
Parallel Image Analysis

Lab session 2:
Using OpenMP to create multi-threaded

applications

In this lab you will be adding OpenMP constructs to serial programs to make
them multi-threaded. You will then run them on UPPMAX as a node job, and
compare their execution time with the serial version.

Start by obtaining the serial source code and example data:
http://www.cb.uu.se/~cris/ParallelImageAnalysis/lab2.zip

The ZIP file contains two subdirectories: filter and label. Each subdi-
rectory belongs to one of the two exercises below.

1 Exercise 1: filter

As discussed in class, filters are rather simple to parallelize. This should be an
easy exercise!

The filter directory contains a Makefile, some test images (with a ui8

extension, these files only contain pixel values, no metadata), and the following
source files:

• filter.c: contains the function main().

• gaussf.c: contains the filtering function filter gauss() and subfunc-
tions.

• image.c: contains image reading and writing functions.

• filter.h: contains the declaration of all the functions and data types.

The function main() parses the input parameters, loads the image into mem-
ory, calls the function filter gauss(), times the execution of this function, and
writes the output to a file. The function filter gauss() implements a Gaus-
sian convolution (as two one-dimensional filters), using a mirrored boundary
condition (i.e. the image is extended beyond its borders by mirroring the pixels
inside the border). The file gaussf.c is the only one that we’ll need to modify
to make the filtering multi-threaded.

Compile the program by typing

make

1

(note the ‘-fopenmp’ argument to gcc, both for compiling and linking) and run
it with

./filter cermet.ui8 cermet.out 256 256 5

As you can see, the program has 5 input arguments: input file name, output file
name, size of the input image in pixels, and the sigma of the Gaussian filter. To
best observe the speedup of parallelization, use the europe.ui8 image, which is
5800 by 9100 pixels. Also, you can increase the filter’s size (sigma) to increase
the cost of the operation.

After testing your multi-threaded program, try running it with different
number of threads:

export OMP_NUM_THREADS=4

./filter ...

How well does the speedup behave with respect to the number of threads?
If you want to see the output of the function, for example to see if it is

correct, use the following sequence of commands in MATLAB:

fid = fopen(’cermet.out’,’rb’);

a = fread(fid,[256, 256],’uint8’);

fclose(fid);

imagesc(a)

2 Exercise 2: label

This next exercise should be a bit more complex. We have a sequential labeling
algorithm, which uses propagation to identify connected components in a binary
image.

The label directory contains a Makefile, some test images (with a bin ex-
tension, these files only contain pixel values, no metadata), and the following
source files:

• label.c: contains the function main().

• simple label.c: contains the labeling function simple label() and sub-
functions.

• compound label.c: contains the function compound label() and a sub-
function.

• image.c: contains image reading and writing functions.

• compare.c: contains a function to compare two labelings.

• filter.h: contains the declaration of all the functions and data types.

2

The function main() parses the input parameters, loads the image into mem-
ory, calls the functions simple label() and compound label(), times the exe-
cution of these functions, compares their output, and writes one of the outputs
to a file.

The function compound label() is my attempt at making a labeling routine
suitable for parallelization. It splits the image into two, and labels the two
halves separately (either by calling compound label() recursively, or by calling
simple label() if the desired number of recursion steps has been reached).
Next, it analyses the labels on each side of the split, and decides which labels
in each of the two halves should be merged. This step produces two look-up
tables, which are then used to change pixel values in the two halves to produce a
coherent labeling. Add OpenMP constructs to the function compound label()

to make it multi-threaded. Note that this will become a nested multi-threaded
program, and you will need to enable the nesting explicitly.

Compile the program by typing

make

and run it with

./label cermet.bin cermet.out 256 256

The input arguments are like in the first exercise, except there is no filtering
parameter. The file images.txt contains a list of binary images available, and
their sizes. The bigger the image, the larger the potential benefit of multi-
threading.

As before, try your multi-threaded program with different number of threads.
How many threads do you need to reap the benefit? Can you come up with a
more efficient way of parallelizing this operation?

If you want to see the output of the function, for example to see if it is
correct, use the following sequence of commands in MATLAB:

fid = fopen(’cermet.out’,’rb’);

a = fread(fid,[256,256],’uint32’);

fclose(fid);

imagesc(a)

Important information

We have several nodes on Kalkyl reserved during each of the lab sessions.
To use the reserved nodes (and not have to wait in the queue with all the
people doing actual work), add --reservation=g2011040 to your sbatch and
interactive commands.

The project number for this course is g2011040. This goes after the -A

option of the sbatch and interactive commands.

3

