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1 Introduction

The goal of this laboratory course is to get hands-on experience with image processing.
To do so, you will have to learn the image-processing environment: MATLAB and the
DIPimage toolbox for scientific image processing. To facilitate a quick start, there
will not be an in-depth explanation of all the features in the software. We will briefly
present the things you need at this moment. We have marked the sections that explain
something about the environment with the ☞ symbol, so that they stand out.

First we want to stress one point: Try to understand what is happening, and do not be
satisfied with just any answer you obtain! It is by far better that you seriously wor on
half of the exercises and learn some image processing, than that you go through all of
them, but understand nothing. This is a waste of your time.

In this laboratory manual, a lot of details about the theory have been left out. For these
we refer to :book:

FIP - Young, I.T., Gerbrands, J.J. and van Vliet, L.J., “The Fundamentals of Image
Processing”, Department of Applied Physics, TUD.

It is available online (see http://csp.tn.tudelft.nl/tn3531.html) and
at the Dictatenverkoop. On the margin of some paragraphs we specify a section of
FIP you need to read before proceeding with that paragraph. Additionally, you can
check-out from the library (or better: buy!) a book on image processing for a more
in-depth discussion. We recommend:

- Jähne, B., “Digital Image Processing: Concepts, Algorithms, and Scientific Ap-
plications”, Springer, 1997.

Some sections, subsections and exercises are marked ‘advanced’. You are entitled to
skip these if you are not going to do a Master’s Thesis on Image Processing at the
Pattern Recognition Group. Even if you are not, you can study these advanced topics
if you like. We recommend, however, that you do so only if you have finished all the
compulsory exercises first.

1.1 MATLAB

This subsection is to re-acquaint you with MATLAB; if you use MATLAB regularly,
skip this section. If you have never worked with MATLAB before, there is a small
introduction you should ask for, which will take about one afternoon.

A MATLAB variable can contain anything from a single value (scalar) to a very com-☞ plex data structure. However, the most common structure is an array. An array is
typically two-dimensional (but higher-dimensionalities are also supported), with each
element being a double-precision floating-point number. They serve as parameters to
function calls, and unary and binary (== dyadic) operations can be applied to them.

>> a = b;

will cause whatever is in variable b to be copied into variable a. Whatever was in
variable a gets lost. If you omit the semicolon at the end of the command, the new
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contents of a will be printed (scalars, vectors and matrices will printed in the command
window). Similarly,

>> a = [100,200;50,0];

will assign a matrix into a. The square brackets catenate elements into an array; the
comma (or space) separates elements horizontally, and the semi-colon vertically.

If max is the name of a function, then

>> a = max(a,b);

will call that function, with the values a and b as its parameters. The result of the
function (its return value) will be written into a, overwriting its previous contents. If
no explicit assignment is done, the output of a function will be put into a variable
called ans:

>> max(a,b);

is the same as

>> ans = max(a,b);

It is possible to use the result of a function call as a parameter in another function:

>> a = max(max(a,b), max(c,d));

This allows for complex operations involving any kind of functions and operators:

>> c = max([a/3+b/4,c-min(a,b)*4],0);

1.2 DIPimage

DIPimage is the toolbox we will be using under MATLAB to do image processing. At
this time, we will review only the most relevant features. You will get to know this
environment better throughout the course.

You may have noticed the windows that appeared around the screen when you started☞ MATLAB. The one on the top-left is the GUI (Graphical User Interface). The other
windows are used to display the images in. The GUI contains a menu bar. Spend some
time exploring the menus. When you choose one of the options, the area beneath the
menu bar changes into a dialog box that allows you to enter the parameters for the
function you have chosen (Figure 1). Most of these functions correspond to image
processing tasks, as we will see later.

There are two ways of using the functions in this toolbox. The first one is through the
GUI, which makes it easy to select filters and its parameters. We will be using it very
often at first, but gradually less during the course. The other method is through the
command line.

When solving the problems in this laboratory course, we will be making text files☞ (called scripts) that contain all commands we used to get to the result. This makes
the results reproducible. It will also avoid lots of repetitive and tedious work. We
recommend you make a new file for each exercise, and give them names that are easy
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Figure 1: The DIPimage GUI.

to recognize. The file names should end in ‘.m’, and should not conflict with existing
function or variable names. If you start each file with the commands

>> clear
>> dipclf

then the variables and the figure windows will be cleared before your commands are
executed. This avoids undetected errors.

If an element of the toolbox is not explained clearly enough in this manual, refer to the
DIPimage user guide:

- Luengo Hendriks, C.L., et. al., “DIPimage User Guide”, Delft, 2001.
http://www.ph.tn.tudelft.nl/DIPlib/docs/dipimage.pdf

1.3 Editing a MATLAB Command File

To open the editor, type

>> edit

The MATLAB editor will be started (see Figure 2). We will type (or copy/paste) the
commands we want to execute to the editor, and run the whole thing as a script. To☞ do this, first save the file and then type its name on the MATLAB command prompt.
Make sure the file name ends in ‘.m’, but do not type this extension on the command
line.

There is a “Run” menu item under the “Tools” menu. It can be used to let MATLAB
run the file currently being edited.

1.4 On Sampling and Images

During this course we will assume that images are correctly sampled, and the samplesbook:
5 thus represent the underlying continuous, band-limited image completely. Note that

some image processing operations break this assumption, which we need to take into
account.
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Figure 2: The MATLAB M-file editor

Each sample in a two-dimensional image is called a pixel (for PICTure ELement). For
three-dimensional images the term voxel is often used (for VOlume ELement, with an
extra X thrown in for good measure).

Besides spatial sampling, the sample values are also quantized. Very often pixel values
are stored in an 8-bit integer, meaning that there are 256 different possible values for
a pixel. This is enough for display purposes, since we cannot distinguish more than
64 or 128 different grey-values. However, for computation purposes, this is often
not enough. Most operations and filters we will be using during this course produce
images with floating-point pixel values. This is completely transparent to the user, and
conversions from one data type to another do not need to be done explicitly.
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2 Getting Started

This section will introduce the main elements of the user interface, which is composed
of a GUI (with a menu system that contains image processing and analysis functions,
and a body that changes to enable you to enter the parameters for these functions)
and image display windows. Not all features will be shown to you at once, many
elements will be introduced, as you need them, during the course. This is to avoid
tedious enumerations that you won’t be able to remember anyway. To get a complete
description of the user interface we refer to the DIPimage manual.

2.1 The Graphical User Interface

We need to load an image (from file) into a variable before we can do any image☞ processing. The left-most menu in the GUI is called “File I/O”, and its first item “Read
image (readim)”. Select it. Press the “Browse” button, and choose the file trui.ics.
Change the name of the output variable from ans to a. Now press the “Execute”
button. Two things should happen:

1. The image ‘trui’ is loaded into the variable a, and displayed to a figure window
(see Figure 3).

2. The following lines (or something similar) appear in the command window:

>> a = readim(’x:\c_ip\images\trui.ics’,’’)
Displayed in figure 10

Figure 3: Display window with image ‘trui’ loaded.

This is to show you that exactly the same would have happened if you had typed that
command directly in the command window. Try typing this command:

b = readim(’trui’)

The same image will be loaded into the variable b, and again displayed in a window.
Note that we omitted the ‘.ics’ extension to the filename. readim can find the file
without you having to specify the file type. We also didn’t specify the second argument
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to the readim function, since ” (empty string)) denotes the default value. Finally, by
not specifying a full path to the file, we asked the function to look for it either in the
current directory or in the default image directory.

Copy the command as printed by the GUI into the editor:☞
- Windows: select with the mouse, Ctrl+C to copy the text; go to the editor, Ctrl+V

to paste.

- UNIX: select with the mouse, go to the editor, and click with the middle mouse
button to paste.

To suppress automatic display of the image in a window, add a semicolon to the end☞ of the command:

>> a = readim(’cermet’);

Note that the contents of variable a changed, but the display is not updated. To update
the display, simply type:

>> a

2.2 The Display Window

You will have noticed that the image in variable a is always displayed in the top-left
window. This window is “linked” to that variable. Likewise, variables b through d and
ans are linked to a window. Images in all other variables are displayed to the sixth
window. This can be changed, see the DIPimage manual for instructions.

A grey-value image is displayed by mapping each pixel’s value in some way to one of☞ the 256 grey-levels supported by the display (ranging from black (0) to white (255)).
By default, pixel values are rounded, negative values being mapped to 0, and values
larger than 255 to 255. This behavior can be changed through the “Mappings” menu
on each figure window. We will be using this menu very often, so try out the options
now.

- Normal: the default mode, as explained above.

- Linear stretch: the lowest grey-value is mapped to 0, the highest to 255, and the
other values are mapped linearly in between.

- Percentile stretch: 5% of the pixels with the lowest grey-values are all mapped
to 0, and the highest 5% to 255; all other values are mapped linearly in between.

- Log stretch: The logarithm is applied to the values before linear stretching, thus
improving discriminability of low grey-values in the presence of very high grey-
values; this mode will be used when discussing the Fourier Transform.

- Based at 0: 0 is mapped to 128 (50% grey-value), and the rest is stretched lin-
early to fit.

- Angle: −π is mapped to 0, and π to 255.

- Orientation: −π
2 is mapped to 0, and π

2 to 255.

- Labels: after rounding, each grey-value is assigned a color; we will use this
mode later when discussing labelling.
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Note that these mappings only change the way an image is displayed, not the image
data itself.

Another menu on the figure window, “Actions”, contains some tools for interactive ex-☞ ploration of an image. The two tools we will be using are “Pixel testing” and “Zoom”.
“Pixel testing” allows you to click on a pixel in the image (hold down the button) to
examine the pixel value and coordinates. Note that you can drag the mouse over the
image to examine other pixels as well. The right mouse button does the same thing as
the left, but changes the origin of the coordinate system and also shows the distance to
the selected origin (right-click and drag to see this).

The “Zoom” tool is to enlarge a portion of the image to see it more clearly. Click
to double the pixel size, double-click to return to the original size. Click and drag to
select the region to be enlarged.
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3 Basic Filtering

Filters are a set of tools available to process images. Basically, there are two types
of filters: linear and non-linear filters. Linear filters can be implemented through a
convolution, non-linear filters can not. Therefore, linear filters are easier to implement,book:

3.1
9.3

and are important for Fourier Analysis. All filters discussed in this section (both linear
and non-linear) can be implemented as a combination of the values in a neighborhood;
that is, each pixel in the output image is computed out of a fixed set of pixels in the
neighborhood of the corresponding pixel in the input image. Typical neighborhood
shapes are round (’elliptic’) or square (’rectangular’). In the case of linear
filters, the output value is a linear combination of the input values. We will also see
some examples of non-linear filters.

Some linear filters, like the Gaussian filter, do not have a neighborhood shape as pa-
rameter. This is because their shape is fixed (i.e. a Gaussian kernel).

3.1 Smoothing (Blurring) Filters

Find and select “Gaussian Filter (gaussf)” in the menu of the GUI. The name be-book:
9.4 tween parentheses on the menu indicates the name of the function that implements this

filter. The required input image should already reside in one of the variables, e.g. a.
Type any name for the output image, for example b. Now we need to choose the size
of the Gaussian filter: the standard deviation in pixels. Try out different values for it,
and see what happens. The filter size (scale) is very important, as will be shown in
Section 12.1.

Exercise 1: The uniform filter
Now try the uniform filter (unif). What are the similarities between the uni-
form filter and the Gaussian filter? In what do they differ?

Make sure you copy some of the function calls you make to your exercise com-
mand file.

It is possible to choose different horizontal and vertical sizes for the filters. This can be☞ accomplished by separating the two values with a comma, and surrounding the whole
thing with square brackets: [4,10] (a MATLAB array with two values). The first
value will be used in the x-direction, and the second one in the y-direction.
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3.2 Derivative Filters: Gradient and Laplace

The menu “Differential Filters” contains a general derivative filter, a complete set ofbook:
9.5 first and second order derivatives, and some combinations like gradient magnitude and

Laplace.

Exercise 2: First order derivatives
Try out the first order derivatives (dx and dy). Why are these called Gaussian
derivatives? What is the meaning of the parameter (“sigma of Gaussian”)?

Why is this derivative better than the discrete derivatives [1 −1] or 1
2 [1 0 −1]

(as numerical approximations to the derivative)?

Look up the Sobel operator. How is it constructed, and how does it compare to
the Gaussian derivative?

The Laplace operator is a second derivative. It is used to detect lines, like the gradient
magnitude is used to detect edges, and is rotation invariant as well. Let’s make one
based on the basic derivatives only. This will allow us to show you how to compute
with images. First we need the second derivatives in the x and y-directions. Put them
in variables named a_xx and a_yy (any name is as good as the other, isn’t it?). The
best mode to view these images is “Based at 0”, since this fixes the zero-level to a 50%
grey-value, which makes it easy to compare the different derivatives.

Now we need to add these two derivatives together. This is accomplished with the☞ command

>> b = a_xx + a_yy

(Note that there is no menu item for adding two images). Images can be subtracted,
multiplied and divided in a similar way (see Appendix A). It is also possible to use a
constant value instead of either image.

Let’s compare the result with the Laplace operator (laplace). Put its result in c.

dxx dyy laplace

Now compare b and c by subtracting the two images. Since both are equal, the result
is completely black. But we want to make sure that the difference is zero everywhere,
and not just very small. This can be accomplished in at least three ways:

- Using the “Pixel testing” tool under the “Actions” menu in the display window.
Click and hold down the left button, and move the mouse over the image, check-
ing that the grey-value is exactly zero everywhere.
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- Compare this image with zero (d ˜= 0) or compare the two images directly (b

˜= c). Either way a binary image is produced with true (displayed in red) or☞ false (black) as pixel values. These actual pixel values are 1 and 0 respectively;
the colors are used to show that it is a binary image, and not a grey-value image.
Since this binary image is false everywhere (black), it is not a good example for
a binary image. To obtain a binary image with both values, compare the result
of the Laplace operator with zero: c > 0.

- Use the functions max and min to determine the maximum and minimum val-
ues. Both should be 0.

3.3 Rank-Value Filters

A rank-value filter orders all values in the selected neighborhood of a pixel, and takes
one of these values as the value for the output pixel (for example the middle one, in
case of a median filter). In DIPimage, rank-value filters are implemented as percentile
filters (percf). This way, specifying which value to take is done through a percentile
value. The 50% value is the median (medif), and the 0% and 100% values are the
minimum (minf) and maximum (maxf) respectively. Maximum and minimum filters
are the basis of morphology and will be reviewed again in Section 7. The median filter
is a non-linear smoothing filter. It is ideal for removing shot-noise (black and whitebook:

9.4.2 pixels randomly scattered over the image). Compare to the result of the uniform filter,
which blurs the image a lot to remove some of this noise.

shot noise median filtering uniform filtering

3.4 Sharpening

Now we will sharpen the image ‘trui’, which should still be in variable a; load it againbook:
10.2.1 if it got lost. Unsharp masking is often defined as the original image minus the Laplace

of the image. We can write this very easily using only the command line:

>> a - laplace(a)

The answer is put into the variable ans.

Note that unsharp masking gets its name from a procedure employed by photogra-
phers long before the days of computers or image processing. What they used to do
was print an unsharp version of the image on film, and use that to mask the negative.
The two combined produced a sharper version of the photograph. The trick is that the
unsharp print masks the low-frequency components, but not the high frequencies; the
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procedure thus implements a high-pass filter. Let’s reproduce that trick with the image
‘trui’. Type this:

>> 2*a - gaussf(a)

By multiplying the image by two, we multiply both the low and high frequencies. The
low frequency components are then subtracted again, thus remaining in their original
intensity. Only the high-frequency components are effectively multiplied by two.

Exercise 3: Unsharp masking
These two unsharp filters are not exactly the same. Draw their impulse response
(point-spread functions, convolution kernels) to see how they differ. If you know
about Fourier analysis, look at what these filters do in the Fourier domain.

Hint: to compute an impulse response, apply the filter to the discrete delta func-
tion (unit impulse). It can be generated with deltaim (see Section 8).

3.5 Filtering Applications

Exercise 4: Shading removal
Load the image ‘shading’. It contains some text on a shaded background. Tobook:

10.1 remove this shading, we need to estimate the background. Once this is done, we
can correct the original image. This is a common procedure, often required to
correct for uneven illumination or dirt on a lens.

There are several background shading estimation methods:

- The most used one is the low-pass filter (gaussf). Try finding a rele-
vant parameter for this filter to obtain an estimate of the background, then
correct the original image.

- Another method uses maximum and minimum filtering. Since the text is
black, a maximum filter with a suitable size will remove all text from the
image, bringing those pixels to the level of the background. The prob-
lem is that each background pixel now also was assigned the value of the
maximum in its neighborhood (see Figure 4). To correct this, we need to
apply a minimum filter with the same size parameter. This will bring each
background pixel to its former value, but the foreground pixels won’t come
back! This filter is called a morphological closing, and we will see more
about it in Section 7. Use this estimate of the background to correct the
original image.

Background

Result of the maxf filter

Figure 4: Background shading with result of maximum filter.
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Exercise 5: Edge detection
Construct the gradient magnitude using the derivative filters from Subsection
3.2 (don’t use the function gradmag!). The gradient magnitude is an edge
detection filter. Use the image ‘trui’ to examine the result of your filter, and
compare it to gradmag.

It is also possible to detect edges using the maxf and minf functions. For
example, a-minf(a,3) gives an image similar to the previous one. There is
one important difference, though. To see it, combine the two results in a color
image:

>> joinchannels(’RGB’,stretch(b),stretch(c))

The result of this operation is a color image. Image b is the red component, and
image c the green component. Assuming b and c contain the edges estimated
with the two methods, red will show edges as estimated with the one method,
and green the ones with the other one. Where they overlap, it will show in
yellow.

Note how the edge estimates are not aligned. Why is this? Combine the results
of the maxf and minf filters in such a way that the estimated edges are aligned
with the ones produced by gradmag.
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4 Point Operations

4.1 Histogram-Based Operations

A histogram is a distribution of image grey-values. It is computed by counting thebook:
3.5.2 number of occurrences of each grey-value. The histogram gives global information

on the image contents, and is used by certain algorithms, for example to determine a
threshold that distinguishes objects from background (see Subsection 4.2).

The function diphist (under the “Statistics” menu) plots the histogram of an image.
Plot the histogram of the image ‘trui’. You will notice that the lower 55 grey-values
are not used, as are the upper 14. Correct this using the function stretch (underbook:

9.1 the “Point” menu). To see the difference with the original image, make sure that the
display mode is set to “Normal”. Plot the histogram of the new image.

This stretching method is very sensitive to noise. For example, set a single pixel in the
original image a to 10. This can be accomplished by indexing, which will be explained
in more detail in Section 8. Type:

>> a(0,0) = 10

Now plot the histogram again. You will not notice the difference. However, the stretch-
ing algorithm will. Plot the histogram of the stretched image to see this. Why is the
lower part of the histogram flat?

Exercise 6: Percentile stretch
Repeat the previous sequence of commands (you will need to read in ‘trui’
again) with the lower and upper percentiles in the stretch function 1 and 99 re-
spectively. This causes the lower and upper 1% of the grey-values to be clipped
before stretching.

Most images have a very poorly distributed histogram. This simply means that some
grey-values occur more often than others in the image. Sometimes this is not desirable,
for example when comparing images acquired under different lighting circumstances.
The hist_equalize function (also on the “Point” menu) works on the histogram to
flatten it. For images with quantized pixel values, this is not possible, but the algorithm
makes an approximation.

Exercise 7: Histogram equalization on quantized images
Apply hist_equalize to the image ‘ketel’. Plot the histogram of this image
before and after the histogram equalization. How does the algorithm solve the
problem of the quantized grey-values?
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input equalized histogram

4.2 Thresholding

Load the image ‘cermet’ again into variable a. The objects in it are clearly defined
and are easy to segment. The “Point” menu contains the function threshold, which
assigns ‘object’ or ‘background’ to each pixel depending on its grey-value. This isbook:

10.3.1 a very simple form of segmentation, but it is good enough for this image and many
others. As the name indicates, a threshold is chosen. Pixels with a value above this
threshold are considered part of the object (foreground). The output image is binary.

To select a threshold, there are several algorithms available (which use the histogram).
We don’t need them for this image. Select ‘fixed’ for the ‘Type’ parameter; this re-
quires you to provide a threshold. Choose 100. The resulting image contains one
object (red), with holes in it (black). That is because the objects we were looking for
are dark instead of light. We can invert the image before thresholding to correct this, or
invert it afterwards (look in Appendix A on how to do this). Another solution is to do
the thresholding in an alternative way: using relational operators. Recall that thresh-
olding returns an image with ‘true’ (1) where the image is larger than some threshold.
This can be accomplished with the ‘larger than’ (>) operator:

>> b = a > 100

Since we want to find the dark objects, use the ‘smaller than’ (<) operator instead.

input (‘cermet’) input > 100 input < 100

The thresholding algorithms available in the function threshold provide automatic
ways of selecting a threshold. Each of them makes an assumption on the grey-value
distribution of the image. See the book for more details.

We will be using thresholding in Sections 6 and 8.
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4.3 Other Point Operations

There exist a large number of monadic point operations that are only accessible throughbook:
9.2 the command line. They act on the image pixel-by-pixel. Examples are the mathemat-

ical functions:

- sin, cos, tan, etc.

- abs, angle, real, imag, conj, complex, etc.

- log, log10, log2, exp, sqrt, etc.

- sign, round, floor, ceil, etc.

There are also a large number of dyadic point operations, which act on two images
pixel-by-pixel, or on one image and a constant. Examples:

- min, max etc.

- atan2, mod, +, -, *, /, etc.

- ==, ˜= , >, <, etc.

- &, |, xor, etc.
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5 The Fourier Domain

Before you start this section, look up ‘Fourier Transform’ in your book. Note that thebook:
3.3 Discrete Fourier Transform (DFT) is not the same as the continuous version: since the

image is sampled, the Fourier Transform is periodic, but the Fourier Transform itself
must also be sampled (hence Discrete), thus the image must be assumed periodic too.

In DIPimage, the FT is symmetric, in the sense that the normalization factor for the
FT and the Inverse FT (IFT) are the same. In many text books this is not the case;
they normalize the FT by dividing by N (the number of pixels), and don’t normalize
the IFT. In DIPimage both are normalized by dividing by

√
N. This is important only

when generating a filter in one domain, and using it in the other.

5.1 The Fourier Transform

Load the image ‘trui’ into variable a. Under the “Transforms” menu, you will find the
forward and inverse Fourier transforms. Apply the forward transform to the image in
variable a, and store the Fourier spectrum in variable b.

>> b = ft(a)

The result looks like a white cloud in a black background; this is because the default
display mapping is not the most adequate. Try “Linear stretch”. Now all you have left
is a single dot in the middle. The dynamic range is very large. “Log stretch” is usually
employed to look at Fourier spectra.

The origin is at pixel location floor(N/2), with N the number of pixels in one
direction. This means it is just to the right of the center if N is even, and in the exact
center if it is uneven. Coordinates are in the range [−1

2 , 1
2), but −1

2 is not sampled if N
is uneven (because 1

2 would have to be sampled too). Don’t confuse image coordinates
(discrete pixel locations) with Fourier coordinates (frequencies). Note that DIPimage
uses the frequency f instead of radial frequency ω (as used by many books). These
coordinate issues are important for example when using functions such as xx or rr
with the parameter ’frequency’.

Remember that the discreet Fourier spectrum is periodic (with period 1).

Now switch on the “Pixel testing” mode and look at the values in the spectrum (you
might need to enlarge the window so that the values fit in the title bar). The values of
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the Fourier image are complex. What you see as an image is just the amplitude of the
spectrum. Under the “Mappings” menu you will now find a new section that controls☞ how you look at the complex values. The default mode is “Magnitude”. The other
modes are to look at the phase (angle), real and imaginary parts. Note that logarithmic
stretching is not as useful for the real and imaginary parts, since these have both very
large positive and negative values. This display mode is intended for use with the
magnitude. The “Phase” mode is best used together with the “Angle” mode.

Exercise 8: Manipulating complex images (part I)
To decompose b into a real and an imaginary part, use the real and imag
commands (these are not in the menus). Write these and the previous commands
into a command file:
>> re = real(b)
>> im = imag(b)

You will notice that the image im contains real values. We need to multiply it
by i. If you overwrote variable i with an image, you can use j. If you also☞ overwrote it, clear them with

>> clear i j

This will return them to their original use, the imaginary number. Now write

>> im = i*imag(b)

According to the theory, the inverse transform of re should be the even com-book:
3.4 ponent of the original image, and the inverse transform of im should be the odd

component (look this up!). Furthermore, both should be real. However, the in-
verse transforms are not real, but complex. By examining the images, you can
see that the imaginary parts are negligibly small (they are due to round-off errors
in the transforms). Remove them using the real function again.

>> real(ift(real(b)))
>> real(ift(i*imag(b)))

Make sure the images are truly even and odd, then add them up and compare
with the original image. Where does the difference come from? Is it significant?

Exercise 9: Manipulating complex images (part II)
Another way of separating a complex image is in amplitude and phase. The am-
plitude is acquired using abs, the phase using angle or phase. However, the
phase itself is not too interesting. Far more interesting is exp(i*angle(b))
(let’s call it the ‘phase term’), because of its properties. Dividing the original
spectrum by its amplitude also results in this phase term. Now compute the in-
verse transform of the amplitude and the phase term (make sure you look at the
real part of the inverse transform, not the amplitude!). Which one contains more
information?

To which filter is the inverse transform of the phase term similar, and how do
these two differ?
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5.2 Filtering in the Fourier Domain

A convolution between an image and a filter in the spatial domain corresponds to
a multiplication of their Fourier transforms in the Fourier domain. This means that
all linear filters (which are the ones that can be implemented by convolution) can be
computed in the Fourier domain with a simple multiplication. Simple filters in the
spatial domain (like the uniform filter) are very complex in the Fourier domain. To see
this, make a 1D image with a single pixel set, and apply the uniform filter (use a large
kernel); this results in the convolution kernel of the filter: the point-spread function
(PSF). After applying the Fourier transform, we get an image with a sinc-like function
(a large lobe in the middle, with ripples up to the edge of the image).

>> a = newim(200); % see the section on manipulation
>> a(100) = 255
>> a = unif(a,20)
>> b = ft(a)

Conversely, an ideal low-pass filter (a box in the Fourier domain) is a sinc-like function
in the spatial domain. This ideal low-pass filter is used in the next exercise.

Exercise 10: Sub-sampling
Load the image ‘trui’ in a. We will down-sample it by multiplying it with a
sampling signal (a pulse train):

>> s = newim(a);
>> s(0:8:end,0:8:end) = 1
>> b = a * s

In the Fourier domain, b contains many copies of the spectrum of a. The reason
is that, by increasing the sample spacing from 1 to 8, we also decreased the
period length of the Fourier spectrum (which goes from 1 to 1

8 : there are 8
copies of the spectrum side-to-side).

Using the “Log stretch” mode, you can see that all copies of the spectrum are
identical, and that they also overlap. This is because the spectrum of ‘trui’ is
too large to fit in the small window. How large is this window? Compare your
calculation with the distance between two peaks in the image.

We will now construct a square low-pass filter:

>> d = 64 * ( max(abs(xx(c)),abs(yy(c))) < 60 )

xx and yy create images with the same size as c, filled with the x and y co-
ordinates. Do the computation above step-by-step to see how this filter is con-
structed. We will do more of these in Section 8. Use the correct value in the
threshold to obtain a filter of the desired size.

Multiply the Fourier spectrum of the sub-sampled ‘trui’ with this filter, and trans-
form back (the filter was multiplied by 64 to compensate for the amount of in-
tensity that was thrown away by the sampling). The resulting image shows the
effects of aliasing. To avoid this, what do we have to do?book:

5.1
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sub-sampled ‘trui’ low-pass filtered

Exercise 11: Wiener filtering (advanced)

Read in the image ‘blurr1’. We will apply some Wiener filtering to enhance thisbook:
10.2.3 image and try to read the license plate. We know that the filter used to blur the

image was a uniform filter with a circular support and a radius of 7 pixels. Its
convolution kernel h0 can be constructed like this (except for the normalization,
which is not important here):

>> b = +(rr<=7)

You now have to implement the Wiener filter, and apply it in the Fourier Domain
(to compute the complex conjugate, use the function conj). The ratio of noise
to signal must still be estimated. If you choose a value that is too large, the effect
of the Wiener filter will be too small, and no inverse filtering will be performed.
Conversely, if you choose the value too small, you’ll be sharpening the noise.

The ringing pattern around the edges of the image are caused by the filtering in
the Fourier Domain. This is because of the periodic boundary conditions (i.e.
the image is considered as one period of a periodic image, infinite in size).

image ‘blurr1’ wiener filter restored license plate

too little too much
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5.3 Shift Estimation (advanced)

To find the shift between two images, one can compute the cross-correlation and find
the maximum. A cross-correlation is very similar to a convolution,

cov( f ,g)(t) =
∫

f (τ)g(t + τ)dτ = f (t)∗g(−t) .

Exercise 12: Aligning images
Find the shift between the images ‘imser1’ through ‘imser5’, correct for this shift
(use the function shift), and average the images. The resulting image should
have less noise than the five input images. What is the variance of the noise in
this image, assuming the input images all have white noise with a variance of
σ 2?

Hint: instead of using mirror and convolve, you can compute the cross-
correlation in the Fourier Domain by F(ω)G∗(ω); the complex conjugate can
be obtained with conj.

Hint: use the function max to find the location of the maximum. To know where
the origin is, look for the maximum in the auto-correlation of one of the images.

A property of the Fourier Transform is that a shift in the spatial domain is equal to a
phase-shift in the frequency domain. It is possible exploit this property to find a more
accurate shift-estimator:

g(t) = f (t +a) → G(ω) = eiaω F(ω)
g(t)∗ f (−t) → G(ω)F∗(ω) = eiaω ‖F(ω)‖2

⇒ phase{G(ω)F∗(ω)} = aω(mod 2π) ,

from which the shift a can be estimated using a least-squares fit (which we won’t do
here). Compute the phase of G(ω)F∗(ω), using two of the images from the previous
exercise. Also compute F(ω)F∗(ω); it should have a phase of 0 everywhere, and an
amplitude very similar to that of G(ω)F∗(ω).

image ‘imser1’ average of 5 images phase of G(ω)F ∗(ω)
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6 Binary Image Processing

6.1 Neighborhood Relations

In binary images, an object is defined as a connected set of pixels. But which pixels are
connected? In 2D images we can distinguish 4-connected and 8-connected objects. If
an object is 4-connected, pixels touching each other diagonally are not considered to
be connected; that is, each pixel has only four neighbors. In 8-connected objects, all 8
neighbors are considered connected.

This leads to the notion of distance. In a 4-connected world, a diagonal step has a
distance of two (since we need to move horizontally first, and then vertically). This
is called city-block-distance (imagine driving through New-York, where you can only
drive in orthogonal directions). The 8-connected distance is called chessboard distance
(compare to the steps the King can make in chess). A circle in these two metrics are
a diamond and a square, respectively. These are bad approximations to the Euclidean
distance. By alternating steps with these two metrics, a new metric (4-8 or 8-4 distance,
depending on the first step taken) is obtained, in which a circle is octagonal. This is
the best approximation possible if only nearest neighbors are to be taken into account.

In DIPimage, these connectivities are specified as 1, 2 for the 4 and 8-connected steps
(1 is only the direct neighbors, 2 are the next neighbors; this notion extends readily to
3D, where a connectivity of 3 can be added). -1 means alternating, starting with 1, and
-2 means alternating, starting with 2.

In 3D, there are a 6-connected, a 18-connected and a 26-connected neighborhoods.
These are represented in DIPimage with connectivities of 1, 2 and 3 respectively.

6.2 Binary Morphology

Most binary image processing operations fall under the denominator morphology. In
Section 7 we will extend these operations to grey-value images.

There are dedicated operations for binary images. The point operations ‘not’ (̃ ), ‘or’☞ (|), ‘and’ (&), ‘xor’ (xor) can only be issued directly onto the command line (see
A.4). The binary morphological filters can be found under the ‘Binary Filters’ menu.

The dilation is an operation that ‘grows’ the binary objects. To see it in action, loadbook:
9.6.2 the image ‘cermet’ and threshold it. Apply the function bdilation with different

values for ’iterations’ and ‘connectivity’. Note how the connectivity affects the shape
of the resulting objects. A connectivity of -1 or -2 produces the most circular borders.

Exercise 13: Neighborhood shapes
Compare the shapes imposed by the selection of a connectivity. To do so, make
a binary image with one pixel set:

>> a = deltaim(256,256,’bin’);

Apply several (64) steps of a dilation to it using the different connectivities.
What is represented by these shapes?
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Now try berosion. The erosion ‘shrinks’ objects, and produces the same result as
applying a dilation to the background (berosion(a) == ˜bdilation(˜a)).

Note how an erosion completely removes the smaller objects, whereas the larger ones
are reduced to small spots. If we were to dilate this image again, we somehow would
reconstruct the original large objects, but the small ones, which had disappeared, can-
not return.

binary ‘cermet’ + erosion + dilation

This sequence of erosion and dilation is called an opening (bopening). The inversebook:
9.6.4 sequence is a closing (bclosing). If the first one removes small objects, the second

one will remove small holes in the objects.

6.3 Selecting Objects

If, instead of applying a dilation after the erosion, we apply a ‘constrained’ dilation,
the opening is converted into an opening by reconstruction. There is no such function
in DIPimage, but the constrained dilation does exist. It is called binary propagation
(bpropagation), and requires two input images: a seed image (the result of thebook:

9.6.8 erosion), and a mask image (the original binary image). What the function does is
dilate the seed image, constraining it to the mask image. That is, the resulting objects
will never be larger than the objects in the mask image. Try it out on the image we
were working on. Make sure to set the edge condition to 0. This is the value of the
pixels just outside the boundary of the image. If you set it to 1, all objects touching
the border will also be reconstructed. This edge condition can be used to remove edge
objects (as done in the function brmedgeobjs).

Exercise 14: Quality control of incandescent lamps
Load the image ‘lamps’. It contains an image of six bulbs, two of which are to
be discarded. The bulbs must have a contact at the bottom, and it must not touch
the outer edge, which is the other contact.

Threshold at a low value, such that the bulb is merged with the background
(we are only interested in the fitting, which is characterized by the two black
rings). Now remove the background using brmedgeobjs (which is imple-
mented using bpropagation). Now devise some operations using not
(or ˜), bdilation, berosion, bpropagation and/or brmedgeobjs
to detect either the good or bad bulbs (either make a program that rejects bad
bulbs or accepts good bulbs).
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‘lamps’ exercise goal alternate goal

The colored images were generated with the command overlay. It overlays a grey-☞ value or color image with a binary image. The third (optional) parameter determines
the color for the binary objects. It is possible to apply this function several times, each
with a different binary image, which can thus be used to mark the image using several
colors.

The last operation we will discuss here is the binary skeleton (bskeleton). It isbook:
9.6.7 a conditional erosion: the objects are eroded until a single line remains. This line

lies close to the geometrical center of the object, and has the same topological prop-
erties as the object (i.e. some shape characteristics are preserved). It can be used,
as demonstrated in the next two exercises, to generate a seed image for the binary
propagation, so as to select objects with specific shape properties (note the functions
getsinglepixel,getbranchpixel, etc. in the “Binary Filters” menu).

Exercise 15: Distinguishing nuts from bolts
Now load the image ‘nuts_bolts1’. Threshold it. Note that the threshold opera-
tion chooses the background as the object (because it is lighter). You will need
to inverse the image before or after the thresolding.

Use the bskeleton function (under the “Binary Filters” menu) to create a
skeleton of the objects. What is the influence of the ‘Edge Condition’? What
does ‘End-Pixel Condition’ control?

With ’looseendsaway’we can transform the nuts seen from the top (with
the hole in them) into a form that is distinguishable from the other objects
in the image. Now use the function getsinglepixel to extract the ob-
jects without a hole in them. This new image can be used as a seed image in
bpropagation. The mask image is the original binary image. The objects
with holes are retrieved with b & ˜c (literally b and not c) if the output image
for bpropagationwas c.

Try extracting the last nut using the bskeleton and the getbranchpixel
functions.

As a final test, load the image ‘nuts_bolts2’ and apply the same sequence of
commands to it. You should be able to correctly identify the objects in this
image.
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‘nuts_bolts1’ exercise goal

Exercise 16: Recognize components
Read in the image ‘components’ and threshold it (make sure that the objects
are connected in the thresholded image). Now try to differentiate the transis-
tors (three-legged), capacitors (big) and resistors (small) using the techniques
learned in this chapter. Optionally, you can differentiate the current stabilizers
from the transistors (they have a hole in them), and the ceramic capacitors from
the electrolitic capacitors (the round ones are ceramic).

‘components’ exercise goal

This colored image was generated with the command☞
>> joinchannels(’RGB’,(cerco+elco+stab)*255,...

(cerco+res)*255,(trans+stab)*255)
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7 Morphology

In Section 6 we introduced binary morphology. In this section we will extend mor-
phology to grey-value images. Morphological operations are non-linear, and have a
wide range of applications.

We already mentioned the maximum and minimum filters in Subsection 3.3. In mor-
phology, these are called dilation and erosion (dilation, erosion), and constitutebook:

9.6.10 the basic morphological operations. By putting them in sequence we obtain the closing
and the opening (closing, opening):

>> b = erosion(dilation(a))

(since the structuring element is symmetric, we don’t need to mirror it). Note that the
filter window is called ‘structuring element’ in morphology. These terms are inter-
changeable.

The closing is an extensive filter: the output is always greater or equal to the input.
This is one of the important properties of the closing. The opening is anti-extensive.
Furthermore, both are idempotent: applying the operation a second time does not fur-
ther modify the image.

7.1 Morphological Filtering

Linear filters are best suited to solve problems due to linear phenomena (motion, blur-
ring, etc.). Other tasks should be tackled with non-linear filters. As such, morphologi-
cal filters provide solutions to a wide variety of problems. Noise is one such problem.
Linear filters are often used to reduce noise, but they do not preserve edges, as non-
linear filters can.

Morphological filtering is often used because of their ability to distinguish structures
based on size, shape or contrast (whether the object is lighter or darker than the back-
ground). They can be employed to remove some structures, leaving the rest of the
image unchanged. In this sense, morphology is one step ahead of other image process-
ing tools towards image interpretation.

The closing and the opening are smoothing filters. They remove small local minima
or maxima without affecting the grey-values on larger structures. A sequential combi-
nation of these two filters is a morphological smoothing, and known under the namesbook:

9.6.11 open-close and close-open. Note that it matters which one is applied first.

Exercise 17: Morphological smoothing
Apply a closing and an opening to the image ‘erika’ in both orders. What is
the difference between these two smoothing filters? If you take the difference
between the two results, you will notice that one is mostly greater or equal to the
other: one is biased towards dark objects and one towards light ones. However,
there is no ordering relation between the original image and these two results:
they are not extensive nor anti-extensive filters.
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Note that the size of the structuring element is an important parameter. Construct
a smoothing filter that removes most of the hair, but leaves the face recognizably
human.

A morphological smoothing with a small structuring element is an ideal tool to
reduce noise in an image.

‘erica’ open-close close-open

Exercise 18: Morphological sharpening
In Subsection 3.5 we saw some edge detectors constructed with maxf and minf
(which are the same as dilation and erosion, respectively). They are
morphological gradient magnitudes:

Edge1 = dilation(A)−A

Edge2 = A− erosion(A) .

In a similar way, we can construct a morphological second derivative:

MSD =
dilation(A)−2A+ erosion(A)

2
=

Edge1 −Edge2

2
.

Note the (1,-2,1) across the edge, like in the Laplace operator. Apply it to the im-
age ‘trui’ (use a small size, for example 3) and compare it to the linear Laplace.
Use it to sharpen the input image.

A sharper version of the morphological Laplacian can be computed by taking
the minimum value of the two edge detectors. Note that the sign of the morpho-
logical Laplacian is used for this purpose (use the function sign).

MSDsharp = sign(Edge1 −Edge2) ·min(Edge1,Edge2) .

Apply it to the image ‘trui’ and compare it to the other two results. Use it to
sharpen the input image.

linear Laplace morphological Laplace sharp morphological Laplace

CSP - Computer Service Labs 29



Image Analysis (AP3471) Cris Luengo

Exercise 19: Edge and/or texture sensitivity
The morphological gradient magnitudes defined above are sensitive to both
edges and noise (or small detail). We can modify them such that they are sensi-
tive to edges only:

Edge3 = dilation(A)− closing(A)
Edge4 = opening(A)− erosion(A) .

Use these edge detectors to compute the morphological Laplacian and the sharp
morphological Laplacian. Can you explain why these filters are insensitive to the
small detail in the image (like the nose and the checkered pattern to the left)?

Repeat the previous exercise again, this time use

Edge5 = closing(A)−A

Edge6 = A−opening(A) .

What do you expect to see this time, and why?

If the differences are not clear enough, generate this test image:

>> a = gaussf((rr<64)*128+64,3);
>> a = noise(a,’uniform’,0,64);

and apply the three MSD filters you constructed in this exercise and the previous
one to it.

7.2 Other Morphological Tools

As in binary morphology, there is a grey-value equivalent to the skeleton and the propa-
gation. Additionally, there are algorithms used for segmentation (watershed transform,
see Subsection 12.3), recognition and measurement (granulometries, see Subsection
12.1). There is not enough time in this course to study all of these, but the interested
student is referred to

- Soille, P., “Morphological Image Analysis, Principles and Applications”,
Springer, 1999.
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8 Image Manipulation

This section will explain a bit further how to manipulate images in DIPimage. This
is a non-trivial topic, because there are many functions that you should be aware of.
Knowing these functions will avoid a lot of work during your research.

If you are skipping the advanced sections, it will suffice if you skim over the next three
sub-sections, and use them as reference later on.

8.1 Coordinate System

Unlike MATLAB arrays, images in DIPimage are indexed starting at 0. Also, the first☞ index indicates the x-coordinate (horizontal) instead of the row number. This is an im-
portant difference that might be a bit confusing at the beginning. Know the type of the
object you are indexing. To extract the value of a pixel, use the syntax b=a(30,10).
This syntax can also be used to assign a value to a pixel: a(30,10)=255. The y-
axis is inverted in the display of images. This is very common in image processing.
However, this is only in the display, the coordinate system used is Cartesian.

Many computations require the coordinates of each of the pixels being addressed. This
is easy if you write loops over the pixel values:

>> for x=0:255
>> for y=0:255
>> b(x,y) = function(a(x,y),x,y);
>> end
>> end

However, this type of code is very slow, and often unnecessary. Using the functions☞ xx, yy and zz you can create images containing the coordinates of all pixels (addi-
tionally, the functions rr and phiphi provide polar coordinates). These can be used
in vectorized code, code that applies the same operation on all pixels at once:

>> b = function(a,xx(a),yy(a));

For example, to compute the center of mass of an image:

>> x = sum( a * xx(a,’corner’) ) / sum(a)
>> y = sum( a * yy(a,’corner’) ) / sum(a)

Note the option ’corner’ in the call to xx and yy. It causes the origin to be in
the upper left corner (the same as in indexing). If this option is omitted, the origin is
in the center of the image (the same ‘center’ used by the Fourier Transform ft, see
Subsection 5.1).

Finally, to retrieve a list with coordinates of non-zero pixels (especially useful on bi-☞ nary images) use findcoord. The standard MATLAB function find returns in-
dices into the array, which can also be used to index. Indices also start at 0 for images,
and run (in de MATLAB way) first down and then across:

[ 0 3 6
1 4 7
2 5 8 ]
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To convert from coordinates into indices:

>> I = y + x*size(a,2) + z*size(a,2)*size(a,1)

Note that:
>> x = xx(a,’corner’); % image with x-coordinates
>> crd = double(x(m)); % select elements in mask

is the same as
>> crd = findcoord(m); % get coordinates of mask pixels
>> crd = crd(:,1); % keep only x-coordinates

(Indexing with a mask image (m) is explained below, read on.)

8.2 Region Extraction

To access more than one pixel from an image there are several possibilities.

• The easiest is indexing a rectangular patch:☞
>> b = a(64:127,0:63)
>> a(64:127,0:63) = b*2

Note that 64:127 is an array with 64 elements. This can be exploited to do
things like:

>> a([0,end],:) = 0
>> a(:,[0,end]) = 0

In indices, the colon (:) indicates all elements; to indicate a range, as above, the
colon is used between two elements. If you need a regular sub-set of pixels, use
the notation 64:3:127, which takes one pixel and skips two (64, 67, 70, etc.).
end means the last pixel in that dimension.

Using this syntax it is not possible to access a set of isolated pixels:

>> a([x1,x2,x3],[y1,y2,y3])

retrieves not only the values [x1,y1], [x2,y2] and [x3,y3], but also all
values [x1,y2], [x1,y3], [x2,y1], etc.

• To index a set of isolated pixels, you will need to use indices into the image, as☞ shown earlier (it is possible to use an array of indices). The values returned are
kept in the same order as the indices were given (that is, a([3,1]) returns the
values for pixels number 3 and 1).

• The third indexing method is using a mask image. A mask image is a binary☞ image with 1 at the locations of the pixels being indexed. It must, of course,
have the same size as the image being indexed into. The next piece of code
shows indexing using a mask image and indices.

>> m = a>100
>> a(m) = 100
>> I = find(m)
>> a(I) = 0
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8.3 Transformations

Another important image manipulation class are the functions that perform rotations,
mirroring, shifting, inversions, resampling, etc. Most of these are located under the
“Transforms” menu. We will not go too deeply into them here, since their use is quite
obvious. You already might have used some of these, and you will certainly need them
in the future. Be aware of their existence.

8.4 Test Image Generation (advanced)

Using the functions xx, yy, etc. introduced above, we can construct test objects. Test
objects are very often necessary to test an algorithm, and compare its results to what
we know it should produce (which we do not on natural images).

This example produces a Gaussian kernel:

>> sigmax = 20 ; sigmay = 10;
>> exp(-0.5*((xx/sigmax)^2+(yy/sigmay)^2))/(2*pi*sigmax*sigmay)

Examine the code carefully, and execute it in portions to see what each one does.
Compare the code to the mathematical formula of the Gaussian kernel,

exp

(
− 1

2

[(
x

σx

)2
+

(
y

σy

)2
])

2πσxσy
,

and note how we don’t need to apply it for each pixel separately, but can compute the
whole image at once.

Exercise 20: Generation of a rotated Gaussian kernel
Using the code given above and Figure 5 as a guide, generate a rotated Gaussian
kernel (do not rotate an image of a Gaussian kernel, use a rotated coordinate
system).

Exercise 21: Generation of a rotated binary rectangle
Change the code you wrote for the previous exercise to generate a rectangle of
certain size and orientation.

Hint: you can construct a rectangle by comparing both coordinates to the re-
quired sizes, i.e. abs(x)<30 & abs(y)<50.

Note: Keep this function, you will use it in Section 9.

To convert your script into a function, add the following line at the top of the☞ file:

function out = rect(sz,phi)

and save it as rect.m. This will also be the name of the function. You will be
able to call it like this:

>> a = rect([10,20],pi/6)

Within your function, sz will have the value [10,20], and phi the value π
6 .
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Figure 5: Coordinate system for the rotated Gaussian

The function noise adds noise to an image. The default noise type is ’gaussian’
(additive, Gaussian-distributed noise), but it can also produce ’uniform’ and
’poisson’ noise (both are also additive, but with different distribution). This is
important to be able to test your algorithms.
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9 Measurements

This section describes the basic Image Analysis procedures: measuring properties of
objects in images. There are other tools that fall under the denomination of Image
Analysis, such as morphology (selecting objects based on their shape, see Section 6)
and scale-spaces (discussed in Subsection 12.1).

9.1 Extracting Single Objects

In a binary image, an object is considered a connected set of pixels. As discussed
in Subsection 6.1, there are different ‘connectivity modes’ that define which pixels
are considered connected (and thus belonging to the same objects). Before we can
measure a property of such an object (say, the number of pixels that define it), we need
to extract the object from the image. The common way of doing this is to label all
objects. Labelling involves finding any foreground pixel in the image, give it a value
(the label ID), and recursively give the same value to all pixels that are connected to
it. This process is repeated until all foreground pixels have been assigned to an object.
To extract one object, all we now need to do is get all pixels with its ID.

Load the ‘cermet’ image and threshold it. Now find the function label in the “Trans-
forms” menu. Look at the label result using the “labels” mapping mode, in which each
object is displayed in a different color. This makes it easy to see if objects have been
correctly separated or not. Note that there are only a small number of different colors.
If there are more objects, some will share a color. Use the “Pixel testing” mode on
the result to check what values each object has. To extract object number 38 from the
image, we can now do (assuming la is the label image):

>> la == 38

Note the double equal sign, it is the equality operator (as opposed to the assignment
operator). The area of this object is now easily obtained with sum(ans).

labeled objects object number 38

9.2 Measuring in Binary Images

In Exercise 15 (Subsection 6.3) we tried to separate nuts from bolts using binary mor-
phology. Here we will do the same exercise by measuring different object properties,
such as the area, perimeter and lengths.
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Load the ‘nuts_bolts1’ image again. Threshold and label it, making sure to keep the
original (grey-value) image. Now we are ready to do some measuring. Select the
measure function in the “Analysis” menu. The object image is the labeled image,
and the grey-value image the original image before segmentation. It won’t be used
by the measurements we will do, but it has to be provided. Select ’size’ as the
measurement (it computes the area by counting the number of pixels). If you leave
‘Object IDs’ empty, all objects will be measured. Put the output in a variable called
data. Now

>> sz = data.size

is a MATLAB array with the sizes of the objects. Now type

>> diphist(sz,[1,1500],500)

This will create a histogram for the areas. There are obviously two area categories.
Let’s say that areas up to 1000 pixels are for the nuts, and larger areas for the bolts.
There exist ways of doing this automatically (similar to the automatic thresholding
techniques), but we won’t go into them now. We will use the function msr2obj to
‘paint’ each object with their measured size. Choose the label image as the input, and
data as the measurement data. We can now threshold this image at the chosen value
of 1000 to retrieve the bolts. The nuts can be obtained by xor-ing the original binary
image and the bolts image:

>> nuts = xor(b,bolts)

labeled ‘nuts_bolts1’ ‘painted’ objects threshold at 1000

We could do the same thing with other measurements of the objects, like the
length (’feret’), the size of bounding box (’dimension’), or the perimeter
(’perimeter’). Try them out.

Note that it is possible to obtain a whole series of measurements at once, by specifying
more than one measurement name. To extract all measurements for one object, index
the returned measurement object using the label ID of the object you are interested in.
The next example illustrates the four types of indexing:

>> data(4) % properties of object with ID 4
>> data.size % size of all objects
>> data(4).size % size of object with ID 4
>> data.size(4) % size of 4th. element
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9.3 Errors Introduced by Binarization

Note that the area, perimeter, etc. you measured earlier are not the exact measurements
you could have done on the objects in the real world. Because of the binarization, the
object boundary was discretized, introducing an uncertainty in its location. The true
boundary is somewhere between the last on-pixel and the first off-pixel. The pixel
pitch (distance between pixels) determines the accuracy of any measurement.

Exercise 22: Thought experiment
Imagine you drive a car with an odometer that indicates the distance travelled in
100 meter units. You plan to use this car to measure the length of a bridge. When
you cross the bridge, sometimes the odometer advances one unit, sometimes
two. Can you use this set-up to measure the length of the bridge accurately?
How can you determine the accuracy? What special measures do you need to
take to make sure your measurement is not biased?

Exercise 23: Errors in area measurement
The object area (’size’) is computed counting the number of pixels that com-
prise the object. The error made depends on the length of the contour. Quantify
this error for round objects of various sizes. What happens with the accuracy as
a function of the radius? Why?

Hint: make sure you generate the objects with a random offset to avoid a biased
result. To do so, use the function rand:

>> a = ((xx+rand)^2+(yy+rand)^2) <= 64^2

Hint: on these images, you can use the function sum instead of measure, since
you only have one object in each image.

The perimeter is measured using Freeman chain codes. The weight assigned to each ofbook:
3.6.1
5.2.2

the steps and the corner count is chosen such that the mean square error is minimized
for lines under an arbirary orientation. This means that some error is made under all
orientations. The original Freeman method counts horizontal and vertical steps with
a weight of 1, and diagonal steps with a weight of

√
2. This causes horizontal and

vertical lines, as well as lines under an angle of 45◦, to be measured accurately, but all
other lines to be measured with some error. The largest error would be at 22.5◦. To
decrease this maximum error, we need to introduce a small error in the measurements
of lines under 0◦ and 45◦. By also counting the number of corners - that is, the number
of points at which the chain code changes - the errors can be further reduced.

Exercise 24: Errors in perimeter measurement (advanced)

To see the errors made by this algorithm, we will measure the perimeter of rect-
angles. All sides of a rectangle are under the same orientation (modulo π

2 ), and
thus will be measured with the same error. Using the function you made in Ex-
ercise 21 (Subsection 8.4), generate a series of rectangles with random offset,
under different orientations, and with a fixed size. For each of these rectan-
gles, measure its perimeter and scatter it versus its orientation. What is the
influence of the orientation on the accuracy and precision of the measurement?
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What is the influence of the object size on the accuracy of the measurement?

9.4 Measuring in Grey-Value Images (advanced)

In the previous sections we threw out a lot of information by binarizing the images
before measuring the objects. The original grey-value images contain a lot more infor-
mation (assuming correct sampling) than the binary images derived from them (which
are not correctly sampled). As long as we only apply operations that are sampling-
error free, we can perform measurements on grey-value images as if we were applying
them directly to analog images. In this case, measurement error is only limited by the
resolution of the image, noise, and imperfections caused by the acquisition system.

The following code produces a band-limited disk (with height or intensity 255 and
radius 64):

>> a = testobject(a,’ellipsoid’,255,64)

To measure its area, sum all the pixel values. The result should be very close to the
true area of the disk times its height (to see really how close they are, subtract the two
results from each other). Compare to the result obtained on the binarized version of
this image.

The perimeter can be obtained by integrating the gradient magnitude:

>> sum(gradmag(a,2))/255

Note that the scale of the gradient (the sigma of the Gaussian derivative) has an influ-
ence on the result of this measurement. If it is taken too large, some of the grey-values
will disappear over the edge of the image; if it is taken too small, discretization errors
of the filter will have the upper-hand.

The curvature is defined as the rate of change of orientation along the contour, and can
be computed using the second derivative along the contour (dcc in 2D):

>> b = gradmag(a,2)
>> c = max(b,max(b)/5) % Avoid division by 0
>> c = -dcc(a,2)/c

Make sure you only look at the results near the boundary; elsewhere the curvature is
ill-defined. Mean curvature is given by

>> mean(c(threshold(b)))

and should equal one over the radius ( 1
64 = 0.0156).

disk image perimeter curvature
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Exercise 25: Bending energy
Bending energy is defined as the square of the curvature, integrated over the
perimeter. Make a script that computes the bending energy of the disk in a. The
result should be 2π

64 .

Hint: to integrate over the perimeter, you need a mask image m that indicates
the pixels that belong to the perimeter (derived from the gradient magnitude, for
example), and sum the pixel values that fall within this mask (sum(a(m))).

Exercise 26: Area, perimeter and bending energy of ’cermet’
Read in the image ‘cermet’, and apply an erfclip around 128, with a range
of 64. This should make the edges more pronounced and suppress intensity
fluctuations in the foreground and the background. ‘cermet’ now looks more
like the ideal image of the disk we used earlier. Note that erfclip (error-
function or soft clipping) does introduce some aliasing, but not nearly as much
as regular (hard) clipping or thresholding. As a last step, invert and stretch the
image. Now the height of the objects is 255, like in our disk image.

The measurements we did earlier (sum) now need to be done separately for each
of the objects. For this purpose we will use the measure function. But we will
require a label image in which each label covers one object and the area around
it. Try to make such a label image. (Hint: use a skeleton of the background.)
See if you are able to remove the labels for the objects that touch or are close to
the edge of the image, without extending the labels of the other objects.

Compute the sum over each of the regions in your label image of the soft-clipped
(erfclip) ‘cermet’ (using measure). This is the area for each object. Do the
same thing using the gradient magnitude of the image. This is the perimeter
for each object. Compare these results to measurements on the binarized im-
age (’size’ and ’perimeter’). (We don’t know the true values, so this
comparison is a bit useless.)

Now compute the bending energy of each object. Use the function msr2obj to
paint each label (in the label image) with the bending energy. Now multiply this
image with the binarized ‘cermet’ image. This allows you to examine the result
more closely. Make sure that smaller objects have a higher bending energy, as
do objects with sharp bends in their contour.

soft-clipped ‘cermet’ perimeter labeled regions
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area perimeter bending energy
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10 Vector Images (advanced)

Until now all images we have seen were represented by a single value for each pixel
(i.e. they were functions f : R

n → R, where n is the dimensionality of the image. A
more general representation of an image is a function f : R

n → R
m, where each pixel

is represented by m values. Depending on the meaning of these values, this can be:

- a color image: each value is recorded through a different color filter,

- a multi-spectral image: each value is the intensity in a very arrow band of wave-
lengths,

- an image of a sample dyed with different fluorescent dyes, each value being the
response to a different excitation laser,

- {any other way of combining different information from the same location}, or

- a mathematical construct: the values are computed from the original image, for
example the derivative in orthogonal directions.

10.1 Vector Image Operations

The vector image as a mathematical construct is really only useful in the mathemat-
ical context itself. We use it in some advanced applications to ease the implementa-
tion of operations. By using these vector images, we avoid the hassle of defining an
image for each of the components. Take for example the vector image returned by
gradientvector. The first component is the gradient in the x-direction, and the
second one that in the y-direction. Apply the function gradientvector (or just
gradient) on the image ‘erika’. The result is a “2x1 tensor image” (a tensor is just
the more general form of a vector: a tensor with all values along a row or a column is
a vector). There are three techniques to see the information in this image:

- extract an image with only one of the vector components: b{1},

- add colorspace information, converting it into a color image; this al-
lows to display three components at once in the RGB colorspace:
colorspace(b,’RGB’), or

- if it is a one-dimensional or two-dimensional image, catenate the individ-
ual components into a new dimension: cat(3,b) (not useful for higher-
dimensional images, because of the display limitations in the environment).

The next few commands show how to compute the gradient in an arbitrary direction
(the angle −π

3 is used; this is the direction from Erika’s chin to her forehead):

>> b = gradientvector(a)
>> alpha = -pi/3;
>> v = [cos(alpha);sin(alpha)]
>> c = b’*v

By multiplying (* is the vector product) the gradient vector image b with a vector v,
we project the gradient upon this vector (note we need to transpose the image b to
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align the components correctly for this operation). Thus, what we are doing here is the
same as:

>> c = dx(a)*cos(alpha) + dy(a)*sin(alpha)

In this example, using a vector image might seem more complicated that necessary, but
the code that uses the tensor image works for any size of vector, whereas the explicit
form is for two-element vectors only. Also, it is easier to see what the code with the
vector image is doing, since it better resembles mathematical notation.

10.2 Color Spaces

Images as stored in computer memory or files usually specify color in either RGB
(red, green, blue) or CMYK (cyan, magenta, yellow, black). The first directly maps
to the computer monitor, which uses red, green and blue phosphors. The second form
directly maps to printers, which use those four colors of ink. However, there are many
more representations for color.

RGB is a linear representation, since it directly maps to light intensities of the various
frequencies. However, human vision is logarithmic, in the sense that the perceived
contrast is based on the ratio of two intensities, not the difference (the smallest contrast
that we can perceive is one intensity being 1.01 times the other). Thus, RGB is a
(perceptually) non-uniform color space.

CIE XYZ is also a linear representation, but differs from RGB in that it is a standard.
RGB values can be interpreted in many ways, and are usually tuned to a specific set
of monitor phosphors. The XYZ color space does not have this dependency, and its
weighting curves are tuned to human vision. Like RGB, it is not perceptually uniform.
The Y value is the luminance component. Luminance is the intensity per unit area
weighted by the spectral sensitivity of the human eye (units: cd ·m−2), in contrast to
radiance, which is the total intensity of radiated energy (units: W · sr−1 ·m−2).

A perceptually uniform color space is very difficult to define. After more than a decade
of research, the CIE decided on standardizing two systems, since neither was ideal.
These are L∗u∗v∗ and L∗a∗b∗ (also written as CIELUV and CIELAB). Both have one
lightness channel and two chroma channels. Their drawback is that it takes quite a
while to compute the transformation to RGB space for display. The lightness L∗ is
defined as the cube of the luminance Y, except for very low values, where the relation
is linear:

L∗ =




116
(

Y
Yn

) 1
3 −16 , 0.008856 < Y

Yn

903.3Y
Yn

, Y
Yn

< 0.008856

,

where Y
Yn

goes from 0 to 1 (Yn being the luminance of the reference white). Because
of the offset, this curve can be approximated with a 0.4-power function. This leads to
the (non-linear) R′G′B′ space, which is quite close to perceptual uniformity:

R′ = R0.4

G′ = G0.4

B′ = B0.4
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Finally, there exist some other color spaces like Y′CBCR (luma plus two chroma chan-
nels, non-linear), HSB (Hue, Saturation and Brightness) and HLS (Hue, Lightness,
Saturation). These last two are neither linear nor perceptually uniform, and should no
longer be used. HSB and HLS were developed in an age when users had to specify
colors numerically, but are not useful anymore. Instead, you should use either a lin-
ear color space or a perceptually uniform color space. The mayor drawbacks are that
the “lightness” or “brightness” are not proportional to Y nor L∗; and that the hue (an
angle) has a discontinuity at 360◦ (it is not possible to perform arithmetic mixtures of
colors expressed in polar coordinates).

In DIPimage there are several of these color spaces implemented. The function
colorspace converts color images from one representation to another. Note that
images in any color space are converted to RGB for display.

>> a = readcolorim(’gogh’)
>> b = colorspace(a,’Lab’)

Exercise 27: Segmentation on color (part I)
Some images are easily segmented when the correct color space has been cho-
sen. This is very often L∗a∗b∗, and this exercise and the next will show why.

Read in the image ‘robosoccer_1’. This is an image recorded by a soccer-
playing robot. You’ll see the dark green floor, greyish walls, a yellow goal, a
black robot (the goal keeper), and two orange balls (of different shades of or-
ange). We will write an algorithm to find these balls.

Look at the R, G and B components (extracting them with a{1}, a{2}, etc.).
You’ll notice that it is not easy to segment the balls using any one of these three
images. One problem is that the bottom side of the balls is darker than the top
part. We need to separate color from luminance, as does the L∗a∗b∗ color space.

Convert the image into L∗a∗b∗. The a∗ channel (red-green) makes the segmen-
tation very easy (by chance: we are looking for objects with lots of red, and
the balls are the only such objects in the image). A ’triangle’ threshold
will extract the balls. Note that the thin lines along strong edges are caused by
incorrect sampling in the camera. This is a common problem with single-chip
CCD cameras, where the three colors of a single pixel are actually recorded at
different spatial locations. If you zoom in on such a strong edge in the input im-
age, you’ll notice the color changes. These thin lines in our thresholded image
are easy to filter out using some simple binary filtering.

The images ‘robosoccer_2’ through ‘robosoccer_5’ contain the same scene
recorded with smaller diaphragms (less light reaches the detector). Test that
this algorithm still works for these worse lighting conditions.
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‘robosoccer_1’ red channel green channel

a∗ channel ‘triangle’ threshold clean result

Based on L∗a∗b∗, we can define

C∗
ab =

√
a∗2 +b∗2 and

hab = arctan

(
b∗

a∗

)
,

respectively chroma and hue (we can define similar quantities based on L∗u∗v∗, for
example). Hue is an angle in 4 quadrants, and can be computed using the function
atan2. In L∗a∗b∗ space there is no definition for saturation, but in e.g. L∗u∗v∗ there
is:

suv =
C∗

uv

L∗ .

Exercise 28: Segmentation on color (part II)
The a∗ channel provides a good solution to our problem. However, if there
were a red or purple object in the scene (like a robot adversary), this technique
wouldn’t work. We want to be able to differentiate orange not only from yellow,
but also from red and purple. The hue should provide us with a nice tool for this
purpose.

Compute the hue (hab) image from ‘robosoccer_1’ and use it to segment the
balls. Try your program on the other images in the series.

hue (angle display) saturation
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10.3 Filtering Color Images

Processing color images is a very difficult topic, and many filters have never been
applied satisfactorily to color images yet.

Let’s start with linear filters. Since a color is represented as a vector, addition, sub-
traction and scalar multiplication can be performed on pixels. Furthermore, these op-
erations are all performed on an element-per-element basis, which means that these
operations can be performed on the different color channels separately. Thus, all lin-
ear filters (which only require these three operations) can be applied on each channel
separately. This converts the complexity of filtering a 3-component vector image to
filtering three grey-value images. However, the fact that these vectors are linear, does
not imply that they are visually linear. For example, the average of ‘pure’ green and
‘pure’ red might be visually closer to green than to red, or might even be some shade
of green and not look like yellow at all. Being half-way between two colors in some
color space does not imply being perceptually half-way. That is where perceptually
uniform color spaces come in.

As a second note of warning, color spaces are usually a sub-set of a three-dimensional
space. The possible values for a color is called the gamut, and depends on the repro-
duction capabilities of a device. For example, the three RGB values are confined to
the range [0,255]. Being outside the gamut means that clipping will occur somewhere
along the way between the computer memory and your eyes. Since this clipping might
occur in a different color space than the one you were computing in, it is possible that
the color is changed. We will see an example of this later.

You’ll notice that color images are not supported directly by the filters in DIPimage. To
apply the same filter to each of the color channels, use the function iterate (which
actually works for any type of image array, it doesn’t need to be a tensor image).

>> a = readcolorim(’gogh’)
>> b = iterate(’gaussf’,a,10)

If you like, try unsharp masking.

‘gogh’ Gaussian filter unsharp mask

Exercise 29: Color edge detection
Load the color image ‘jello’ (remember to use readcolorim). Compute the
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magnitude (norm) of the gradmag, and compare to the gradmag resulting
from the luminance image (the luminance can be obtained by converting to the
‘grey’ color space; the result is a grey-value image). Which one is preferable?
Why?

Convert the image to L∗a∗b∗ color space and compute the gradient magnitude
there. Notice how features are weighted differently now (for example, the
shadow’s edge does not produce a strong response).

‘jello’ grad. mag. per channel gradient magnitude

luminance grad. mag. of luminance grad. mag. in L ∗a∗b∗

Exercise 30: Filtering in another color space
It is often better to filter images in a perceptually uniform color space, such as
L∗a∗b∗ (which is supposed to be Euclidean). However, these color spaces have
a strange boundary: for different values of L∗, a∗ and b∗ have different ranges.
While processing in this space, it is necessary to keep this in mind. It can be
seen on a simple test image what happens if we don’t:

>> a = newimar(3,1);
>> a{1:3} = newim(256,256);
>> a(128:255,128:255) = 255;
>> a{1}(128:255,0:127) = 255;
>> a{2}(0:127,128:255) = 255;
>> a = colorspace(a,’RGB’)

Apply the Gaussian filter as above to this image, then convert it to the L∗a∗b∗

color space and apply it again. Compare the results. Why is this different? What
strange effects occur to the image in L∗a∗b∗ space?

For non-linear filters, it very often is not this clear how they should be applied to color
images. For example the morphological operations, that never should introduce new
colors (the values of the output are selected from the input by maximum or minimum
operations), are particularly difficult to implement.

Exercise 31: Color morphology
Apply the dilation to each of the components of the test image of the previous
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exercise (use an elliptic structuring element with a large size). Where does the
little yellow corner come from?

test image per-channel dilation desired result for dilation

It has been proposed to ‘sort’ the RGB values in some way so that the maximum
(or minimum or median) value can be selected from a set. The most logical way of
doing this is to treat the RGB value with the highest intensity as the largest value.
To resolve ties, one of the colors must be given ‘priority’ (for example, the one with
the largest green value). This indeed solves the problem of introducing new colors in
morphological operations, but it also produces a biased result (since green is favored).
We won’t implement this operation in this course.

Further reading about color spaces and color (or vector) filtering:

- Poynton, C., “Frequently Asked Questions about Color”,
http://Home.InfoRamp.Net/˜poynton/ColorFAQ.html.

- Poynton, C., “Frequently Asked Questions about Gamma”,
http://Home.InfoRamp.Net/˜poynton/GammaFAQ.html.

- Sangwine, S.J. and Horne, R.E.N., “The Colour Image Processing Handbook”,
Chapman & Hall, London, 1998.
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11 Adaptive Filtering (advanced)

All filters we had seen up to now had a fixed filter window. By changing this window
for each location in the image (based on local properties), it is possible to construct
more complex non-linear filters capable of, for example, smoothing an image and
enhancing its edges at the same time.

11.1 Kuwahara

The simplest form of adaptive filtering is the one where the neighborhood is shifted
to minimize some criterion. The Kuwahara filter does this to smooth an image whilebook:

9.4.2 enhancing the edges. Try it on the image ‘imser1’, and compare your result with other
non-linear filters such as median filtering and close-open filtering.

median filter close-open filter Kuwahara filter

Exercise 32: Constucting the Kuwahara filter
What the Kuwahara filter does is take the average (uniform filter) over a neigh-
borhood, shifted so that the variance over that neighborhood is minimized (the
pixel for which this computation is being done should always be included in the
neighborhood). We implement this through a filtered image (unif) and a se-
lection image (varif), in which the minimum in a neighborhood is found. The
value of the filtered image at this point is used as the result of this filter.

This is done by the selection filter (selectionf), which is much like the
minimum filter, but doesn’t return the value of the minimum in the input image.
Instead, it returns the value of another input image at that same position. Thus,
Kuwahara can be written as:

>> b = selectionf(unif(a,5),varif(a,5),5)

Try variants of this filter, like substituting varif(a) for varif(unif(a)),
and using different smoothing filters. Note that the filter size is used three times:
for both of the input images of the selection filter, as well as for the selection fil-
ter itself. Is it important that both input images are computed with the same filter
size? Does the selection filter require the same filter size as its input images?

Two morphological filters we have seen (the opening and the closing) are actually also
some sort of adaptive filtering (although they are implemented as the sequence of two
fixed-filter operations): the location of the filter over which the maximum is taken (in
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case of the closing) is chosen such that this maximum has the lowest possible value.
We can see that by comparing the result of the closing with that of the selection filter
applied to the result of a maximum-filtered image:

>> a = readim
>> c = closing(a,5)
>> b = maxf(a,5)
>> d = selectionf(b,b,5)

Note that selectionf(b,b) is the same as minf(b).

11.2 Other Adaptive Filters

It is possible to change the shape of a filter as well as its location. For example,
some filters will use a larger or smaller neighborhood depending on the local variance.
Other filters will align themselves to the local structure, using, for example, an elliptic
neighborhood whose eccentricity is related to the anisotropy, and is oriented to match
possible lines. These filters are not very general, and therefore not directly available
under DIPimage. These are the kind of filters you have to implement yourself if the
need arises.

Filters that are easy to turn are the derivatives, since the derivative in any direction
can be computed using derivatives in orthogonal directions. As we saw in Subsection
10.1, we can create a derivative in the direction −π

3 by a linear combination of the
derivatives along the x and y axes:

>> b = gradient(a)
>> v = [cos(-pi/3);sin(-pi/3)];
>> b = b’*v

Exercise 33: Second derivative along the contour
In this exercise you will construct a second derivative that aligns itself to the
contour in each image point. For this you will need the direction of the gradient
θ (computed using atan2 and gradient), the Hessian matrix H (hessian),

H =
(

∂xx ∂xy

∂yx ∂yy

)
,

and a way of linearly combining the elements of the Hessian according to the
gradient direction:

∂φφ = vtHv ,

with

v =
(

cos(φ)
sin(φ)

)
.

Compare your result to that of the function dcc, which does the same thing.
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12 Other Advanced Topics (advanced)

This section highlights a few advanced topics often used within the Pattern Recogni-
tion Group. If you are planning on graduating there, you need to study this chapter.

12.1 Scale-Spaces

Scale-spaces are an image analysis tool which is important because often we do not
know at which scale to filter an image to obtain the desired result. In a scale-space,
we filter the image at all scales (or, in practice, a selection of scales), and examine
the resulting image. A scale-space augments the image with a new dimension for the
scale,

f (x,σ) = Φσ f (x) ,

where Φσ is a filter at scale σ . The most common filter here is the Gaussian filter,
but any one can be used, as long as some properties are satisfied (such as causality).
Scale-space theory often involves partial differential equations (PDEs), where going up
in scale is equivalent to increasing time in a diffusion process. A Gaussian scale-space
can also be written as a PDE and is equivalent to isotropic diffusion.

The difference between two scales of a Gaussian scale-space (DoG, which is similar
to a Laplace filter) is a band-pass filter, which can be used to obtain the energy of a
frequency band, as is demonstrated in the next exercise.

Exercise 34: Power scale-space
Read in the image ‘seismic1’. Apply a Gaussian filter at the scales 1,
2, 4 and 8, and take the difference of subsequent scales (for example,
gaussf(a,8)-gaussf(a,4)). Square these images and blur them with
another Gaussian filter with the same scale as the larger of the two images. This
is the power of the chosen frequency band. Now place the three images in differ-
ent planes of a color image (use colorspace as shown in Section 10). Make
sure that the low-frequency power is represented by red, and the high-frequency
power by blue.

Play around with the chosen scales. The functions scalespace and
scale2rgb should make this easier.

‘seismic1’ power scale-space in color
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A non-linear scale-space can be built (for example) using the closing or opening op-
erations. Such a scale-space is also known as a sieve, since at each scale all image
features smaller than σ have been removed. Integration over the images results in a
granulometry, which can be normalized to obtain a cumulative size distribution.

Exercise 35: Granulometry
Read in the image ‘cermet’, and apply erfclip around grey-value 128, with
a range of 64. This removes the intensity fluctuations in the light part. We will
measure the size distribution of this image in two ways: with a granulometry,
and by measuring the binarized objects with measure. The following com-
mands perform the latter:

>> data = measure(a<128,a,{’size’,’feret’});
>> [binx,I] = sort(data.feret(2,:));
>> biny = cumsum(data.size(I));
>> biny = biny/biny(end);
>> figure; plot(binx,biny,’b.-’)

Study this code carefully, and understand what it does: data.feret(2,:)
is the second Feret diameter for all objects (the smallest diameter). The x-axis is
formed by these values. We plot the weight of the objects against this diameter,
in a cumulative distribution. The variable I contains the order of the objects after
being sorted, and is used to put the size array in the same order. Finally, the
cumulative weight is normalized to 1.

Now apply a closing to the image a at the scales greyx =
sqrt(2).ˆ[1:12], and compute the mean grey-value for each of the
results (do this using a for loop). These values should be in an array greyy.
Now normalize this array using mean(a) and max(a) as the lower and upper
bounds for the cumulative distribution (the first one is the result at scale 0,
the other at scale inf. Now plot this distribution to the same figure window
by bringing the previous plot to the foreground, and executing the following
commands:
>> plot(greyx,greyy,’ro-’)
>> legend({’binary’,’granulometry’},2)
>> set(gca,’xscale’,’log’)

(The last command sets the x-scaling to logarithmic, which is a good idea since
we also measured our distribution logarithmically). Note that the points at which
we measured the distribution with the granulometry are in good agreement with
the binary version. However, we don’t know what happens in between those
points. We can compute any point in this distribution independently from the
other points. Figure 6 shows what you should see as a result.

12.2 Hough Transform

The Hough Transform is a technique to detect pre-defined shapes. The original Hough
Transform is used to detect straight lines; detection of other shapes can be done in a
similar way. If you want to know more about the Hough Transform see:

CSP - Computer Service Labs 51



Image Analysis (AP3471) Cris Luengo

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1
binary      
granulometry

Figure 6: Result for Exercise 35.

- Leavers, V.F., “Shape detection in computer vision using the Hough transform”,
Springer-Verlag, 1992.

A line can be parameterized by (see Figure 7)

p0 = xcos(θ0)+ ysin(θ0) ,

where p is the algebraic length of the normal of the line that passes through the origin,
and θ is the angle that this normal makes with the x-axis.

θ0

0P

y

x

Figure 7: Line parameterization.

To demonstrate the Hough Transform, we first have to make the vectors x and y, that
together compose a line.

>> x = 0:30;
>> p0 = 20; theta0 = pi/3;
>> y = (p0-x*cos(theta0))/sin(theta0);
>> plot(x,y)
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There are a lot of lines that go through a point (x1,y1). However, there is only one line
that goes through all points (xi,yi). At each point we determine all lines (combinations
of p and θ ) that go through that point:

>> theta = 0:pi/256:2*pi;
>> p = x(1) * cos(theta) + y(1) * sin(theta);
>> plot(theta,p)

This results in a parameter space as shown. The axes of this space are the parameters
you are looking for (in this case p and θ ).

0 1 2 3 4 5 6 7
−40

−30

−20

−10

0

10

20

30

40

theta

p

Parameter space Sampled parameter space

Exercise 36: Understanding the parameter space
In the figure, you can see two points where all lines get together.

- What do these points represent?
- Why are there two points?
- Compare this result to a parameter space of another line.
- How could you reduce the size of the parameter space?
- Are there any advantages or disadvantages of reducing the size?

Exercise 37: Implementing the Hough Transform
Now that the basic idea of the Hough Transform has been explained, we have to
implement the Hough transform so that you can apply it on binary images and
do measurements in the parameter space.

1. Make an binary input image of size 32x32 containing one or more lines.

2. Determine the necessary size of the parameter space if you want to measure
θ from 0 to 2π with an accuracy of π/128, and p from 0 to 32

√
2 with an

accuracy of 1.

3. Make an empty parameter space image of the determined size.

4. Fill the parameter space:
- For each object point in the image determine all possible combinations

of p and θ .
- For each combination of p and θ determine the corresponding pixel

in the parameter space image and increment the value of that pixel by
one.

5. Find the maximum in the parameter space.

6. Determine the corresponding values of p and θ .
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Apply your Hough Transform to a binarized version of the image ‘schema’.

Even for small images, the Hough transform is a time consuming process. Smart
programming will decrease the execution time dramatically. For shorter execution
times, the number of for-loops has to be reduced.

Exercise 38: Reducing execution time
Compare the calculation times t1 and t2 of

nx = 100; ny = 100; x = 0:99;
a = newim(nx,ny); b = newim(nx,ny);
tic
for q = 5:5:30;

y = round((1+cos((x+q)/25))*40+10);
for ii=1:length(x)

a(x,y) = a(x,y)+1;
end

end
t1 = toc
tic
for q = 5:5:30;

y = round((1+cos((x+q)/25))*40+10);
I = y + x*ny;
b(I) = b(I)+1;

end
t2 = toc

Use this to speed up your Hough Transform. The variable I in the second part is
an array containing linear indices into the image b. Note how it is computed: the
column number multiplied by the height of each column, plus the row number.
MATLAB arrays (and thus also images) are stored column-wise.

12.3 Watershed Transform

The watershed transform is a morphological segmentation tool. Imagine a 2D image as
a 3D landscape, and imagine that landscape being flooded. Each of the local minima is
an independent source, and as the water level raises, we want to keep the different pools
separated. To do so, we raise watersheds (dykes) in between them to avoid one’s water
to mix with the other’s (see Figure 8). The pools form a tessellation (segmentation)
of the image, and the watersheds are the boundaries between them. To reduce the
number of regions found, it is common to apply some smoothing operation to the
input image (one that reduces the number of local minima). Even so, objects are often
segmented into many pieces, which must be joined in a post-processing step, based
on similarity (e.g. variance of the pixels of both segments together). The watershed
transform (watershed) as it is implemented in DIPimage can merge regions while
they are being grown, based on their size and ‘depth’ (grey-level difference between
the lowest and the highest point in a region, at the moment the merging takes place).
This produces acceptable results, but is not as flexible as a post-processing step.
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Figure 8: Watershed on 1D image. The arrows indicate the local minima that act as
sources. The red lines are the watersheds.

‘cermet’ watershed overlay

A watershed can be applied directly to an image where the objects are dark, and sep-
arated by light borders, like ‘cermet’, but not to an image where we want to separate
objects with different grey-values, like ‘alumgrns’. In such a case, you can apply the
algorithm to the result of an edge-detection filter (like gradmag).

‘alumgrns’ gradient magnitude watershed overlay

CSP - Computer Service Labs 55



Image Analysis (AP3471) Cris Luengo

A List of functions and operators

A.1 Functions

File I/O

readim Read image from file
writeim Write image to file
readcolorim Read color image from TIFF file
writecolorim Write color image to TIFF file
readavi Read AVI
writeavi Write AVI

Display

overlay Overlay image with mask
orientationplot Orientation plot
dipgetimage Retrieves an image from a display
dipcrop Crop image from display
dipgetcoords Get coordinates of clicks
diproi Interactive rigion of interest selection
diptruesize Set figure size
dipclf Clear all image windows

Generation

newim New image
ramp Ramp
xx Creates an image with x coordinates
yy Creates an image with y coordinates
zz Creates an image with z coordinates
rr Creates an image with r coordinates
phiphi Creates an image with phi coordinates
testobject Creates bandlimited test objects
noise Add noise to an image
drawline Creates a line in an image
drawpolygon Creates a polygon in an image
gaussianblob Sets a Gauss shaped spot into an image

Manipulation

shift Shift an image
rotation Rotate an image around an axis
rotation3d Rotate a 3D image freely
mirror Mirror an image
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resample Resample an image
subsample Subsample an image

Point

clip Grey-value clipping
erfclip Grey-value error function clipping
stretch Grey-value stretching
hist_equalize Histogram equalization
threshold Thresholding
lut Look-up table (with interpolation)
get_subpixel Retrieves subpixel values in an image

Filters

convolve General convolution filter
gaussf Gaussian blurring filter
unif Uniform blurring filter
maxf Maximum filter
minf Minimum filter
medif Median filter
percf Percentile filter
varif Variance filter
gabor Gabor filter
gabor_click Interative Gabor filter

Differential Filters

gauss_derivative Gaussian derivatives
dx First Gaussian derivative in the X-direction
dy First Gaussian derivative in the Y-direction
dz First Gaussian derivative in the Z-direction
gradmag Gradient magnitude
gradientvector Gradient vector
dxx Second Gaussian derivative in the X-direction
dyy Second Gaussian derivative in the Y-direction
dzz Second Gaussian derivative in the Z-direction
dxy Second Gaussian derivative in the XY-direction
dxz Second Gaussian derivative in the XZ-direction
dyz Second Gaussian derivative in the YZ-direction
dgg Second Gaussian derivative in the gradient-direction
dcc Second Gaussian derivative in the contour-direction
laplace Laplace operator
laplace_plus_dgg Laplace + Dgg
laplace_min_dgg Laplace - Dgg
hessian Hessian matrix of an image
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Adaptive Filters

kuwahara Kuwahara filter for edge-preserving smoothing
selectionf Selection filter
tframehessian Second derivatives driven by structure tensor
gsdif Geometry steerd diffusion
gaussf_adap Adaptive Gaussian Filtering
percf_adap Adaptive Percentile Filtering

Binary Filters

bdilation Binary dilation
berosion Binary erosion
bopening Binary opening
bclosing Binary closing
hitmiss Hit-Miss operator
bskeleton Binary skeleton
bpropagation Binary propagation
brmedgeobjs Remove edge objects
countneighbours Count neighbours
bmajority Binary majority voting
getsinglepixel Get single-pixels from skeleton
getendpixel Get end-pixels from skeleton
getlinkpixel Get link-pixels from skeleton
getbranchpixel Get branch-pixels from skeleton

Morphology

dilation Grey-level dilation
erosion Grey-level erosion
opening Grey-level opening
closing Grey-level closing
dilation_se Dilation with a user-defined structuring element
erosion_se Erosion with a user-defined structuring element
closing_se Opening with a user-defined structuring element
opening_se Closing with a user-defined structuring element
rankmax_opening Rank-max opening
rankmin_closing Rank-min closing
rankmax_opening_se Rank-max opening with a user-defined structuring element
rankmin_closing_se Rank-min closing with a user-defined structuring element
reconstruction Reconstruction by dilation
watershed Watershed

Transforms

ft Fourier Transform (forward)
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ift Fourier Transform (inverse)
dt Euclidean Distance Transform
vdt Vector Distance Transform
gdt Grey-value Weighted Distance Transform
label Label objects in a binary image
hull Creates the convex hull of binary image

Analysis

measure Measures objects in an image
msr2obj Label each object in the image with its measurement
msr2ds Convert a measurement structure to a PRTOOLS dataset
measurehelp Provides help on the measurement features
scalespace Gaussian scale-space
morphscales Morphological scale-space
scale2rgb Convert scale-space to RGB image
structuretensor Computes Structure Tensor for 2D images
structuretensor3d Computes Structure Tensor for 3D images
curvature Curvature calculation
opticflow Optic flow
findshift Finds shift of two images

Statistics

diphist Displays a histogram
chordlength Chord lengths of the phases in a labeled image
paircorrelation Pair correlation of the phases in a labeled image
radialdistribution Chord Length
radialmax Radial maximum
radialmin Radial minimum
radialmean Radial mean
radialsum Radial sum
mse Mean square error
mre Mean relative error

A.2 Mathematical Operators (grey in, grey out)

Unary

- negate image -a
round, floor, etc. image with only integer pixel values round(a)
abs absolute abs(a)
sin, log, sqrt, etc. math operations on pixel values sin(a)
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Binary

+ sum of two images a+b
- minus a-b
* times a*b
/ division a/b

ˆ power aˆ2
mod modulus (signed remainder of a/b) mod(a,b)
max, min selecting pixel values max(a,b)

A.3 Statistical Operators (grey in, single value out)

Unary

sum sum of pixel values sum(a)
mean mean pixel value mean(a)
std standard deviation of pixel values std(a)
max maximum pixel value max(a)
min minimum pixel value min(a)
median median pixel value (50 percentile) median(a)
percentile p percentile of the pixel values percentile(a,p)

A.4 Logical Operators (binary in, binary out)

Unary

˜ negate image ˜ b

Binary

& and b & c
| or b | c
xor xor xor(b,c)

A.5 Comparison Operators (grey in, binary out)

Binary

== equality a == b

˜= inequality a ˜= b
< smaller than a < b
<= smaller or equal than a <= b
> greater than a > b
>= greater or equal than a >= b

CSP - Computer Service Labs 60



Image Analysis (AP3471) Cris Luengo

A.6 Tricks

a(:) = 0 put all pixel values to zero
c = newim(a) create an empty image with size of a
c = newim(a,’bin’) create an empty binary image with size of a
c = a(left:right,top:bottom) extract a square portion of an image
a = +b convert binary image into greyvalue image
b = rr(a) <= r create binary disk with radius r
joinchannels(’RGB’,r,g,b) create an RGB image with r, g and b components
colorspace(a,’Lab’) convert a color image to L*a*b* color space
[v,p] = max(a) value and location of the global maximum of a
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