
Parallelism paradigms
Intro part of course in Parallel Image Analysis

Elias Rudberg

elias.rudberg@it.uu.se

March 23, 2011

Outline

1 Parallelization strategies

2 Shared memory

3 Distributed memory

4 Parallelization using GPUs

5 Speedup and scaling

Parallel computing

Traditionally, a computer program has been considered as
something serial: one instruction executed after the other in a
sequence.

However, during last ∼ 20 years parallel computing has become
increasingly important.

ISI Web of Science search for "Parallel computing" in topic.

1961-1965 Results: 1

1966-1970 Results: 0

1971-1975 Results: 1

1976-1980 Results: 6

1981-1985 Results: 14

1986-1990 Results: 66

1991-1995 Results: 700

1996-2000 Results: 1326

2001-2005 Results: 1708

2006-2010 Results: 2316

“What is the best way to parallelize?”

No good answer to the question “What is the best way to
parallelize?” since this depends on so many things.

Difficult to say anything general since:

Many different hardware architectures exist, having different
properties regarding computing performance, communication
overhead, memory availability, disk space, etc.

Algorithms are so different; a parallelization approach that
works for one algorithm may be useless for another algorithm.

Interplay between chosen algorithm and hardware properties
also important.

“Best” algorithm may depend on hardware.

When considering only serial programs, there is often one
algorithm that is “the best” algorithm to use for solving a given
problem, in the sense that the problem is then solved using as few
operations as possible.

However, when parallel implementations are considered, it may
turn out that the algorithm that uses the smallest number of
operations may not be the fastest algorithm for solving the
problem. If the “best” algorithm is difficult to parallelize, the
problem may be solved faster using an algorithm that performs
more work, but is easier to parallelize.

Key: find independent chunks of work

All parallelization strategies somehow make use of the fact that the
work can be divided into (more or less) independent parts. If the
algorithm does not allow that, then consider using another
algorithm.

Common approaches

The perhaps most common parallelization approach is to use a
predefined static division of the work. Example: finite-difference
computations.

Another common choice is to use a task-based approach, where
chunks of work are defined as “tasks” and are somehow scheduled
to run on different cores/nodes.

Master/slave model

[Draw this on blackboard.]

Good: tasks can be general. Load balancing issues can be solved.

Drawback: master becomes bottleneck when using a large number
of workers.

Fixed division of work

Example: grid divided into boxes.

Good: no “master” overhead – can work well for large number of
workers.

Drawback: load balancing problems if not same amount of work in
each cell.

Fixed division of work
Splitting work in 1D or 2D

4x4 vs 16x1:

In this case, 2d splitting gives larger independent chunks of work.

Choosing algorithm depending on hardware
Purification vs diagonalization

Example of problem where parallelization issues motivate using a
different algorithm: density matrix construction in electronic
structure calculations.

Two algorithms:

Diagonalization. Small amount of work, but difficult to
parallelize.

Purification, based on matrix multiplication. Larger amount of
work, but also easier to parallelize.

Purification ∼ 3-4 times slower in serial program, but becomes
preferable when parallelization is considered.

Fault tolerance

An important advantage of task-based approaches is that if
something goes wrong, you can fix it by just re-running the failed
task, without need to restart the entire calculation.

This becomes more and more important for larger clusters.

Shared vs distributed memory

Two main types of parallelization:

Shared memory parallelization

Distributed memory parallelization

Two main types of parallelization

Shared memory parallelization (for multicore computers):

Each core has access to the same memory as all the other
cores.

The program uses threads to exploit the cores, using POSIX
threads (pthreads) or OpenMP.

Distributed memory parallelization (for compute clusters):

The program consists of several processes running on separate
nodes.

Each process can only access its own local memory;
communication needed to interchange information between
processes. Message Passing Interface (MPI)

Outline

1 Parallelization strategies

2 Shared memory

3 Distributed memory

4 Parallelization using GPUs

5 Speedup and scaling

Shared memory (I)

Shared memory (II)

Ways to implement shared-memory parallelization:

POSIX threads (pthreads)

OpenMP

(There is also the possibility of using the fork() function, but we will focus on pthreads and OpenMP.)

Shared memory
Communication between threads (I)

Simplest case: each thread is only writing to memory locations
that are not accessed by other threads. Then, all synchronization
that is needed is to somehow determine when all threads have
completed their work, and then (serially) gather the results.

[Blackboard: illustrate independent threads.]

Shared memory
Communication between threads (II)

Trickier case: all threads produce results that are to be stored in a
common location. Then programmer must make sure that there is
no conflict when different threads try to write to the same result
buffer.

[Blackboard: illustrate threads synchronizing to write to common
buffer.]

Possible solution: let each thread store results in a separate buffer,
join results serially in the end.

Shared memory
POSIX threads (pthreads)

Example of thread creation using the pthread (POSIX) standard:

/* start threads */

for(int i = 0; i < noOfThreads; i++) {

pthread_create(&threadParamsList[i]->thread, NULL,

execute_joblist_J_std_thread_func,

threadParamsList[i]);

} /* END FOR i */

do_output("threads started OK.");

/* wait for threads to finish */

for(int i = 0; i < noOfThreads; i++) {

pthread_join(threadParamsList[i]->thread, NULL);

} /* END FOR i */

do_output("all threads have finished.");

Shared memory
OpenMP

Example of thread creation using OpenMP:

static void do_naive_mmul(std::vector<ergo_real> & C,

const std::vector<ergo_real> & A,

const std::vector<ergo_real> & B,

int n) {

#pragma omp parallel for default(shared)

for(int i = 0; i < n; i++)

for(int j = 0; j < n; j++) {

ergo_real sum = 0;

for(int k = 0; k < n; k++)

sum += A[i*n+k] * B[k*n+j];

C[j*n+i] = sum;

}

}

Shared memory
Pthreads/OpenMP confusion

Sometimes the term “OpenMP” is used when what is really meant
is “threading” (pthreads or OpenMP).

For example, sometimes people talk about “MPI or OpenMP”
when discussing distributed memory vs shared memory
parallelization.

Shared memory
Running jobs

A threaded program should be submitted to the queueing system
as a “node” job, by using the following line in the job script:

#SBATCH -p node

Alternatively, you may specify -p devel or run your threaded
program after getting a dedicated node using the interactive

command.

Note: you should not use -p core for a threaded program, since a
threaded program violates the rules for -p core jobs.

Outline

1 Parallelization strategies

2 Shared memory

3 Distributed memory

4 Parallelization using GPUs

5 Speedup and scaling

Distributed memory (I)

Distributed memory (II)

A program parallelized for distributed memory runs as a separate
process on each compute node.

With help from the queueing system, a separate instance of the
program is started on each node. Each instance is initialized with
some information so that it can relate itself to the others, i.e. “I
am process number 3”.

Distributed memory (III)

Distributed memory
Communication between processes

Message Passing Interface (MPI)

The Message Passing Interface (MPI) standard:

“MPI is a library specification for message-passing, proposed as a
standard by a broadly based committee of vendors, implementors,
and users.“

Open standard available on web:

http://www.mcs.anl.gov/research/projects/mpi/

MPI defines explicit API for message-passing between processes
running on different nodes.

MPI
Explicit communication function calls

Example of sending message using MPI:

MPI_Comm_rank(MPI_COMM_WORLD, &myid);

int tid = pthread_self();

sprintf(message, "this message sent from worker %d, thread %d.", myid, tid);

int tag = send_task_info;

MPI_Status status;

int rc = MPI_Send(message, message_length, MPI_CHARACTER, 0, tag, parent);

Example of code for receiving messages using MPI:

int message_length = 100;

char message[message_length];

int tag = send_task_info;

MPI_Status status;

for (int i = 0; i < n_workers*2; ++i) {

MPI_Recv(message, message_length, MPI_CHARACTER, MPI_ANY_SOURCE, tag, everyone, &status);

std::cout<<"Manager received worker message: "<<message<<std::endl;

}

MPI
Starting program via mpirun

An MPI program is started via the mpirun utility:

mpirun progx

Example of job script:

#!/bin/bash -l

#SBATCH -A g2011040

#SBATCH -p node -n 32

#SBATCH -t 01:00:00

#SBATCH -J mpitest

mpirun progx

The queueing system provides information to mpirun about how
many processes of the program should be started, and on which
nodes.

MPI
One or several processes per node?

Distributed memory
Running jobs

An MPI program should be submitted to the queueing system as a
“node” job, by using the following line in the job script:

#SBATCH -p node

Alternatively, you may specify -p devel.

For testing and debugging, you can also run MPI programs
interactively. Then is can be convenient to test by running several
MPI processes on the same node.

Hybrid approaches

When running on a compute cluster where each node is a multicore
computer, it may be best to combine the two approaches: use MPI
for communication between processes on different nodes, but use
threads within each process to make best use of the available cores.

Parallel libraries

For matrix algebra operations on large dense matrices, there are
parallel versions of BLAS and LAPACK: PBLAS and ScaLAPACK.

Outline

1 Parallelization strategies

2 Shared memory

3 Distributed memory

4 Parallelization using GPUs

5 Speedup and scaling

GPU:s

Graphics processing units (GPUs) can execute very large numbers
of threads in parallel.

GPU:s
Limitations

Programming language alternatives:

OpenCL

Cuda

Major drawback of GPU parallelization: Tasks must be of (nearly)
identical structure.

GPU:s
Linear algebra libraries

For dense matrix operations, the BLAS (and LAPACK?) routines
are available for GPU:s, easy to use. With Cuda: “CudaBLAS”.

Clusters with GPU:s in each node

Programming for multicore+GPU clusters

On a compute cluster with GPU:s in each node, one can combine
all three parallelization approaches:

Use MPI for communication between processes on different
nodes.

Use threads to make use of the cores in each node.

Use GPU:s to speedup the code where possible.

Outline

1 Parallelization strategies

2 Shared memory

3 Distributed memory

4 Parallelization using GPUs

5 Speedup and scaling

Speedup

The success of a parallelization effort is usually measured in terms
of the achieved speedup; that is, how many times faster do you get
the result compared to a serial program doing the same job.

S = tserial
tparallel

where tserial and tparallel are timings (wall time).

Speedup
Only trust the wall time!

Various ways of measuring “CPU time” exist, but can be
misleading.

In general, best to stick to wall time measurements.

Scaling – weak vs strong

When talking about the “scaling” of a parallel implementation of a
program, distinguish between strong scaling and weak scaling:

Strong scaling: run the program using varying numbers of
threads/processes/workers, for the same problem size.

Weak scaling: run the program using varying numbers of
threads/processes/workers, but scale up the problem size
accordingly.

Scaling – weak vs strong

Example of strong scaling plots:

0 10 20 30 40 50 60
0

10

20

30

40

50

60

Number of threads

S
pe

ed
up

Speedup tests for matrix size 10000

measured

ideal

0 10 20 30 40 50 60
0

10

20

30

40

50

60

Number of threads

S
pe

ed
up

Speedup tests for matrix size 20000

measured

ideal

Trends for future clusters

At UPPMAX, the number of cores per node is increasing:

2007: Isis, 4 cores/node

2008: Grad, 8 cores/node

2010: Kalkyl, 8 cores/node

2011: New cluster, 16 cores/node

Same trend in other places, also for largest clusters in the world.

2020: 1024 cores/node??

Summary
Three kinds of parallelization

Threading for multicore computers

MPI for clusters

OpenCL for GPU:s

