
Parallel Image Analysis

Lab session 3:
Using OpenCL for image processing on the GPU

In this lab you will be writing kernels and running them using OpenCL.
Start by obtaining the example source code:
http://www.cb.uu.se/~cris/ParallelImageAnalysis/lab3.zip The ZIP
file contains one subdirectory, gpgpu, with two different programs: first.c
and simple.c. You will also need some of the code and data that we used in
last week’s lab (lab 2).

1 Exercise 1: first

Open and examine the file first.c. Compare it to what David showed in class
on Tuesday. Then compile and run the program using the commands

make first
./first

If everything is OK, you should be looking at the first 10 elements of each
of the two input and the output arrays. If there is a compiling or linking error,
you might not have the latest drivers for your GPU installed, or you might not
have a GPU that supports OpenCL.

If you use Windows, you will have to figure out how to compile this program.
Use Google!

2 Exercise 2: simple

Open and examine the file simple.c. This is very much like the first exercise,
except we are using image objects instead of simple arrays. Also, the work is
divided two-dimensionally instead of one-dimensionally. The program allocates
two image objects, one as input and one as output. The kernel reads a pixel
value from the input, divides it by the third input argument, and writes it to
the output image. Compile the program and run it with the commands

make simple
./simple

You can use the same trick we used last week to read in the output file
result.ui8 into MATLAB to see it.

1



3 Exercise 3: difficult!

The main exercise for today is to write a useful filter that runs on the GPU. For
example the Gaussian smoothing from last week’s lab. Make a kernel out of the
filter 1D() function. One of the parameters should be a boolean, indicating
whether to filter along the rows or the columns of the image. That way, the same
kernel can be enqueued twice, once for each of the two passes over the image
(don’t forget the barrier!). Each image line should be a work item, meaning
that the kernel should loop over a whole line instead of processing a single
pixel. Try your program on both a small image (cermet.ui8) and a large
image (europe.ui8).

Things to think about:

• Do you want to use a simple array to store the image, or an image object?

• How can you avoid moving the data back and forth to the GPU in between
the two passes?

• Try to keep the input and output of the filter as 8-bit integers, to minimize
data transfer.

• Into how many work items do you need to divide the work?

2


