EUROGRAPHICS - IEEE VGTC Symposium on Visualization (2005)
K. W. Brodlie, D. J. Duke, K. I. Joy (Editors)

Visualization for Validation and Improvement of
Three-dimensional Segmentation Algorithms

G. H. Weber'?, C. L. Luengo Hendriks?, S. V. E. Kerdnen?, S. E. Dillard', D. Y. Ju!, D. Sudar?, and B. Hamann'

Berkeley Drosophila Transcription Network Project
! Visualization and Computer Graphics Research Group, Institute for Data Analysis and Visualization,
University of California, Davis, One Shields Avenue, Davis, CA 95616, U.S.A.,
{ ghweber,sedillard,dyju,bhamann } @ucdavis.edu
2 Genomics and Life Sciences Division, Lawrence Berkeley National Laboratory,
One Cyclotron Road, Berkeley, CA 94720, U.S.A.,
{ GHWeber,CLLuengo,SVEKeranen,DSudar} @1bl.gov

Abstract

The Berkeley Drosophila Transcription Network Project (BDTNP) is developing a suite of methods that will allow
a quantitative description and analysis of three dimensional (3D) gene expression patterns in an animal with cel-
lular resolution. An important component of this approach are algorithms that segment 3D images of an organism
into individual nuclei and cells and measure relative levels of gene expression. As part of the BDTNP, we are devel-
oping tools for interactive visualization, control, and verification of these algorithms. Here we present a volume
visualization prototype system that, combined with user interaction tools, supports validation and quantitative
determination of the accuracy of nuclear segmentation. Visualizations of nuclei are combined with information
obtained from a nuclear segmentation mask, supporting the comparison of raw data and its segmentation. It is
possible to select individual nuclei interactively in a volume rendered image and identify incorrectly segmented
objects. Integration with segmentation algorithms, implemented in MATLAB, makes it possible to modify a seg-
mentation based on visual examination and obtain additional information about incorrectly segmented objects.
This work has already led to significant improvements in segmentation accuracy and opens the way to enhanced
analysis of images of complex animal morphologies.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computing Methodologies/Computer Graph-
ics]: Picture/Image Generation J.3 [Computer Applications/Life and Medical Sciences]: Biology and Genetics

1. Introduction

During the past few years, the genomes of an increas-
ing number of species have been sequenced and published.
While we are able to decipher the locations of the protein
coding portions of many genes from genomic sequence in-
formation, the mechanisms that control when and where a
gene is expressed are still poorly understood. The Berke-
ley Drosophila Transcription Network Project (BDTNP) is
a multidisciplinary effort whose goal is to decipher how the
regulatory information contained in DNA sequences directs
the patterns of gene expression underlying animal devel-
opment. Using the early embryo of the fruitfly Drosophila
melanogaster as a model, the BDTNP is developing experi-
mental and computational methods to systematically charac-

(© The Eurographics Association 2005.

terize and dissect the complex expression patterns and regu-
latory interactions that control the specialization of individ-
ual cells.

One of the major approaches the BDTNP is taking is
to develop computational methods to describe and analyze
3D gene expression patterns. Typically, studies of animal
gene expression patterns have employed visual inspection of
photographic images of in situ hybridization experiments,
which are two-dimensional by nature. Quantitative analy-
sis of spatial gene expression patterns in Drosophila blasto-
derm embryos has only been employed for two-dimensional
image data or one-dimensional profiles extracted from
it [HWL02, KRS98, JSB*04]. These approaches do not cap-
ture 3D context and are difficult to use for quantitative mod-

G. H. Weber et al. / Visualization for Validation and Improvement of Three-dimensional Segmentation Algorithms

eling. The BDTNP are developing ways to generate 3D ma-
trices that describe the relative concentration of gene prod-
ucts (RNA or protein) in each cell. The aim is to produce an
atlas of expression patterns of a large number of genes and
to use this information in combination with other data sets to
learn how to understand the extensive control mechanisms
in genomic DNA and model the network. For example, by
identifying clusters of genes with shared expression pattern
features, it should be possible to determine if their promoter
DNAs share similar sequence motifs.

Figure 1: Volume rendering of a whole Drosophila blasto-
derm embryo, stained for nuclei (green) and two genes (red
and blue). Note the lower resolution along the optical axis
and the attenuation with depth; artifacts inherent to the con-
focal microscopy approach. (Color versions of this figure
and other figures are included on the color plate at the end
of the proceedings.)

To construct this atlas, the BDTNP have developed a
pipeline to determine the location and extent of nuclei in
embryos and measure the relative levels of mRNA expres-
sion in the cytoplasmic regions surrounding each nucleus
(M. D. Biggin, C. C. Fowlkes, B. Hamann, S. V. E. Keri-
nen, D. W. Knowles, C. L. Luengo Hendriks, J. Malik, D.
Sudar, G. H. Weber, unpublished data). First, embryos are
fluorescently stained to detect cell nuclei and the expression
patterns of selected genes and imaged by Zeiss LSM 510
confocal microscope at a resolution adequate to distinguish
individual nuclei. Per embryo, the resulting volumetric data
sets consist of a stack of 120-140 image slices with a reso-
lution of 1024x1204 pixels. Fluorescence intensities for the
nuclear stain and the fluorescently labeled gene products are
captured as separate scalar values per pixel. Figure 1 shows
such a raw data set as volume-rendered image that highlights
nuclei and expression patterns of two genes. Next, a set of
dedicated algorithms is applied to the nucleus channel to ob-
tain a segmentation mask, an image of equal size in which
each pixel is labeled with the identifier (ID) of the nucleus
to which it belongs (a value of zero indicates background).
These automated algorithms are based on a modified water-
shed algorithm to delineate individual nuclei.

The accuracy of the resulting segmentation mask is key
to obtaining useful expression level measurements, but sev-
eral features of the system make the segmentation proce-
dure challenging. The embryos imaged contain a monolayer

of tightly packed nuclei, previously estimated to number
somewhere between under 5,000 to over 6,000 that surround
the yolk [HCOS8S5]. The anisotropic resolution of the micro-
scope, which is about three times lower along the optical
z-axis than in the optical xy-plane, combined with the tight
nucleus packing makes it very difficult to correctly segment
individual nuclei in certain parts of the embryo. Frequently,
several nuclei are incorrectly fused together in the segmen-
tation mask.

Evaluating the correctness of the segmentation for a given
image stack is difficult without proper interactive 3D visual-
ization tools, and it is not possible to develop and verify the
underlying segmentation algorithms without efficient means
of visualizing segmentation results and assessing their qual-
ity manually. Consequently, we have developed a volume
rendering approach that aids this task. Due to the high reso-
lution of the slices, we use bricking to partition data sets in
blocks that fit in texture memory. We also support skipping
of blocks that contain unsegmented portions of an embryo,
such as yolk, to speed up rendering. Rendering the nucleus
channel using a gray-scale map makes it possible to visualize
a segmentation mask by rendering each region in a different
color. The combination of nucleus channel brightness infor-
mation and color obtained from the segmentation mask al-
lows one to compare a segmentation mask with the acquired
raw data and to assay segmentation quality manually. A se-
lection scheme for individual nuclei in the rendered image
enables users to query additional information such as the
segmentation identifier (ID) of an incorrectly segmented re-
gion. Extracting a surface via marching cubes (MC) method
around a region with a specified segmentation ID provides
additional means of evaluating segmentation quality. Seg-
mentation information can also be used to modify the vol-
ume rendered image [TSH98, HMBGO00]. Selecting a small
number of nuclei and modifying color, brightness and opac-
ity of only this subset only allows one to focus on particular
regions in the segmentation while still rendering the remain-
der to provide context information. Integration with MAT-
LAB (The MathWorks Inc, Natick, MA) and image process-
ing algorithms allows a user to interactively correct the dis-
played volume and segmentation data. It is possible to per-
form an analysis that, for example, selects nuclei based on
unusual size and subsequently highlight corresponding re-
gions in the rendered image. Furthermore, set of regions can
be selected manually and image processing algorithms that
split or merge these regions executed locally on those re-
gions of the rendered image.

The study of gene expression and morphology in complex
organisms will increasingly move to computationally based
image analysis strategies. The high complexity and dense
packing of features in tissues and cells require sophisticated
visualization tools that can manipulate and explore these 3D
spaces. The tool we present here will facilitate analysis of
such complex biological data.

(© The Eurographics Association 2005.

G. H. Weber et al. / Visualization for Validation and Improvement of Three-dimensional Segmentation Algorithms

2. Visualization of Segmented Data and Segmentation
Masks

2.1. Related Work on Interactive Segmentation Tools

Previous work on segmentation interaction tools focused
mainly on medical data. Kang et al. [KEKO4] presented
a system for correction of pre-computed segmentations. A
morphology-based hole closing tool, a morphology-based
point-bridging tool, and a spline-based surface dragging tool
make it possible for a user to manipulate a segmentation.
While these tools work in 3D, visualizations are restricted to
(arbitrarily oriented) 2D slices. Volume rendering has only
been used recently in conjunction with segmentation tools.
Lefohn et al. [LKHWO04] integrated volume rendering with
segmentation based on level-set methods. Performing level-
set computations on the graphics processor (GPU), makes it
possible to visualize evolving level-set solutions at interac-
tive rates. Sherbondy et al. [SHNO3] used a region-growing-
based approach where a user interacts with segmentation al-
gorithms via seed selection.

2.2. Volume Rendering of Single-Channel Confocal
Microscopy Data

The image slices of a confocal microscopy stack form a 3D
scalar field data set specifying brightness information at each
location. Confocal microscopy stacks usually consist of mul-
tiple, independent channels corresponding to different emis-
sion wavelengths. Each channel represents a separate regis-
tered scalar data set. We use direct volume rendering [Sab88]
to visualize an individual channel. Brightness information is
mapped to color and opacity information using an absorption
and emission light model [Max95]. We use a 3D texture-
based slicing approach [CCF94, VK96] that renders view-
perpendicular slices to simulate ray casting. This approach
allows us to utilize commodity graphics hardware to achieve
interactive rendering.

To visualize segmentation results we render only the nu-
clei channel of a confocal image stack, which is used by our
segmentation algorithms. (We are also developing a volume
renderer for raw confocal microscopy images that supports
visualization of up to three channels at the same time for
quality control of acquired images.) We store volume data in
a 3D texture (using trilinear texture interpolation) and the
transfer function in a 1D texture (using linear texture in-
terpolation). Transfer function look-up is implemented as a
Cg [FKO3] fragment program. Bricking allows us to han-
dle data sets that are larger than texture memory. Volume
data is split into bricks consisting of 32x32x16 samples that
are rendered in back-to-front order. A slicing plane, imple-
mented using an OpenGL clipping plane, allows users to
“cut” into a volume-rendered image and examine the inte-
rior of a Drosophila blastoderm.

(© The Eurographics Association 2005.

2.3. Volume Rendering of Segmentation Masks

For the display of segmentation masks we restrict transfer
functions for the nuclei channel to gray-scale maps. Scalar
values are mapped to brightness (usually using identity as
transfer function) and opacity (usually using a linear ramp
function, starting at a value around five for data quantized to
eight bit). Segmentation masks are visualized by using the
brightness information from the nuclei channel and choosing
the color according to the nucleus ID in the segmentation
mask, see Figure 2.

Figure 2: Rendering of all nuclei of a Drosophila embryo
with segmentation mask.

In addition to an eight-bit texture used for the nuclei chan-
nel we load a segmentation mask into a second sixteen-
bit 3D texture (using nearest-neighbor texture interpolation).
Besides the transfer function stored as a 1D texture, we need
a second texture that maps from segmentation IDs to colors.
Sixteen-bit segmentation IDs require us to use a texture with
65536 = 2! entries. This number exceeds the maximum res-
olution currently supported by commodity used PC graph-
ics boards. (The used NVIDIA board, for example, supports
4096 entries. While the produced segmentation masks usu-
ally do not utilize all possible sixteen-bit IDs, they have IDs
that exceed this resolution limit.) We solve this problem by
storing segmentation colors in a 2D texture with a size of
2567 yielding the required 65536 entries. A sixteen-bit ID is
split into two eight-bit indices used as x- and y-coordinate
for the 2D segmentation color map texture. Since graphics
hardware and Cg do not support bit manipulation operations
we simulate those with floating point operations:

segParam.x = modf (inSegment*256, segParam.y);
segParam.y /= 256;

During rendering, brightness information from the 1D
transfer function texture (using the R component, assuming
that a gray-scale transfer function assigns the same intensity
to all color components) and color information from the 2D
segmentation color texture are combined by multiplication.
Alpha values of the transfer function and the segmentation
color map are also multiplied, making it possible to hide in-
dividual nuclei from the volume-rendered image (by setting
their opacity in the segmentation color map to zero) or to de-
emphasize them (by setting their opacity to a value smaller
than one).

G. H. Weber et al. / Visualization for Validation and Improvement of Three-dimensional Segmentation Algorithms

Initially, a random color is used for each nucleus ID. A
base color map provides a set of colors that the human eye
can distinguish. Colors in the base color map are generated
using the HLS color model. A fixed number of hues (16) and
saturation levels (two) is chosen, and a corresponding num-
ber of colors (32) is generated by spacing hues equally on the
color circle. For each hue equally spaced saturation levels
are used, excluding a saturation of zero. (For example, when
two saturation levels are used we choose saturation levels of
0.5 and one.) All base colors have an intensity of one, allow-
ing for scaling with brightness information from the nuclei
channel. Subsequently, all segmentation IDs are initialized
by choosing a random color from this base map. Assigning
segmentation colors randomly usually defines a good distri-
bution of colors and allows one to distinguish neighboring
nuclei by color. If this is not possible, a user can change the
segmentation color for individual nuclei using the GUL

2.4. Segmentation Mask-based Skipping of Empty
Regions

When visualizing segmentation masks, only those portions
of the volume that are segmented are of interest. These re-
gions currently correspond to blastoderm nuclei and lie on
an ellipsoidal shell. Its interior is mostly empty and contains
only yolk and yolk nuclei that are currently of no interest
and do not belong to the segmentation mask. By restricting
volume rendering to regions that contain segmentation infor-
mation, it is possible to save texture memory and accelerate
rendering considerably, which is of particular importance for
high-resolution data sets. We first create a “render mask,” a
bit set with one bit flag for each sample in the rectilinear
grid indicating whether that sample belongs to a segmented
region. Before uploading a brick to texture memory and ren-
dering it, the segmentation mask is checked. If a flag cor-
responding to any sample is set, the brick is uploaded and
rendered; otherwise it is skipped.

Using a brick size of 323, approximately 50% of all bricks
can be skipped. If different dimensions are chosen that take
the lower resolution along the optical axis into account,
a larger number of bricks can be skipped. For example,
when using a brick size of 64x64x16 approximately 60%
can be skipped and when using a brick size of 32x32x16,
approximately 70% of bricks can be skipped. Choosing a
smaller brick size increases the number of bricks that can
be skipped, but increases overhead due to data duplication
at brick boundaries. We found that a brick size of 32x32x16
usually yields good interactivity for data sets that we cur-
rently consider.

2.5. Selection in Volume-rendered Images

For a visualization tool for segmented data set to be useful, it
is necessary to provide a user with means to obtain the ID of
a segmented region in the rendered image. If, for example, a

visualization of a segmentation mask shows that a particular
nucleus is incorrectly segmented, it must be possible to de-
termine its ID for later manipulation. We have implemented
a scheme that supports selection of individual segmented nu-
clei in the volume-rendered image.

For selection we assume that the user is interested in the
nucleus closest to the viewer. This nucleus corresponds to
the “closest opaque region” (i.e., the closest region that ex-
ceeds a certain opacity threshold) in the volume-rendered
image. Consequently, the region of interest is the last opaque
region rendered. We apply a threshold to the opacity, render-
ing only samples with an opacity that exceeds 0.3. During
volume rendering, a data set is rendered in back-to-front or-
der. Using opacity thresholding, the sample that is rendered
last for a particular pixel corresponds to the selected seg-
mented region.

In order to determine the ID of the corresponding seg-
mented region, we split the sixteen-bit ID into two eight-
bit components (assuming an eight-bit framebuffer) and ren-
der those as two color components (red and green) into the
frame buffer. Furthermore, we set the opacity of all sam-
ples that are rendered to one, ensuring that any previous ID
is completely overwritten. Finally, we set the blue compo-
nent of these samples to one, making it possible to deter-
mine whether a pixel is covered by any nucleus by testing
this component. Using only floating-point operations these
operations are expressed as:

r = (fmod(inSegmentID, 256) + 0.5) / 256;
g = (floor (inSegmentID / 256) + 0.5) / 256;
b =1.0;

a=1.0;

’

Once an image is rendered using this scheme, the segmen-
tation ID for the first nucleus visible at a pixel can be com-
puted as r256+g. We have found that this selection scheme
works well in practice and allows a user to interact with a
volume-rendered segmented data set effectively.

2.6. Segmentation Surfaces

To determine segmentation quality it is useful to draw
a surface around a segmented nucleus. We use an MC
method [MSS94] with minor modifications to extract such
a segmentation surface. (In our implementation, a case ta-
ble generated by implicit disambiguation [MSS94] avoids
discontinuities in the extracted isosurface.) Since we are in-
terested in a surface around a segmented region rather than
an isosurface, we mark vertices as “inside” or “outside” the
surface based on their segmentation ID rather than on the
function values of the scalar field. All vertices with an ID
equal to a specified ID are inside the segmentation surfaces,
all others are outside.

Segmented nuclei are always connected regions in space.
Thus, it is possible to avoid traversing all grid cells by start-
ing the segmentation surface at a seed grid cell and grow-

(© The Eurographics Association 2005.

G. H. Weber et al. / Visualization for Validation and Improvement of Three-dimensional Segmentation Algorithms

ing it until it is complete. We store a list of so-called seg-
mentation seeds in an array with 65536 entries. For each
nucleus ID that exists in the segmentation, this array con-
tains a reference to a grid cell with a vertex that is part of the
segmented region with that index. Starting in this grid cell
the segmentation surface is extracted based on the continua-
tion method [WMWS86]. Segmentation surface and volume-
rendered image are displayed simultaneously. The segmen-
tation surface is displayed first, with enabled depth-buffer
writes. Second, depth buffer writes are disabled and view-
perpendicular slices are rendered to display the volume data
set.

2.7. Selective Rendering of Nuclei

In addition to rendering segmented nuclei in different col-
ors we provide an alternate means of modifying the volume-
rendered image based on the segmentation mask by main-
taining a list of selected nuclei. Every time a user selects a
segmented region (see Section 2.5) the ID of that nucleus is
added to that list. Our tool supports the following rendering
modes:

e Render the complete data set including regions that are not
segmented. This mode disables skipping of bricks without
segmented regions.

e Render only regions of the volume that have a valid ID
in the segmentation mask. This rendering mode discards
yolk from the rendered image and enables skipping un-
segmented regions.

e Render only selected nuclei (i.e., nuclei in the selection
list) using their assigned segmentation colors. All other
nuclei are rendered in gray levels with their opacity and
brightness scaled by user-specified factors. (By selecting
a scaling factor of zero these nuclei can be completely
hidden.) This is achieved by setting all color components
in the segmentation mask to a gray level corresponding to
the user-specified brightness and setting the segmentation
mask opacity to the user-specified factor.

e Render all nuclei except those that are selected. This mode
is complementary the previous mode and simply negates
the selection of nuclei before rendering.

3. Interactive Control of Segmentation Algorithms
3.1. Integration with MATLAB

To facilitate control and verification of segmentation algo-
rithms, we have integrated our segmentation renderer with
MATLAB, which the BDTNP use to develop segmentation
algorithms. Users can specify a set of MATLAB commands
in a file, which are executed using MATLAB’s external in-
terface. These commands can access and modify three data
blocks used by the volume renderer: (i) volume data corre-
sponding to the nuclei channel that is segmented, (ii) seg-
mentation mask, and (iii) the list of nuclei that are cur-
rently selected. For each command, it is possible to specify

(© The Eurographics Association 2005.

its name in the menu and the MATLAB command string.
Boolean flags indicate whether volume data, the segmenta-
tion mask, or the nucleus list should be sent to MATLAB
prior to the execution of the command, and whether this in-
formation should be replaced with modified data after the
execution of the command.

The integration with MATLAB supports two main types
of functionality:

e Improvement of Segmentation Algorithms. Iteratively
perform a portion of the segmentation algorithm, display-
ing the result and allowing the user to modify that portion
(using an external editor), without delays produced by
transferring the large images between programs through
files.

e Manual Modification of Segmentation Result. Our inten-
tion is to extend this method to generate a “perfectly”
segmented image to be used as ground truth for further
improvements of image segmentation and as a reference
embryo in further analyses.

In addition, several other possibilities arise, due to the ver-
satility of MATLAB and the integration with our tool. For
example, it is possible to change the gray-value data being
displayed to emphasize interesting parts. It is also possible
to, e.g., automatically select nuclei based on location, size,
shape, etc. and change the segmentation mask

3.2. Improvement of Segmentation Algorithms

Visual examination can provide valuable clues as to what
changes in an algorithm are necessary to improve the re-
sults. Displaying horizontal 2D cross-sections is unsuitable
to evaluate segmentation results. This is due to many fac-
tors, including the difficulty in visually detecting a change in
gray-values as subsequent cross-sections are presented, and
disalignment between the objects that are displayed and the
orientation of the cross-sections. The latter, for our case, can
easily be seen in Figure 3. The nuclei are elongated, but do
not lie on the xy-plane. This causes neighboring nuclei in all
directions to cut the same cross-section, which presents the
user with an unnecessarily cluttered view. Ideally, the direc-
tion of the cross-section should change with the orientation
of the object being studied, so that connectedness in the third
dimension can easily be identified. 3D rendering mitigates
this problem.

Being able to apply algorithms and display their results
via the same user interface greatly streamlines the iterative
process of identifying errors, changing the algorithm, and
generating a new segmentation. Parameters in algorithms
can be changed on the fly, or even custom routines can be
implemented specifically for one special case, without re-
compiling the program or reloading data from external stor-
age. Furthermore, MATLAB can produce plots displaying
information and statistics about selected nuclei, fractions of
nuclei, or clusters. Using MATLAB functions it is possible

G. H. Weber et al. / Visualization for Validation and Improvement of Three-dimensional Segmentation Algorithms

to identify nuclei with particular properties, for example, all
large nuclei in a segmentation mask. Manual counting of
over-segmented nuclei and nuclei clusters marked as single
nucleus supports interactive evaluation of segmentation re-
sults that is not possible without 3D visualization.

Figure 3: Cross-section through a 3D segmented data set.

3.3. Manual Modification of Segmentation Result

Improving a segmentation mask by hand produces a data set
that can be extremely useful. The user can produce a seg-
mentation close to a ground truth that is suitable for compar-
ison with other results allowing, for example, to determine
optimal values for certain algorithm parameters. The inte-
gration with MATLAB makes such an approach possible: a
user can select two or more regions and merge them, split a
single region into two or more, discard a region or create a
new one.

4. Results

Using 3D visualization of segmentation results greatly en-
hances our ability to detect incorrectly segmented nuclei.
Figures 4-6 show side-by-side comparisons of a 2D (gen-
erated using MATLAB) visualization and a 3D visualization
(created with our new tool) of the same segmentation mask,
where an incorrectly segmented nucleus is marked by a cir-
cle (the colors in the 2D and 3D display are not the same,
since they are assigned randomly). In the 3D visualization in
Figure 4 it can be seen that the marked yellow and green re-
gions are actually one nucleus. In the 2D visualization, only
one of these segmented regions is visible at the time. The
other one lies on different z-planes. By moving back and
forth through the stacks it is not possible to see that these
two regions should be one.

Figure 5 shows the opposite effect: a group of nuclei seem
fused because of the low z-resolution of the microscope, and
therefore marked as a single nucleus. In the 3D view this is
readily apparent, but in the 2D view one must take one region
at a time and follow it through the various consecutive slices
to note that it is elongated. Furthermore, the reason for it
having that shape would elude the user.

Finally, in Figure 6 we show the use of the cutting plane

to detect an erroneous region. In the 2D view it is incon-
spicuous because of the cluttered view presented. This view
would be much clearer if it would cut the embryo perpendic-
ular to its surface. Finding this correct orientation is trivial
in the 3D renderer.

Figure 4: Side-by-side comparison of 2D (left side) and 3D
(right side) visualization of segmentation results, showing
one nucleus marked as two separate regions

Figure 5: Side-by-side comparison of 2D (left side) and 3D
(right side) visualization of segmentation results, showing a
couple of nuclei fused by the low z-resolution of the micro-
scope.

Figure 6: Side-by-side comparison of 2D (left side) and 3D
(right side) visualization of segmentation results, showing
the use of the cutting plane to find an incorrect region.

The integration with MATLAB allows modification of the
data being displayed. This includes the segmentation mask
as well as the input gray-value volumetric image, and to ei-
ther enhance certain regions to draw the operator’s attention
to them, or to improve visualization to make evaluation less
difficult. For example, when visualizing certain intermediate
result of the segmentation process, it is very helpful to in-
crease the size of the regions in the segmentation mask, as
in Figure 7. At this stage of the process, the segmentation
mask consists of one small marker for each nucleus, which
is very hard to distinguish. In Figure 8, we show an example
of changing the input volume data set. The user selected a
feature caused by dust or something similar on the embryo,
here marked with a red circle, and removed that feature from

(© The Eurographics Association 2005.

G. H. Weber et al. / Visualization for Validation and Improvement of Three-dimensional Segmentation Algorithms

Figure 7: Growing regions in segmentation mask to improve
evaluation.

Figure 8: Removing a feature in the input image.

the input image. This might be used to, for example, clean
up the microscope images.

As discussed earlier, the integration with MATLAB also
allows editing the list of selected nuclei. This can be used
to have MATLAB automatically select a set of nuclei that
the user should pay closer attention to. In the example of
Figure 9, MATLAB returned a list of large nuclei, which are
rendered in color. The remaining nuclei are rendered with
decreased brightness and opacity. While it is possible to hide
de-emphasized nuclei completely, it is usually helpful to use
them to provide users with a context of the embryo.

Figure 9: Segmentation of Drosophila nuclei highlighting
large regions.

The second main reason to create the integration with
MATLAB is to allow the user to manually correct errors in a
segmentation. Figure 10 illustrates this. After an incorrectly
segmented nucleus (marked with a red circle in the left im-
age) has been identified by the user, a call to MATLAB can
split it along its longest axis, changing the value of the seg-
mentation mask in one of the halves to a new ID. Similarly
it is possible to merge various selected regions by setting all
pixels in those regions to the same ID.

(© The Eurographics Association 2005.

Figure 10: Splitting an incorrectly segmented nucleus.

l

Figure 11: Highlighting modes for a selected region.

Figure 11 shows different methods of highlighting se-
lected nuclei. In the left image, a segmentation surface (or-
ange) is generated that surrounds the selected nucleus. In
the middle image, only a set of nuclei is highlighted (drawn
in color). All other nuclei are de-emphasized by rendering
them in gray-scale and increasing their transparency. The
currently selected nucleus is still surrounded by a segmen-
tation surface. In the right image no segmentation surface is
drawn. The currently selected nucleus is also drawn in gray
scale. Since its transparency remains unchanged, it is still
distinguishable from the de-emphasized nuclei.

5. Conclusions and Future Work

Volume visualizations of segmentation results convey infor-
mation about segmentation quality that 2D visualizations do
not. The examples in the Results section show clearly that
two-dimensional cross-sections are unsuitable to show cer-
tain types of segmentation errors and evaluate segmenta-
tion quality. Volume visualizations of segmentation masks
make it possible to detect these errors easily and correct
them by integration with segmentation algorithms. As the
BDTNP’s goal is to image, segment, and analyze Drosophila
embryos in a high-throughput pipeline, it is not feasible to
correct each segmented embryo manually. Our segmentation
mask visualization tool is mainly intended to aid in develop-
ment of substantially more reliable segmentation algorithms.
However, our tool can also be valuable in manual curation of
acquired images and segmentation results. For example, we
plan to use this tool to generate a set of reference embryos by
manually correcting all errors in an automated segmentation.

Further research in visualization will be aimed mainly at
developing tools for understanding derived 3D expression

G. H. Weber et al. / Visualization for Validation and Improvement of Three-dimensional Segmentation Algorithms

data. The segmentation-based volume renderer will serve as
the basis of such tools. By combining original raw data, seg-
mentation masks, and derived data, it should become possi-
ble to produce a qualitative view of the raw data and, using
our volumetric selection scheme, perform quantitative gene
expression analysis using the derived data.

Studying even the relatively simple morphology of the
Drosophila blastoderm requires advanced 3D visualization
tools, due to the high information content of the 3D images.
We plan to extend our tool to handle the morphology of more
complex organisms such as later stages of Drosophila em-
bryos. In the rapidly developing field of quantitative biol-
ogy, extremely complex datasets such as these are becoming
commonplace and the integration of biology with computa-
tional data analysis requires sophisticated visualization and
interaction techniques to gain a true understanding of the un-
derlying biological mechanisms.

6. Acknowledgments

This work was supported by the National Science Foun-
dation under contracts ACI 9624034 (CAREER Award),
through the Large Scientific and Software Data Set Visu-
alization (LSSDSV) program under contract ACI 9982251,
through the National Partnership for Advanced Computa-
tional Infrastructure (NPACI) and a large Information Tech-
nology Research (ITR) grant; the National Institutes of
Health under contract P20 MH60975-06A2, funded by the
National Institute of Mental Health and the National Science
Foundation; the National Institutes of Health under contract
1R01 GM70444-01A1, funded by the National Institute of
General Medical Science; by the Director, Office of Sci-
ence, U.S. Department of Energy under contract DE-AC03-
76SF00098; and the Lawrence Berkeley National Labora-
tory (LBNL) through a Laboratory Directed Research De-
velopment (LDRD) project. We thank Oliver Kreylos for his
slice generation code used in the slicing-based volume ren-
derer. We also thank the members of the Visualization and
Graphics Research Group at the Institute for Data Analy-
sis and Visualization (IDAV) at the University of California,
Davis, and the members of the BDTNP at LBNL for their
support.

References

[CCF94] CABRAL B., CAM N., FORAN J.: Accelerated volume rendering and tomo-
graphic reconstruction using texture mapping hardware. In Proceedings of the 1994
Symposium on Volume Visualization (New York, New York, 1994), ACM Press, pp. 91—
98. 3

[FKO3] FERNANDO R., KILGARD M. J.: The Cg Tutorial. Addison-Wesley, 2003. 3

[HCO85] HARTENSTEIN V., CAMPOS-ORTEGA J. A.: Fate-mapping in wild-type
Drosophila melanogaster i. the spatio-temporal pattern of embryonic cell divisions.
Roux’s Archives of Developmental Biology, 194 (1985), 181-195. 2

[HMBGO00] HAUSER H., MROZ L., BISCHI G.-1., GROLLER M. E.: Two-level volume
rendering - fusing mip and dvr. In IEEE Visualization 2000 (Los Alamitos, California,
2000), IEEE, IEEE Computer Society Press, pp. 211-218. 2

[HWL02] HOUCHMANDZADEH B., WIESCHAUS E., LEIBLER S.: Establishment of

developmental precision and proportions in the early drosophila embryo. Nature 415,
6873 (February 14 2002), 798-802. 1

[JSB*04] JAEGER J., SUKOVA S., BLAGOV M., JANSSENS H., KOSMAN D., Ko-
zLov K. N., MANU, MYASNIKOVA E., VANARIO-ALONSO C. E., SAMSONOVA
M., SHARP D. H., REINITZ J.: Dynamic control of positional information in the
early drosophila embryo. Nature 430, 6997 (July 15 2004), 368-371. 1

[KEKO04] KANG Y., ENGELKE K., KALENDER W. A.: Interactive 3d editing tools for
image segmentation. Medical Image Anaylsis 8, 1 (2004), 35-46. 3

[KRS98] KOSMAN D., REINITZ J., SHARP D. H.: Automated assay of gene expression
at cellular resolution. In Pacific Symposium on Biocomputing (1998), pp. 6-17. 1

[LKHWO04] LEFOHN A., KNISs J. M., HANSEN C. D., WHITAKER R. T.: A streaming
narrow-band algorithm: Interactive deformation and visualization of level sets. IEEE
Transactions on Visualization and Computer Graphics 10, 40 (7 2004), 422-433. 3

[Max95] MAX N. L.: Optical models for volume rendering. IEEE Transactions on
Computer Graphics 1,2 (1995), 99-108. 3

[MSS94] MONTANI C., SCATENI R., SCOPIGNO R.: A modified look-up table for
implicit disambiguation of marching cubes. The Visual Computer 10, 6 (1994), 353—
355. 4

[Sab88] SABELLA P.: A rendering algorithm for visualizing 3D scalar fields. Computer
Graphics (Proceedings of ACM SIGGRAPH 88) 22, 4 (1988), 51-58. 3

[SHNO3] SHERBONDY A., HOUSTON M., NAPEL S.: Fast volume segmentation with
simulataneous visualization using programmable graphics hardware. In IEEE Visual-
ization 2003 (Los Alamitos, California, 2003), IEEE, IEEE Computer Society Press,
pp. 171-176. 3

[TSH98] TIEDE U., SCHIEMANN T., HOHNE K. H.: High quality rendering of at-
tributed volume data. In IEEE Visualization 1998 (Los Alamitos, California, 1998),
IEEE, IEEE Computer Society Press, pp. 255-262. 2

[VK96] VAN GELDER A., KiM K.: Direct volume rendering with shading via three-
dimensional textures. In 7996 Volume Visualization Symposium (New York, New York,
Oct. 1996), Crawfis R., Hansen C., (Eds.), ACM Press, pp. 23-30. 3

[WMW86] WYVILL G., MCPHEETERS C., WYVILL B.: Data structure for soft ob-
jects. The Visual Computer 2 (1986), 227-234. 5

(© The Eurographics Association 2005.

G. H. Weber et al. / Visualization for Validation and Improvement of Three-dimensional Segmentation Algorithms

Figure 1 Figure 2 Figure 3

- -
Figure 4 Figure 5 Figure 6

Figure 7 Figure 8 Figure 9

Figure 10 Figure 11

(© The Eurographics Association 2005.

