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Abstract

We present a method to improve the spatial
resolution of an aliased image sequence in exchange for
a lower temporal resolution. The frames are acquired by
a vibrating infrared camera, which yields severely
undersampled (aliased) image frames of a static scene.
The vibration causes a random sub-pixel shift of the
scene before sampling. The proposed method first
estimates the relative position of all frames after which
the periodic-random samples are interpolated on a
equidistant grid with a smaller pixel pitch to improve
spatial resolution and (partially) eliminate aliasing. The
presented method is robust, is completely data driven
and has a moderate computational complexity, which
permits a real-time implementation in hardware.

1. Introduction

A camera employs a lens to produce a (de)magnified
version of the scene onto an image sensor. The lens acts as
a low-pass filter whose cut-off frequency depends on the
lens aperture. Increasing the aperture of the lens increases
the light collection efficiency and permits a higher spatial
resolution. An array-based sensor in the image plane not
only converts the incoming light into electrical charge, but
also samples the image. The Nyquist criterion states that
the sampling frequency in the image plane should be
higher than twice the cut-off frequency. Satisfying this
requirement yields a digital image that contains all the
information of the bandlimited analog image. Exact
reconstruction of this bandlimited analog image from its
samples is possible [7,8].
Infrared cameras employing a 2-D array of light sensitive
elements require cooling and isolation of the individual
pixels to suppress thermal noise. This yields a pixel pitch
that is far too large for high-resolution imaging. The
individual frames are undersampled. Undersampling yields
aliasing, which corrupts the image data irreversibly.
However, a set of aliased realizations of the same scene
may under restricted circumstances contain all the

information of the original bandlimited image. Our IR
camera vibrates, which yields an image sequence in which
each individual frame is shifted over a random sub-pixel
vector. An image sequence of a (pseudo) static scene may
contain enough information to increase the spatial
resolution without being hampered by the aliasing, which
corrupted the individual frames.
The challenge in this research is to develop a technique for
improving the resolution of aliased image sequences which
satisfies the following constraints:
•  a clear perspective of a real-time implementation in

hardware;
•  image displacements will be estimated from the image

content;
•  flexible and adaptive control over improving image

resolution and noise suppression;
•  comparable image quality with respect to alternative

methods [1,2,3,4,5,9,10];
•  graceful degradation of performance for increasing

amounts of noise, absence of reliable image contents or
lower number of input frames.

Section 2 presents a model for image acquisition and
introduces the subproblems: the registration of shifted
image frames (section 3) and interpolation (image fusion)
of the randomly shifted uniformly sampled image data.
(section 4). In section 5 we present the test results for both
subsystems on a synthetic image sequence. Section 6
presents the application of the method to some real-world
IR image sequences. A discussion follows in section 7.

2. System description

A typical detector array for infrared imaging has a large
pixel pitch and a small fill factor. This causes
undersampling in most practical circumstances. The
imaging model is depicted in Figure 1. The lens (hlens)
slightly blurs the image, which is then shifted (hshift),
integrated onto a “light” sensitive element (hpixel), sampled
(p(x,y)) and discretized (ADC). The digital output image is
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undersampled and degraded by noise of various sources:
photon noise, readout noise, thermal noise, and
quantization noise. The signal-to-noise ratio (SNR) of
these cameras can be as high as 40 dB.
The motion blur in the individual frames is negligible
because of the small exposure time compared to the
readout time of the camera. The influence of the square
integrating pixel elements can be ignored (due to the small
fill factor) for interpolation factors up to a factor four.

hlens hpixelhshift

p(x,y) = Σδ(x-nTx,y-mTy)

A/D
converter

fi[n,m]

f(x,y)

fi(x,y)

f(x-xi,y-yi)

Figure 1: Model of the imaging system.

Before interpolating a high-resolution image from the
shifted frames we need to know the translation vectors for
the entire image sequence. To allow optimal flexibility we
will estimate these vectors from the image content. The
camera motion (vibration) of the presented system causes
translation but no significant rotation of the acquired
images. For scenes with a limited depth range this yields a
constant image shift over the entire image.

3. Registration of shifted frames

Image registration has received a lot of attention for a wide
variety of applications. The major problem we are facing
here is the aliasing that has corrupted the high frequency
regions of the individual frames. The registration algorithm
can reliably use the low-frequency regions such as smooth
edges (temperature ramps) and should omit high-frequency
textures, which manifest themselves as low-frequency
patterns (aliasing) in the undersampled frames.
We have tested several methods for estimating the
translation (xi, yi) between two images: the image fi and the
reference image fo  f x y f x x y yi o i i( , ) ,= − −� � .
1. Apply cross-correlation with (4x) zero-padding in

Fourier domain followed by center-of-mass estimation
in spatial domain (CZP)

2. Apply cross-correlation and fitting of a plane through
the low-frequency part of the 2-D phase of the Fourier
transform (CPF).

3. Minimize the squared error between a first order Taylor
series expansion of fi and fo (MTS)

4. Average the frame positions obtained with different
reference frames.

3.1 Cross-correlation with zero-padding (CZP)

The images contain shifted realizations of the same scene.
The cross-correlation between fo and fi can be computed by
a multiplication in the Fourier domain
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with u and v the spatial frequencies. Normalization yields a
linear phase term.
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Zero padding (n times) before inverse FFT interpolates the
sinc-shaped peak. The center-of-mass yields the estimated
sub-pixel shift that maps  fi onto fo. (CZPn)
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The phase of the high frequencies is dominated by noise. A
low-pass filter suppresses the noise in exchange for a wider
peak. Skipping the normalization of eq. (2) yields similar
results.

3.2 Cross-correlation with phase fitting (CPF)

Compute the cross-correlation as in eq. (2) after which a
2D plane is fitted to the low-frequencies of the linear phase
term θ(u,v). The angles of the plane with the u- and v-axis
correspond to the estimated sub-pixel shifts in respectively
the x- and y-direction.
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This technique can be refined by removing the outliers
from the phase term after which the fit is repeated (CPF2).

3.3 First order Taylor series (MTS)

Reference image fo can be approximated by a (first) order
Taylor series of image fi at scale σ.
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By minimizing the squared difference between both sides
of eq. (5) we obtain a sub-pixel estimate of the translation
between the two images [1,5]. In vector notation we solve
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G s v= (7)

with s the shifts to be found, G the integrated squared
gradients, and v the gradient weighted difference image
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Solving for s yields the shift vector

s G v= −1 (10)

The size of the Gaussian (σ) allows scale selection and
suppresses the high frequencies which are dominated by
noise.

3.4 Complete set of reference frame

All three methods described above compute the shift
between two images whereas our application requires the
relative position of a set of P images. By calculating the
shifts with respect to a single reference image we obtain
just one realization of the relative positions. By repeating
the procedure for another reference image we obtain a
second estimate for the relative positions. By averaging P
sets of relative positions (centered around their first
moment) we may obtain a better estimate.

4. Interpolation by fusion of shifted images

Several image fusion schemes capable of interpolating
randomly sampled images onto a equidistant grid have
been developed and tested:
1. Least-squares fit (LSP) of a linear (plane) model to n

data points (n≥ 3 for 2D) or to all data points inside a
fixed-sized window.

2. Normalized convolution (NC) using either a fixed or
variable (inversely proportional to the distance to the
nearest neighbor) sized Gaussian kernel.

3. Exact (least-squares) image reconstruction (ER) from a
series of shifted undersampled images. The number of
images needs to be larger or equal to the amount of
undersampling.

4. Iterative minimization of a functional which balances
resolution improvement and noise suppression (IT).
This method estimates the image shifts while
optimizing the functional.

The first three methods require that the relative positions of
the frames are known. The fourth can be used with and
without this information. The computational complexity of
the four methods varies enormously. LSP and NC are at

least an order of magnitude faster than ER or a single
iteration of IT.

4.1 Least-squares plane fitting (LSP)

Fit a plane through the n data-points inside a window
centered at the new sample position. The function value of
the plane at the newly determined grid point yields the new
sample value. The new sample point is required to lie
inside the convex hull of the n points. The first three points
are found by Delaunay triangulation. Every new sample
point has three unique neighbors that span the current
Delaunay triangle. The size of the window (and thus the
number of data points used in the fit) is used to balance the
interpolator between resolution improvement and noise
suppression.

4.2 Normalized convolution (NC)

Normalized convolution [6] can be used as interpolator of
randomly sampled data points
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with f(x,y) the period-random weighted sum of delta-pulses
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c(x,y) the certainty function (a Gaussian function g(σ)),
s(x,y) the periodic random sampling function, and Tx and Ty

the pixel spacing in the input frames

 s x y x nT x y mT yx i y in mi
P, ,,� � � �= − + − +∑∑ = δ1 (13)

The width of the Gaussian certainty function plays the role
of the window size in the LSP method.

4.3 Exact reconstruction (ER)

If the shifts (xi,yi) and the amount of undersampling is
known we can write in a series of linear equations the
relation between the P instances of the Fourier components
Gnm and the target Fourier components Fnm

G Fnm nm nm= Φ (14)

where the vector Gnm contains the (n,m)th Fourier
component of all input images, Fnm the harmonics of (n,m)
that where aliased onto (n,m), and Φnm the (P x 2(K+L))
transformation matrix

Φnm T
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with i the frame index i=0,...,P-1, Tx and Ty the original
sample spacing, us and vs the original sampling frequencies,
and Kus and Lvs the new sampling frequencies. The
solution is obtained by

F Gnm nm nm= Φ−1



496

This method [5,7] needs at least as many input frames as
the undersampling factor (P≥ 2(K+L). More images yield a
least-squares estimation of the target Fourier spectrum.

F Gnm nm nm nm nm=
−

Φ Φ ΦT T� � 1
(15)

Note that we need to perform a matrix inversion of size
PxP for each pixel in the (NxM) input image.

4.4 Iterative reconstruction (IT)

Several reconstruction methods employ iterative
minimization of an error functional [3,4,9,10]. We
implemented the method by Hardi [3] in which the
functional consists of two terms

min map reg
h

i ii f h h− +∑ � �� � � �� �2
λ

The first term represents the difference between the
measured image fi and a version generated from the high-
resolution image h and the second term penalizes sharp
edges and noise. The parameter λ balances resolution vs
smoothness. The minimization is performed by conjugate
gradient [11]. This method requires a mathematical model

of the imaging process in the function map(). Estimation of
the imaging parameters as occurs in “blind” deconvolution
adds uncertainty and yields a lower performance.

5. Test results

The “registration” and “interpolation” modules have been
tested separately. Synthetic image sequences were created
by subsampling a target image (“trui” as in Figure 2) with
random offsets. The subsampling of a factor four was
performed by cubic interpolation of a properly sampled
target image. Each image sequence consisted of 25 frames.

5.1 Results: Image registration

Several image registration methods have been tested on the
synthetic image sequences. The errors in the estimated
shifts are listed in Table 1. The MTS method will be used
in practice because it is fast, accurate and precise. The
MTS-all method did only use 10 of the 25 input frames as
reference frame.

a) aliased input image b) NC (σ=0.075) with 10 input images c) LSP (n=3) with 10 input images

d) 10 iterations IT with 10 input images e) ER with 16 input images f) LSP (n=3) with 25 input images
Figure 2: Interpolation results. Note that the ER method may perform as well as IT and LSP (reasonably “uniform”
distribution of samples) or as poor as shown in (e) for uneven distribution of samples.
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Table 1: Performance of the registration algorithms in
estimating the image shift between four-times subsampled
(in both directions) versions of “Trui”.

x- shift y- shift
mean std.dev. mean std.dev.

MTS 0.008 0.007 0.012 0.011
MTS-all 0.007 0.005 0.010 0.008
CZP4 0.10 0.063 0.096 0.057
CPF 0.019 0.018 0.020 0.016
CPF2 0.015 0.013 0.016 0.013

5.2 Results: Interpolation

The performance of the reconstruction was measured by
the rms error between the reconstructed and the target
image. The rms errors for all four methods using a varying
number of frames are listed in Table 2. The result of ER
depends heavily on the spatial distribution of image shifts.
The performance degrades abruptly for unevenly
distributed image shifts, which occurred in a few of the
tested sequences. Such a result is shown in Figure 2e. It is
a periodic distortion which is caused by stability problems
associated with the inversion of ill-posed matrices. The
iterative method (IT) performs best at the expense of an
enormous computational load. The LSP interpolator is the
second best choice at a small fraction of the computational
cost.

Table 2: rms error for various interpolation methods and
number of input frames. The grey-values of the images are
in the interval [0,1].

n=10 n=16 n=25
LSP (n = 3) 1.8 10

-2
1.5 10

-2
8.8 10

-3

LSP (n = 6) 2.2 10
-2

1.6 10
-2

1.1 10
-2

NC (σ = 0.075) 2.3 10
-2

1.6 10
-2

1.1 10
-2

NC (σ = 0.15) 2.2 10
-2

1.7 10
-2

1.3 10
-2

ER no sol. 8.0 10
-2  * 1.8 10

-2

IT (10 iter.) 9.1 10
-3

5.6 10
-3

3.0 10
-3

*) See Figure 2e.

5.3 Robustness of LSP interpolator

The performance of the LSP interpolator was tested to
indicate its robustness in the presence of noise with a
variable number of input frames. As interpolation should
carefully balance between resolution and SNR we
measured the rms error also as a function of window size
(Figure 3) or the number of points used in least-squares
plane fit (Figure 4). Figure 3 and Figure 4 show the
performance of the 1D LSP interpolator applied to a
severely undersampled Gaussian function exp(-x2/2σ2)
(sampling distance T=4σ). The error behavior of the NC
interpolator (not shown) is similar to the LSP results.

It is clear that the rms error slowly increases for decreasing
number of frames. The optimal window size is denoted by
the lowest point in the error landscape and depends on the
SNR. Figure 5 shows that the noise on the sample values
and the noise on the estimated shifts have a similar effect
on the performance.
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Figure 3: Rms error of the 1D LSP interpolator as a
function of the number of frames and a fixed window size
(variable number of points). The window size is a fraction
of the original pixel spacing.
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Figure 4: Rms error of the 1D LSP interpolator as a
function of the number of frames and the number of points
(variable window size).
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6. Application in Infrared imaging

The test sequences have been replaced by real-world image
sequence acquired by a vibrating infrared camera in the
long wavelength range (7-10 µm). The sensor has an array
of size 128x128 pixels, a pixel pitch of 40 µm and a fill
factor of 0.64. The output images (Figure 6a and Figure
7a) have a sampling density that is four times higher in
both directions (16x as many pixels). The shifts are
estimated by MTS and the interpolation is performed by
LSP or NC.
The results shown in Figure 6b-c and Figure 7b-c contain
the same region-of-interest (ROI) before and after four-
times (in each direction) resolution improvement. The
method used 25 input frames, MTS uses a Gaussian
(smoother and gradient) of σ=1, NC uses a Gaussian
certainty function of size σ=0.075 of the original pixel
pitch, LSP uses a fixed number of samples (n=3).

7. Discussion

This paper presents a system for significantly improving
the resolution of undersampled (aliased) image sequences
in which the frames are shifted over a random subpixel
distance by random motion of the camera (vibration). The
system uses the MTS shift estimator and the LSP or NC
interpolator. The MTS shift estimator is both fast and
yields the best performance in our comparative study. The
LSP as well as the NC interpolator are sub-optimal
choices, but both methods have a computational
complexity that is much lower than the best performing
iterative method (IT). The system performs well over a
range of SNR’s that occur in practice. The performance
degrades “gracefully” when the noise increases or the
number of input frames decreases. The system meets all
requirements and yields high quality output image in
infrared imaging.

a) high resolution output image
b) ROI of aliased input image c) ROI of high resolution

Figure 6: Image of a camera test chart with bar patterns of increasing frequency. The output images (a) and (c) have a
four times higher sampling rate in both directions using MTS (σ = 1) and LSP( n = 3 samples) with 25 frames. All images
are contrast stretched.

a) high resolution output image b) ROI of aliased input image c) ROI of high resolution
Figure 7: Image of a camera test chart: rings with opening of decreasing size. The output images (a) and (c) have a
four times higher sampling rate in both directions using MTS (σ = 1) and NC (σ = 0.075) with 25 frames. All images
are contrast stretched.
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