0 . . . , vi ⟩.

(ii) ψ(π [w i ]) ≼ ψ(π [w j ]) ≼ ψ(π [u]) for every u ∈ H and
w i , w j ∈ V \H with i ≤ j .

Certainly, this holds directly after the initialization loop.
Thus, it is enough to show that (i) and (ii) are preserved by
any, say kth, execution of the main loop.

Indeed, the properties (i) and (ii) are preserved when we
remove w from H by the execution of line 4. For (ii), this
follows from the≼-minimality imposed on w = w k removed
from H. To see (i), notice that, by Lemma 1(iii), just before
execution of line 4, π [w ] equals either ⟨w ⟩ or π [u]ˆw , where
u ∈ V \H and π [u] satisfies (i). In either case, π [w ] satisfies
(i), after w is removed from H.

So, it is enough to show that each execution of line 7
preserves (i) and (ii). Indeed, we can execute the commands
σ [x] ← σ ′ and π [x] ← π [w ]ˆx only when x ∈ H since, by
(M), any x ∈ V\H is equal to w i for some i ∈ {1, . . . , k} and
σ ′ = ψ(π [w ]ˆx) ≽ψ(π [w ]) = ψ(π [w k]) ≽ψ(π [w i ]) =
ψ(π [x]) = σ [x], where the first inequality is justified by
(M) and the second by (ii). Thus, the condition σ ′ ≺ σ [x] in
line 7 is not satisfied, so the rest of the line is not executed.
Hence, it is enough to show that execution of line 7 with
x ∈ H preserves (i) and (ii).

In this case, after line 7 is executed, we still have
ψ(π [w i ]) ≼ ψ(π [w k]) = ψ(π [w ]) ≼ ψ(π [w ]ˆx) =
ψ(π [x]), preserving (ii). At the same time, (i) cannot be
affected by a change of π [x] when x ∈ H. This completes
the proof of Theorems 1 and 2. ⊓3

The only remaining proof we still need is that of

Proposition 2 If ψ satisfies (M) and

(R*) ψ(qvℓ−1ˆvℓ) ≼ ψ(pvℓ) for all paths pvℓ = ⟨v0, . . . , vℓ⟩
to vℓ and qvℓ−1 to vℓ−1 with ψ(qvℓ−1) ≼ ψ(pvℓ−1),

then every v ∈ V admits a hereditarilyψ-optimal path to v.4

Proof First notice that, by the properties (M) and (R*), for
every path ⟨v0, . . . , vℓ⟩, if vi = v j for some i ≤ j ≤
ℓ, then we have ψ(⟨v0, . . . , vi ⟩) ≼ ψ(⟨v0, . . . , v j ⟩) and
ψ(⟨v0, . . . , vi , v j+1, . . . , vℓ⟩) ≼ ψ(⟨v0, . . . , vℓ⟩). Thus, for
every path pv to v there exists a pathqv to v which contains
no repeated vertices and such thatψ(qv) ≤ψ(pv). In partic-
ular, for every v ∈ V there exists a numberψ(v), the strength
of the ψ-optimal path to v: It is the ≼-smallest among the
numbers ψ(qv), where qv is a path to v with no repeated
vertices.

Now, suppose the proposition is false. Among v ∈ V
for which no path to v is hereditarily ψ-optimal, pick a
point v∗ for which ψ(v∗) is ≼-minimal and let pvℓ =
⟨v0, . . . , vℓ⟩ be a path to v∗ with ψ(pvℓ) = ψ(v∗).
Choose the greatest index k ∈ {0, . . . ℓ − 1} for which the
inequality ψ(vk) ≼ ψ(⟨v0, . . . , vk⟩) is not the equation. It
exists since pvℓ cannot be hereditarily ψ-optimal. There-
fore, ψ(vk) ≺ ψ(⟨v0, . . . , vk⟩) ≼ ψ(pvℓ) = ψ(v∗), so,
by the ≼-minimality of ψ(v∗), there exists a hereditarily ψ-
optimal pathqvk to vk . Now, by induction on n ∈ {k, . . . , ℓ},
we prove that there exists a hereditarily ψ-optimal path qvn
to vn . Clearly, it is true for n = k. Also, if it is true for
some n ∈ {k, . . . , ℓ − 1}, then it is also true for n + 1.

4 Note that if we weaken the assumptions by replacing (R*) with the
property (R+) obtained by replacing in (R*) symbols ≼ with the equa-
tion=, then the implication does not hold anymore:ψdif fromExample 4
satisfies (M) and, for the example from Fig. 2, also (R+), but fails the
conclusion of Proposition 2.
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Indeed, asψ(qvn ) = ψ(vn) ≼ ψ(⟨v0, . . . , vn⟩), (R*) implies
ψ(vn+1) ≼ ψ(qvnˆvn+1) ≼ ψ(⟨v0, . . . , vn+1⟩) = ψ(vn+1),
where the last equation follows from the definition of k. Thus,
ψ(qvnˆvn+1) = ψ(vn+1) and, since qvn is hereditarily ψ-
optimal, so isqvn+1 = qvnˆvn+1, finishing the induction.

Now, qvℓ is a hereditarily ψ-optimal path to vℓ = v∗,
contradicting the choice of v∗. ⊓3

8 Conclusion

We presented the conditions of path-value functions on
directed graphs that ensure the correct behavior of the
Dijkstra-type algorithms and discussed the benefits of such
result to image processing. This result, with the proposed
graph-search algorithmDA*, can be used to guide the design
of newoperators based on the image foresting transform, IFT.
As future work, we intend to present a survey of IFT-based
operators for image processing and analysis.

A recent work [34] has appeared as a survey on the all-
pairs shortest path problem for the case of the additive path-
value function (Example 1). Therefore, the present work also
creates opportunity for further investigation of the all-pairs
shortest path problem for path-value functions that satisfy
condition (E), as well as of solutions to new problems in
other applications of Dijkstra’s algorithm.
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