Optimal trees and forests

Filip Malmberg

Todays lecture

- Trees and forests
- Optimal forests
- Minimum spanning forests
- Shortest path forests
- Applications in image segmentation.

Application in mind: Seeded segmentation/semi-supervised learning on graphs

- Given a graph where some vertices are labeled and some are not, we seek to extend the labeling to all vertices.
- It seems natural to assign to every unlabeled vertex the same label as the labeled vertex to which it is most "closely connected" in some sense.
- In this lecture, we will look at a few different ways in which we can define such measures of "distance" or "hanging togetherness" between vertices in graphs.

Part 1: Forests and trees

Forests and trees

In this lecture, we will consider two special types of graphs: forests and trees.

- A forest is a graph without simple cycles.
- A tree is a connected forest
(In other words, a forest is a collection of trees)

ए

Recall: Cycles, connected graphs

- A cycle is a path where the start vertex is the same as the end vertex.
- A cycle is simple if it has no repeated vertices other than the endpoints.
- Two vertices $v, w \in V$ are connected if G contains a path from v to w.
- A graph is itself said to be connected if every pair of vertices on the graph is connected.

Tree, example

Figure 1: Left: A tree. Right: Not a tree.

Cuts

- Informally a cut is a set of edges that, when removed from the graph, separate the graph into two or more connected components. We can think of a cut as a boundary between regions.
- Let $S \subseteq E$, and $G^{\prime}=(V, E \backslash S)$. If, for all $e_{v, w} \in S$, it holds that $v \underset{G^{\prime}}{ } \underset{\sim}{x} w$, then S is a cut on G.

Figure 2: A set of edges (red) forming a cut.

Cuts as boundaries of regions

The following theorem makes a connection between cuts and vertex labelings.

- A vertex labeling \mathcal{L} is a mapping $\mathcal{L}: V \rightarrow L$, where L is a set of labels.
- The boundary $\delta \mathcal{L}$ of \mathcal{L} is the set of edges $\left\{\mathrm{e}_{\mathrm{v}, w} \in E \mid \mathcal{L}(v) \neq \mathcal{L}(w)\right\}$.

Theorem
Let S be a set of edges. The following statements are equivalent:

- S is a cut.
- There exists a labeling \mathcal{L} (for some label set L) such that $S=\delta \mathcal{L}$.

A proof of this theorem can be found in, e.g., [9].

Properties of trees and forests

- There is a unique path between each (connected) pair of vertices. Why?
- Any subset of the edges of a forest is a cut. Why?

Spanning trees

Definition, spanning tree

Let G be a connected, undirected graph. Let T be a subgraph of G such that

- T is a tree.
- $V(T)=V(G)$.

Then T is a spanning tree of G.

For any G, there exists at least one spanning tree. Why?

ए
Centre for Image Analysis

Edge weighted graphs

- We associate each edge $e \in E$ with a real valued, non-negative weight, w(e).
- The weight of an edge represents the dissimilarity (or, alternatively, similarity) between the vertices connected by the edge.
- For example, we may define the edge weights as

$$
\begin{equation*}
w\left(e_{i j}\right)=|I(v)-I(j)|, \tag{1}
\end{equation*}
$$

where $I(v)$ is the intensity of the image element corresponding to v.

Part 2: Minimum spanning trees

Minimum spanning trees

- A graph can have many different spanning trees. A minimum spanning tree (MST) is a spanning tree $T=\left(V, E^{\prime}\right)$ that (globally) minimizes

$$
\begin{equation*}
f(T)=\sum_{e \in E^{\prime}} w(e) \tag{2}
\end{equation*}
$$

- Although this is a global optimization problem, efficient algorithms for computing minimum spanning trees exist. We will now take a look at two such algorithms: Prim's algorithm [10] and Kruskal's algorithm [8].

Kruskal's algorithm

Kruskal's algorithm
Set $E_{\text {new }}=\emptyset$.
while there exists an edge $e_{p, q}$ such that $p \nsim g$ do
($V, E_{\text {new }}$)
Choose such an edge with minimal weight and add it to $E_{\text {new }}$. end

- At the termination of the algorithm, $\left(V, E_{\text {new }}\right)$ is a MST on G.

Kruskal's algorithm, example

Figure 3: An edge weighted graph.

Kruskal's algorithm, example

Figure 4: Choose an edge with minimal weight that does not form a cycle.

Kruskal's algorithm, example

Figure 5: Add this edge to the tree.

Kruskal's algorithm, example

Figure 6: Choose an edge with minimal weight that does not form a cycle.

Kruskal's algorithm, example

Figure 7: Add this edge to the tree.

Kruskal's algorithm, example

Figure 8: Choose an edge with minimal weight that does not form a cycle.

Kruskal's algorithm, example

Figure 9: Add this edge to the tree.

Kruskal's algorithm, example

Figure 10: Choose an edge with minimal weight that does not form a cycle.

Kruskal's algorithm, example

Figure 11: Add this edge to the tree.

Kruskal's algorithm, example

Figure 12: Choose an edge with minimal weight that does not form a cycle.

Kruskal's algorithm, example

Figure 13: Add this edge to the tree.

Kruskal's algorithm, example

Figure 14: Choose an edge with minimal weight that does not form a cycle.

Kruskal's algorithm, example

Figure 15: Add this edge to the tree.

Kruskal's algorithm, example

Figure 16: Choose an edge with minimal weight that does not form a cycle.

Kruskal's algorithm, example

Figure 17: Add this edge to the tree.

Kruskal's algorithm, example

Figure 18: The tree is spanning. The algorithm terminates.

Implementing Kruskal's algorithm

- Kruskal's algorithm can be shown to run in $O(E \log V)$ time.
- By pre-sorting the edges by weight, the step "Choose such an edge with minimal weight" can be performed in constant time.
- To keep track of which vertices are in which components, a disjoint-set data structure can be used. This data structure allows efficient implementation of the following operations:
- Find: Determine which subset a particular element is in. (Or determining if two elements are in the same subset).
- Union: Merge two subsets into a single subset.

Prim's algorithm

Prim's algorithm

Set $V_{\text {new }}=\{v\}$, where v is an arbitrary vertex in V. Set $E_{\text {new }}=\emptyset$.
while $V_{\text {new }} \neq V$ do
Choose an edge $e_{p, q}$ with minimal weight such that p is in $V_{\text {new }}$ and q is not.
Add q to $V_{\text {new }}$ and $e_{p, q}$ to $E_{\text {new }}$.
end

- At the termination of the algorithm, $\left(V, E_{\text {new }}\right)$ is a MST on G.

Prim's algorithm, example

Figure 19: An edge weighted graph.

Prim's algorithm, example

Figure 20: Start by adding an arbitrary vertex to $V_{\text {new }}$.

Prim's algorithm, example

Figure 21: Choose a minimal edge $e_{p, q}$ with such that p is in $V_{\text {new }}$ and q is not.

Prim's algorithm, example

Figure 22: Add q to $V_{\text {new }}$ and $e_{p, q}$ to $E_{\text {new }}$.

Prim's algorithm, example

Figure 23: Choose a minimal edge $e_{p, q}$ with such that p is in $V_{\text {new }}$ and q is not.

Prim's algorithm, example

Figure 24: Add q to $V_{\text {new }}$ and $e_{p, q}$ to $E_{\text {new }}$.

Prim's algorithm, example

Figure 25: Choose a minimal edge $e_{p, q}$ with such that p is in $V_{\text {new }}$ and q is not.

Prim's algorithm, example

Figure 26: Add q to $V_{\text {new }}$ and $e_{p, q}$ to $E_{\text {new }}$.

Prim's algorithm, example

Figure 27: Choose a minimal edge $e_{p, q}$ with such that p is in $V_{\text {new }}$ and q is not.

Prim's algorithm, example

Figure 28: Add q to $V_{\text {new }}$ and $e_{p, q}$ to $E_{\text {new }}$.

Prim's algorithm, example

Figure 29: Choose a minimal edge $e_{p, q}$ with such that p is in $V_{\text {new }}$ and q is not.

Prim's algorithm, example

Figure 30: Add q to $V_{\text {new }}$ and $e_{p, q}$ to $E_{\text {new }}$.

Prim's algorithm, example

Figure 31: Choose a minimal edge $e_{p, q}$ with such that p is in $V_{\text {new }}$ and q is not.

Prim's algorithm, example

Figure 32: Add q to $V_{\text {new }}$ and $e_{p, q}$ to $E_{\text {new }}$.

Prim's algorithm, example

Figure 33: Choose a minimal edge $e_{p, q}$ with such that p is in $V_{\text {new }}$ and q is not.

Prim's algorithm, example

Figure 34: Add q to $V_{\text {new }}$ and $e_{p, q}$ to $E_{\text {new }}$.

Prim's algorithm, example

Figure 35: $V_{\text {new }}=V$. The algorithm terminates.

UPPSALA UNIVERSITET

Implementing Prim's algorithm

- The edges are not neccesarily visited in increasing order, so we can't pre-sort the edges.
- Instead, we can use some variant of a priority queue to efficiently find the next edge with minimum weight.
- With such an implementation, Prim's algorithm can be shown to run in $O(E \log V)$.

Spanning forests relative to seeds

Definition, spanning forest
Let G be a connected, undirected graph, and let $S \subseteq V$ be a set of seedpoints. Let T be a subgraph of G such that

- T is a forest.
- $V(T)=V(G)$.
- Each connected component of T contains exactly one seedpoint.

Then T is a spanning forest of G, relative to S.

巨

Minimum spanning forests

- A spanning forest T of G is a minimum spanning forest (MSF) if the sum of the edge weights is smaller than for any other spanning forest relative to S.
- We can use Prim's or Kruskal's algorithms, with slight modifications, to compute MSFs.

Minimum spanning forests and segmentation

- A MSF partitions a graph into a number of components, each containing exactly one seed-point.
- We will now examine how this can be used for seeded segmentation.

Figure 36: Left: Seed-points representing background (red) and object (blue). Right: Segmentation by MSFs.

MSF cuts, global optimality

- For any spanning forest T on G, we define a induced cut C as follows:

$$
\begin{equation*}
C(T)=\left\{e_{p, q} \in E \mid \underset{T}{\nsim} q\right\} . \tag{3}
\end{equation*}
$$

- For any cut C, we define the weight of a cut as

$$
\begin{equation*}
\min _{e \in S}(W(e)) \tag{4}
\end{equation*}
$$

- If S is a cut induced by a MSF, then the weight of S is greater than or equal to the weight of any other cut that separates the seedpoints [1].

Interpretation of MSF-cut optimality

- Assume that edge weights encode dissimilarity. Then then an MSF-cut is (globally) maximizing the smallest dissimilarity across the cut.
- If the edge weights encode similarity instead, we can compute a maximum spanning forest using the same algorithms. In this case we are minimizing the highest similarity across the cut.

Properties of MSF cuts

Contrast invariance

- The MSF computations depend on the relative ordering of the edge weights, but not on the absolute weight values.
- Thus, the segmentation result is invariant under strictly monotonic transformations of the edge weights. (A transformation that preserves the order)

Properties of MSF cuts

Seed-relative robustness.

- The core, or robustness region, of a seedpoint is the region (set of vertices) where the seed can be moved without altering the segmentation result.
- For MSF-cuts, the core of each seedpoint can be determined exactly, and is usually large. [2]

MSF cuts and Watersheds

There is a strong relation between segmentation by MSFs and the Watershed approach to segmentation:

- J. Cousty et al., Watershed cuts: minimum spanning forests, and the drop of water principle. IEEE PAMI, 31(8), 2009.
- J. Cousty et al., Watershed cuts: Thinnings, shortest path forests, and topological watersheds. IEEE PAMI, 32(5), 2010.

Part 3: Shortest path forests

Shortest paths on graphs

- Let G be a connected, undirected,edge weighted graph. We define the length $f(\pi)$ of a path π on G as

$$
\begin{equation*}
f(\pi)=\sum_{i=1}^{k-1} w\left(e_{v_{i}, v_{i+1}}\right) \tag{5}
\end{equation*}
$$

- For each pair of vertices v, w, there exists one or more paths in G that start at v and end at w. Among these paths, there is at least one path for which the length is minimal.
- Formally, a path π is a shortest path if $f(\pi) \leq f(\tau)$ for any other path τ with $\operatorname{org}(\tau)=\operatorname{org}(\pi)$ and $\operatorname{dst}(\tau)=\operatorname{dst}(\pi)$.

Shortest paths on graphs

- The length of the shortest path between two vertices provides a notion of distance, or degree of connectedness, between pairs of vertices in the graph.
- Again, we have a global optimization problem: Among all paths between a pair of vertices, we seek one that has minimum length. Fortunately, there are efficient algorithms that solve this problem.
- Given a set $S \subseteq V$ of seed-points, it is in fact possible to simultaneously compute minimal cost paths from S to all other vertices in V. The output of this computation is a shortest path forest.

Shortest paths on graphs

- In general, the shortest path between two vertices is not unique. The set of shortest paths between two image elements p and q is denoted $\pi_{\text {min }}(p, q)$.
- For two sets $A \subseteq V$ and $B \subseteq V, \pi$ is a path between A and B if $\operatorname{org}(\pi) \in A$ and $\operatorname{dst}(\pi) \in B$. If $f(\pi) \leq f(\tau)$ for any other path τ between A and B, then π is a shortest path between A and B. The set of shortest paths between A and B is denoted $\pi_{\text {min }}(A, B)$.

Predecessor maps

Predecessor maps, definition
A predecessor map is a mapping P that assigns to each vertex $v \in V$ either an element $w \in \mathcal{N}(v)$, or \emptyset.

For any $v \in V$, a predecessor map P defines a path $P^{*}(p)$ recursively. We denote by $P^{0}(v)$ the first element of $P^{*}(v)$.

๒

Spanning forests as predecessor maps

Spanning, definition

A spanning forest is a predecessor map that contains no cycles, i.e., $\left|P^{*}(v)\right|$ is finite for all $v \in V$. If $P^{*}(v)=\emptyset$, then v is a root of P.

Shortest path forests

Let $S \subseteq V$. If P is a spanning forest such that $P^{*}(v) \in \pi_{\min }(v, S)$ for all vertices $v \in V$, then we say that P is an shortest path forest with respect to S.

Computing shortest path forests

- In 1956, Dijkstra [6] proposed an algorithm for computing shortest path forests.
- The algorithm is based on the observation that if $\pi=\pi_{1} \cdot \pi_{2}$ is a shortest path between $\operatorname{org}(\pi)$ and $d s t(\pi)$, then π_{1} and π_{2} must also be shortest paths between their respective endpoints.
- Thus, we can recursively reduce the problem to a set of "smaller" subproblems.

Dijkstra's algorithm

```
Input: A graph G=(V,E) and a set S\subseteqV of seed-points.
Auxillary: Two set of vertices }\mathcal{F}\mathrm{ and }\mathcal{Q}\mathrm{ whose union is }V\mathrm{ .
Set F}\leftarrow\emptyset,Q\leftarrowV\mathrm{ .
For all v\inV, set P(v)+ leftarrow\emptyset.
while \mathcal{Q}\not=\emptyset\mathrm{ do}
        Remove from Q a vertex v such that f(P*(v)) is minimum, and add
        it to \mathcal{F}
        foreach w\in\mathcal{N}(w) do
        If f(P* (w)\cdot\langlew,v\rangle<f(P*}(v))),\mathrm{ then set P(w)}\leftarrowv
        end
end
```


Dijkstra's algorithm, example

Figure 37: Dijkstra's algorithm.

Dijkstra's algorithm, example

Figure 38: Dijkstra's algorithm.

Dijkstra's algorithm, example

Figure 39: Dijkstra's algorithm.

Dijkstra's algorithm, example

Figure 40: Dijkstra's algorithm.

Dijkstra's algorithm, example

Figure 41: Dijkstra's algorithm.

Dijkstra's algorithm, example

Figure 42: Dijkstra's algorithm.

Dijkstra's algorithm, example

Figure 43: Dijkstra's algorithm.

Dijkstra's algorithm, example

Figure 44: Dijkstra's algorithm.

Dijkstra's algorithm, example

Figure 45: Dijkstra's algorithm.

Dijkstra's algorithm, example

Figure 46: Dijkstra's algorithm.

Dijkstra's algorithm, example

Figure 47: Dijkstra's algorithm.

Dijkstra's algorithm, example

Figure 48: Dijkstra's algorithm.

Dijkstra's algorithm, example

Figure 49: Dijkstra's algorithm.

Dijkstra's algorithm, example

Figure 50: Dijkstra's algorithm.

Dijkstra's algorithm, example

Figure 51: Dijkstra's algorithm.

Dijkstra's algorithm, example

Figure 52: Dijkstra's algorithm.

Dijkstra's algorithm, example

Figure 53: Dijkstra's algorithm.

Dijkstra's algorithm, example

Figure 54: Dijkstra's algorithm.

Dijkstra's algorithm, example

Figure 55: Dijkstra's algorithm.

Implementing Dijkstra's algorithm

- Just like with Prim's algorithm, we can use a priority queue to efficiently extract the vertex for which $f\left(P^{*}(v)\right)$ is minimum.
- The algorithm can be shown to run in $O(|E|+|V| \log |V|)$. (For some types of graphs, we can do better)

Live-wire segmentation

- The perhaps most straightforward way of utilizing shortest cost path calculations in image segmentation is to consider the path itself as a boundary between two regions. This idea is used in the live-wire method.
- To segment an object in a 2D image with live-wire, the user selects a point on the object boundary. Dijkstra's algorithm is then used to compute shortest paths from this point to all other points in the image.
- As the user moves the pointer through the image, a minimal cost path from the current position to the seed-point- the live wire- is displayed in real-time.

Live-wire segmentation

Figure 56: Live-wire segmentation.

ए
Centre for Image Analysis
Uppsala University

Seeded segmentation with shortest paths

- Associate each seed-point with a label, and assign to all other vertices the label of the "closest" seedpoint as determined by the minimum cost path forest.
- We can modify Dijkstra's algorithm to propagate the labels along with the shortest paths.

Figure 57: Seeded segmentation with shortest paths. (DEMO!)

Approximating Euclidean distances

- The length of the minimal cost path between two vertices can be interpreted as a "distance" between them.
- On a 2D or 3D regular grid, the cost of the minimal path between two vertices can approximate the Euclidean distance between the corresponding points.
- The quality of this approximation depends on the definition of the graph, and the selection of edge weights [11].

Approximating Euclidean distances

(a) 4 n-system

(b) 8 n-system

(c) 128 n-system

Figure 58: Distances in discrete grids [3]. The weight of each edge is equal to its Euclidean length.

区

Alternative path costs

Figure 59: Image, with seedpoints in red.

ए
Centre for Image Analysis

Alternative path costs

Figure 60: Path costs (inverted).

Alternative path costs

Figure 61: Path cost function: The cost of a path is the maximum value found along the path. Dijkstra's algorithm still works!

巨

Alternative path costs

Figure 62: Path cost function: The cost of a path is the absolute difference between the maximum and minimum values found along the path. Dijkstra's algorithm no longer works, but an optimal solution can in fact be found using an alternative algorithm [5].

Centre for Image Analysis

Extensions of Dijkstra's algorithm

For now, we have defined the length of a path as the sum of edge weights along the path.

- Are there other path cost functions that could be of interest in image processing?
- If so, what conditions do these functions need to satisfy in order to guarantee the existence of a shortest path forest?
- These questions were investigated by Falcao et al. [7], and more recently revisited by Ciesielski et al. [4].

Applications: Soft selections for image manipulation

(a)

(d)

(b)

(e)

(c)

(f)

Figure 63: Soft selection with shortest paths

bCentre for Image Analysis Uppsala University

Applications: Salient object detection

Minimum Barrier Distance

Geodesic Distance

Figure 64: Detection of salient objects in images [12]

References

[1] C. Allène, J-Y Audibert, M. Couprie, J. Cousty, and R. Keriven Some links between min-cuts, optimal spanning forests and watersheds. In Proceedings of ISMM, 2007.
[2] R. Audigier and R. A. Lotufo.
Seed-relative segmentation robustness of watershed and fuzzy connectedness approaches.
In A. X. Falcăo and H. Lopes, editors, Proceedings of the 20th Brazilian Symposium on Computer Graphics and Image Processing, pages $61-68$. IEEE
Computer Society, 2007.
[3] Yuri Boykov.
Computing geodesics and minimal surfaces via graph cuts.
In International Conference on Computer Vision, pages 26-33, 2003.
[4] Krzysztof Chris Ciesielski, Alexandre Xavier Falcäo, and Paulo AV Miranda. Path-value functions for which dijkstra's algorithm returns optimal mapping Journal of Mathematical Imaging and Vision, 60(7):1025-1036, 2018,
[5] Krzysztof Chris Ciesielski, Robin Strand, Filip Malmberg, and Punam K Saha. Efficient algorithm for finding the exact minimum barrier distance. Computer Vision and Image Understanding. 123:53-64, 2014.
[6] Edsger W. Dijkstra.
A note on two problems in connexion with graphs. Numerische Mathematik, 1:269-271, 1959.
[7] Alexandre X. Falcāo, Jorge Stolfi, and Robert A. Lotufo. The image foresting transform: Theory, algorithms, and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(1):19-29 2004.
[8] Joseph B. Kruskal
On the shortest spanning subtree of a graph and the traveling salesman problem.
Proceedings of the American Mathematical Society, 7(1), 1956.
[9] F. Malmberg, J. Lindblad, N. Sladoje, and I. Nyström.
A graph-based framework for sub-pixel image segmentation.
Theoretical Computer Science, 2010.
doi: 10.1016/j.tcs.2010.11.030.
(10] Robert C. Prim.
Shortest connection networks and some generalizations. Bell System Technical Journal, 36, 1957.
[11] R. Strand.
Distance Functions and Image Processing on Point-Lattices.
PhD thesis, Uppsala University, 2008.
[12] Jianming Zhang, Stan Sclaroff, Zhe Lin, Xiaohui Shen, Brian Price, and Radomir Mech.
Minimum barrier salient object detection at 80 fps .
In Proceedings of the IEEE international conference on computer vision, pages 1404-1412, 2015.

