
Parallel Image Analysis

Lab session 4:
Distributed memory parallelization using MPI

In this lab you will be learning how to work with compiling and running MPI
programs at UPPMAX. You will use the Kalkyl cluster. The example programs
used can be found here:
http://www.cb.uu.se/~cris/ParallelImageAnalysis/lab4.zip

The ZIP file contains four directories:

example1

example2

example3

example4

The first three examples contain small MPI programs that you will compile
and run. The fourth example contains a serial program, an image filtering
program similar to the one used in previous labs. There, your lab exercise will
be to parallelize the filtering program using MPI.

1 Compiling and running MPI programs

In this lab you will use the OpenMPI implementation on the Kalkyl cluster att
UPPMAX, together with the GNU compiler gcc. Load the modules like this:

module load gcc openmpi

You will then get a message like this:

mod: loaded OpenMPI 1.4.3, compiled with gcc4.4 (found in /opt/openmpi/1.4.3gcc4.4/)

Each of the example programs has a Makefile, so to compile each program
just execute “make” in that directory.

You can execute MPI programs either by using mpirun directly on the login
node or by submitting a job through the queueing system. See the lecture notes
for further instructions.

1



2 Exercises

2.1 Exercise 1: compiling and running a simple MPI pro-
gram, without communication

The files needed for this exercise are in the directory “example1” included in
the zip file.

The test program is called “mpitest1”. It initializes MPI, gets information
about the rank of the current process and the total number of processes, and
calls MPI_Get_processor_name to get the name of the compute node where the
process is running.

Start by looking through the source code and try to understand what the
program is doing.

Compile the program:

make

Verify that the executable file “mpitest1” was generated.
Then run the program on the login node, using for example 3 processes:

mpirun -np 3 mpitest1

After running the program, look at the files that were generated by the program.
Each process should have created its own file, and in the file you can read
information about which computer that process was running on. Now, since
you ran on the login node, all processes are expected to run on the same node,
so you should see the name of the login node (kalkyl1 or kalkyl4) in all of the
files.

Nest, try running the program by submitting a job to the queueing system.
See the lecture notes or the Kalkyl user guide for instructions on how to write a
job script, then submit the job script using the command sbatch. Submit a few
such jobs asking for different numbers of nodes/processes and verify by looking
in the output files that the program was really run on several different nodes.

2.2 Exercise 2: compiling and running a simple MPI pro-
gram, with communication

The files needed for this exercise are in the directory “example2” included in
the zip file.

The test program is called “mpitest2”. It is supposed to be run using only
two processes, and performs simple point-to-point communication calls between
those two processes.

Start by looking through the source code and try to understand what the
program is doing. Then compile and run the program:

make

mpirun -np 2 mpitest2

2



As in the first example, each process generates an output file. Look in the
output files to see the reports of what each process was doing.

Try changing the program in some way, run it again and check that it behaves
as you expected. For example, try changing the tag in a send call so that it
does not match the tag in the corresponding receive call. What happens then?

2.3 Exercise 3: compiling and running an MPI program
and measuring speedup

The files needed for this exercise are in the directory “example3” included in
the zip file.

The test program is called “mpitest3”. It starts by generating a list of
random numbers, and then uses a parallel sort algorithm to sort the numbers
in ascending order. The program takes one input argument, giving the number
of items (numbers) to sort. The larger the input argument, the longer time it
will take to sort the list.

First compile the program and run it on the login node for a small number
of processes and a short list to sort. For example, using 4 processes and a list
length of 20:

make

mpirun -np 4 mpitest3 20

Verify that the output from the program looks OK.
Next, run the program using 1, 2, 4, 8, 16, 32, and 64 processes by submitting

jobs to the queueing system. Choose a list length such that it takes around 30
seconds to run the program with only one process (maybe a list length of 100
million), and see how much faster the program becomes when using different
numbers of processes.

Note that it takes some time for the program to generate the list of random
numbers (see the output line “Setting up list of xxx random numbers took yyy
wall seconds”). Therefore, to measure only the time for the sort operation you
should look at the timing reported at the output line “Parallel sort done! Took
yyy wall seconds”.

What is the best speedup you can achieve?

2.4 Exercise 4: parallelizing an image filtering program
using MPI

The files needed for this exercise are in the directory “example4” included in
the zip file.

This time, the given example source code is a serial program. The program
is very similar to the filtering program used in Lab session 2 of this course, but
slightly modified to make it easier to parallelize using MPI. This version of the
program should produce exactly the same results as the filtering program used
in Lab session 2.

3



Start by compiling and running the serial program. Then, parallelize the
program using MPI.

Hint: the function filter_gauss_one_direction is called for independent
parts of the image, so one approach to parallelize is to make different MPI
processes call filter_gauss_one_direction for different parts of the image.

Important information

We have several nodes on Kalkyl reserved during each of the lab sessions.
To use the reserved nodes (and not have to wait in the queue with all the
people doing actual work), add --reservation=g2011040 to your sbatch and
interactive commands. Thus, to submit a job to the queueing system:

sbatch --reservation=g2011040 yourjobscript

The project number for this course is g2011040. This goes after the -A

option of the sbatch and interactive commands.

4


