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ABSTRACT

This paper derives a theoretical limit for image registration and presents an iterative estimator that achieves the
limit. The variance of any parametric registration is bounded by the Cramer-Rao bound (CRB). This bound is
signal-dependent and is proportional to the variance of input noise. Since most available registration techniques
are biased, they are not optimal. The bias, however, can be reduced to practically zero by an iterative gradient-
based estimator. In the proximity of a solution, this estimator converges to the CRB with a quadratic rate.
Images can be brought close to each other, thus speedup the registration process, by a coarse-to-fine multi-scale
registration. The performance of iterative registration is finally shown to significantly increase image resolution
from multiple low resolution images under translational motions.
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1. INTRODUCTION

Image registration is a fundamental task that plays a key role in many applications such as motion estimation,!
panoramic image construction,'® super-resolution,? ... It is generally accepted that registration performs better
on some types of images than others and that noise degrades the registration accuracy in a linear fashion.
However, not until Cramer-Rao analysis® is applied to image registration that these observations are supported
with a well-formulated theory. The Cramer-Rao bound (CRB) imposes a lower bound on the mean squared error
for any estimate of a deterministic parameter. The CRB analysis in this paper is motivated from the analysis of
shift estimation in® and affine registration in.® It is however extended to all parametric registration including
but not limited to: translation and 2D projective registration. Common to all these parametric motion models,
the CRB is signal-dependent and is proportional to the variance of input noise.

The paper also proposes optimal shift and projective estimators that achieve the Cramer-Rao bound. Since
most available registration estimators are biased, they are not optimal. However, through an iterative process, the
biases of the gradient-based shift estimator” and 2D projective estimator can be removed. The iterative estimator
is not only unbiased but is also optimal since their variances approach the CRB. Analysis of convergence rate
shows that the error of the iterative shift estimator reduces to less than one-hundredth of a pixel after only two
iterations. The Levenberg-Marquardt optimization'® for 2D projective registration also achieves this level of
accuracy within 10 to 15 iterations under a coarse-to-fine multi-scale strategy.

The paper is organized as follows: section 2 derives the Cramer-Rao bound for all parametric registration with
special cases for translational and 2D projective registration. Section 3 presents a gradient-based shift estimator
as derived from a Taylor series expansion of the local signal. Biases of the gradient-based estimator due to
Taylor series truncation and input noise are also characterized. Section 4 corrects the bias in an iterative manner
and shows that the iterative gradient-based estimator is optimal. Section 5 finally presents a super-resolution
application that uses the proposed registration estimators.
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2. MINIMUM VARIANCE BOUND FOR IMAGE REGISTRATION

The mean squared error of any estimate of a deterministic parameter has a lower bound known as the Cramer-
Rao Bound® (CRB). Specifically, if a parameter vector m = [mg my ... m,|7 is estimated from a given set of
measurements, the CRB provides a bound on the error correlation matrix:

Elee™] > (I + 8b) F~!(m) (I + ab)T +bb” (1)
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where € = m — m is the estimation error (the hat sign denotes an estimate of the underneath variable); b =
E[m]—m is the bias of the estimator (F].] is the expectation of the enclosed expression); I is the identity matrix;
F(m) is the Fisher Information Matrix (FIM) that characterizes how well the unknown parameter vector m can
be estimated from the observed data. The > sign in (1) means that the difference between the left and the right
matrices is non-negative definitive. As a result, the inequality holds for all diagonal terms.

If the estimator is unbiased (i.e. b = 0), the expected variance of the parameters can be found directly from
the main diagonal entries of the inverse matrix of the FIM:

E [(h; —m;)?] > F;;' (m) (2)

The Fisher information matrix is derived from the maximum likelihood principle. Let Pr(r|m) be the prob-
ability density function of an observed noisy data r(m), the Fisher information matrix is a measure of the
steepness of the likelihood function around its peak:
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Since the peak of a steep likelihood function is less sensitive to noise than that of a smooth one, the FIM
characterizes how accurate m can be estimated from the observed data.

2.1. Fisher information matrix for image registration

Image registration searches for a parametric transformation between two images’ coordinates based on their
intensity correlation. Assuming that both images I3 and I are corrupted from a noiseless scene I by zero mean
Gaussian noise with variance o
Il(xay) = I(Jj,y) + nl(x,y)
/ / (4)
Iy(w,y) = 1(2',y') + na2(2,y)

where 2/ = f(x,y,m) and 3 = g(z,y, m) are the coordinate transformation, and m = [m; my ... m,]7 is the
unknown registration parameter (for example, under translation ' = 2 — vy, ¥y =y — vy and m = [v, vy]T). If
the noises n; and no are normally distributed over the registration region S, the total probability of the unknown
scene [ given an estimate of m is:
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where the implicit coordinates for I, Iy and I is (z,y) except for I’ = I(z,y’). The log-likelihood function
therefore is:

log Pr(I|r) = _ﬁ 3 {(11 — I+ (I — 1’)2} + const (6)
S

From (3), the Fisher information matrix for a n-parameter vector m is thus a n x n matrix F with its entries
computed as:
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where the derivative of the noiseless second image I’ = I(2’,y’) with respect to each unknown parameter m; can
be computed from the derivatives of the second image and the registration model:
or _or o« oI oy
+ 5 (8)
om; ~ o om; | Oy Om;
2.2. Cramer-Rao bound for 2D shift estimation

Using the general derivation of the Fisher information matrix in the previous subsection, the Cramer-Rao bound
for any unbiased shift estimator can be derived. Two-dimensional shift estimation searches for a translational
vector v = [v, v,]T between two images: 2’ = ¥ — v, and y' = y — v,. The Fisher information matrix can be
computed from (7) and (8):
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According to (2), the Cramer-Rao bounds of the variances of the estimated shifts are:

var(vg ) > F11 = o2 ZIQ/Det( ) var(vy) > F22 = o2 ZIQ/Det( ) (10)
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where Det(F) =Y 123 I — <Z Imly) is the determinant of the FIM. The inequality in (10) is stricter than
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the one given in,” which ignores the second term of Det(F) to arrive at a simpler CRB:

var(vy,) > 0'2/%: I? var(vy) > 0'2/%: I (11)

The simplified CRB in (11) clearly shows that the shift variance is linearly proportional to the input noise
variance o2 and inversely proportional to the total gradient energy in the shift direction. As a result, big image
patches with high-gradient details and low noise are likely to result in accurate shift estimation. However, the
equality of the loose bound in (11) is hardly achievable (since (3 I,.1,)? is set to 0 in®). As a result, the true
CRB in (10) should be used instead.

Note that the CRB characterizes the shift variances based on an uncorrupted signal I, which is not available
in practical situations. However, if the region of interest S is large, the total gradient energies of I can be
computed from that of the corrupted image I; and an instance of noise with the same variance:

SRaT () -5 (%) %IZ%%:(%)Q—%:(%Y SLL~THRE )

2.3. Cramer-Rao bound for 2D projective registration

Similar to shift estimation, the Cramer-Rao bound is applicable to other motion models such as 2D projective
transformation (which includes translation, Euclidean, similarity, and affine transformations). The bound is also
computed from the Fisher information matrix as done with shift estimation. Planar projective registration looks
for an 8-parameter vector m = [m; my ... mg]” that transforms the two images’ coordinates by:

x,:mlx—i—mzy—&—mg y,:m4x—|—m5y+m6 (13)
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The 8 x 8 Fisher information matrix is then derivable from (7) and (14). Due to a complex 8 x 8 matrix inversion,
the exact formula for Cramer-Rao bound is not given here. However, similar to shift estimation, the variances
of the projective registration parameters are proportional to the input noise variance and inversely proportional
to the total gradient energy.

—y(z



3. BIAS OF GRADIENT-BASED SHIFT ESTIMATOR

The Cramer-Rao bound presented in the previous section is applicable to unbiased shift estimators. Biased
estimators therefore have an even higher variance bound. While most current shift estimators are biased, the
biases are not easily characterizable.” In this section, we present a bias analysis of the one-dimensional gradient-
based shift estimator. Bias for 2D shift estimator is similar and is included in the Appendix. The original work
in? is presented entirely in the spatial domain as opposed to a mix spatial-frequency analysis in.°

According to the Taylor series expansion, a continuous signal can be approximated from a close-by signal by

a polynomial expansion. This approximation can be used to relate two slightly shifted signals:
681 1 28281 1 38381
so(x) = s1(z +v,) = s1(x) + Vo + Ve gz T 3V s
where the 1D signal sy equals to a shifted version of s; by a small displacement v,.. Because v, is small, high
powers of v, in (15) are negligible. sy can thus be approximated by truncating the Taylor series after the first
order derivative. The displacement v, can then be solved from a set of linear equations by minimizing the Mean

Square Error (MSE) over N samples in a supported region S:

¥ (15)

MSE = Jbzsj (32(95) — s1(2) —UI%Z}Y (16)

which yields a least squares solution”:
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The approximation is only accurate when the second and higher derivatives in (15) are small. As a result, only
displacements smaller than the derivative scale (o5 ~ 1 pixel for discrete signals) can be estimated reliably using
the Taylor expansion method. Signals with displacements larger than one pixel should be aligned to integer
accuracy first using other methods such as cross-correlation. A multi-resolution Taylor shift estimation that
estimates and refines the displacements from coarse to fine scales could also be used in such cases.

One problem remains with the Taylor expansion method is that the shift is estimated from a set of approx-
imations, not equations. The solution (17) is also derived for noise-free signals only. As a result, there is a
systematic bias that depends on the image content and the displacement itself. In fact, the bias is a combined ef-
fect of multiple modeling errors such as truncation of Taylor series and intensity noise. The following subsections
identify these biases to serve as a starting point for bias correction.

3.1. Bias due to truncation of Taylor series

One most noticeable displacement bias is due to the truncation error of the Taylor series in (15):
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Putting so(z) — s1(z) = vm% + ¢ into the least-squares estimate in (17), the truncation bias can be computed
as:
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where the even-order terms vanish due to Parseval’s theorem?:
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where

f@)=252 & Fw)=jw Jus(e) (21)
g(z) = 53 & G) = (-1)"w*S(w)

3.2. Bias due to noise

The formula for the truncation bias is applicable to shift estimation between two noiseless images. In reality,
noise is always present and is a source of much more significant registration error. We assume additive Gaussian
noise, uncorrelated with the original image and uncorrelated between realizations:

s1(2) = s1(2) + 1 (2) s3(2) = s1(2 + vz) + na(2) (22)

Under Gaussian noise, shift estimation by minimizing the MSE in (16) still holds, so does the solution (17)
with an exception that the image gradient must be derived from the noiseless signal s;. Since s; is unavailable,
the noisy signal s7 is used in (17). Although noise does not affect the truncation bias, it introduces another bias
to the estimated shift:

> (s3(x) — st(x) 2L > (sa(x) — s1(x)) 5

N
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where v} is the estimated shift computed from the noisy signals sf, S = > (%) and N = ) (8"1) are

gradient energies of the signal and noise respectively. It is interesting to see that the Taylor shift estimator
always underestimates the displacement in the presence of noise. The bias due to noise is proportional to the
shift amount. As a result, it is a more severe bias source than the Taylor series truncation, which is proportional
to the cube of the shift.

4. OPTIMAL REGISTRATION ESTIMATORS

When an estimator reaches the Cramer-Rao bound, it is said to be optimal. Least-squares estimator is often
optimal when it is unbiased. Although the gradient-based shift estimator is biased, its bias can be corrected in
an iterative way. The resulted shift estimator is therefore optimal. Experimental results will also be carried out
in this section to validate the claim.

4.1. Iterative gradient-based shift estimator
From (19) and (23), the total bias of the gradient-based shift estimator can be written as:
ony1\2 35, s sy Js
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where the first term is due to noise and all other terms are due to truncation error.

(24)

Although the biases due to Taylor truncation and noise can be derived analytically, we do not favor a direct
bias correction. One reason is due to an inaccurate initial shift estimation. Since the bias is derived from this
initial estimate, the correction is also not accurate. Another reason is that formula (24) requires the derivatives
of the uncorrupted signal s1, which is not available. Besides, the bias is derived from many assumptions such
as an infinitely large region of interest or Gaussian noise that are not correct in the first place. As a result, we
prefer an indirect bias correction method. (24) reveals that the relative bias bias/v, ~ N/(S + N) is positive
and smaller than one. The bias is therefore guaranteed to reduce at an exponential rate if shift estimation is
performed iteratively on a translation-corrected image pair. Since the bias can be reduced to practically zero,
the iterative shift estimation converges to an unbiased solution.

The algorithm for iterative shift estimation is described as follows (integer displacement should be corrected
first since this algorithm only handles sub-pixel shift):



1. Initialize a counter i = 0, a temporary signal s2(0) = s, and an accumulated displacement v, to 0
Perform a Taylor shift estimation on s; and s2(7) that results in a displacement v, (7)
Accumulate the latest resolved displacement: v, = v, + v, (%)

Translate the second signal by the accumulated displacement: so(i + 1) = shift(ss2, vy)

AN

Exit loop if the incremented displacement v,(7) is within a desirable accuracy or if a maximum number of
iterations is reached, otherwise increment the counter ¢ = ¢ + 1 and go back to step 2.

The iterative algorithm is guaranteed to terminate, either due to accuracy condition or maximum number of
iterations, whichever is reached first. With practical SNRs (SN R = 10log19(S/N)), the algorithm converges so
fast that the registration bias reduces to an order of O(le—3) after only 2 iterations:

bias(1% iter) ~ gz, < § X 0.5 & 4.5e—2

2
bias(2" iter) ~ gYybias(1*) ~ (g ) ve < ()7 x 05~ 41e-3

for SNR > 10dB (25)

The iterative solution is also very efficient since the image derivatives in (17) are reusable across iterations. In
fact, an extra iteration of shift estimation requires less computation than the bias correction method.?

4.2. Normal distribution and optimality

To examine the influence of noise on the variance of the iterative shift estimator, we apply shift estimation to
a shifted pair of 8-bit 256 x 256 images. The [0.5 0.5]-shifted pair is generated from a large Pentagon image
(1028 x 1028) by Gaussian smoothing (o = 2) followed by 4-times subsampling. Gaussian noise of the same
variance is added to both images before the estimation. For each noise level, 100 noise generalizations are tested
and the estimated shifts are plotted in figure 1la. The point clusters around [0.5 0.5] suggests that the estimated
shift is unbiased. However, the estimated shifts are not exactly [0.5 0.5] because of a stochastic variation that
is proportional to the variance of input noise.

The variation of the estimated shift due to input noise is explainable from the solution of the 2D gradient-
based shift estimation (derived in Appendix A):

Vyp = (Z 1.1 ZI; — > I, Z[le) /Det
S 5 5 S
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2
where v=[v, v,]” is the displacement of an image I, against a reference image I,. Det = Y 125" 17— <Z Ime>
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is the determinant of a Hessian matrix that characterize the reference image I (same matrix in (9)) and I, I,
I, are shortcuts for 011 /0x, 8I1/0y, I — I, respectively. Since the iterative solution converges, the precision
of the overall shift equals to that of the final estimation. At the final iteration, the estimated shift is already
quite accurate such that the translated image I only differs from the reference frame I; by a noise term:
I; = I, — I = ny —ny. Since I; is pure noise, E [y I, 1| = E[>_I,I;] = 0 and v, v, are therefore normally
distributed around zero.

The precision of the iterative shift estimation is compared against the Cramer-Rao bound in figure 1b. The
continuous line represents the theoretical CRB, the dash lines plots the standard deviation of v, over 100 trials
(the error bar is constructed from 10 of such std(v,)). The plot of precision for v, is similar and is therefore
omitted. It can be seen that the shift estimate could even get a slightly smaller variance than the CRB for
practical SNRs (SNR > 0 or 0,0ise < 20). This is because the CRB is computed from noisy image derivatives
(equation 10), which must be estimated at a certain scale. Also drawn in figure 1b is a dash-dot line, which
show a better shift variance at high noise thanks to signal pre-smoothing. As can be seen, the variance of shift
estimation without image pre-smoothing (dash line) soars above the CRB for noise with ¢,,0i5¢ > 20 (SNR < 0).

Gaussian pre-smoothing with an adaptive o5 = 0,0i5¢/20 really matches the shift standard deviation curve
(dash-dot line) with the optimal bound.
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Figure 1. Influence of Gaussian noise on the precision of the iterative gradient-based 2D shift estimator

4.3. Optimal 2D projective registration

The presented iterative shift estimation has actually been used by many*7 without knowing its optimality.
In fact, the iterative solution is a gradient descent process that converges to a local minimum. Similarly, 2D
projective registration is solved by an iterative Levenberg-Marquardt optimization process.'® At each iteration,
the registration parameters m (see section 2.3) are incremented by a small amount computed from a linear system
whose matrix is identical to the the 8 x 8 Fisher information matrix derived in (7) and (14). The similar gradient
descent nature suggests that the Levenberg-Marquardt 2D projective registration estimator is also optimal. This
is verified in an experiment whose results are shown in figure 2.
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Figure 2. Precision of the gradient-based 2D projective estimator using Levenberg-Marquardt optimization.

In this experiment, a 256 x 256 reference image (figure 2a-1) is projectively distorted by a random 3 x 3
homography matrix (equation 27), resulting in image 2a-2. The registration matrix M is estimated directly



from the two input images. The distorted image is then warped onto the first image, resulting in image 2a-3.
Note that the registration is estimated correctly since image 2a-3 looks very similar to the reference image. The
difference between the reference and the warped image in figure 2a-4 also shows no perceptible difference.

1.087094  0.041690 —0.897298
M =] 0.039365 0911578 —1.471319 (27)
0.000313 —0.000490  1.000000

By adding different noise generalizations to input images 2a-1 and 2a-2 before estimating registration, we
perform the same variance analysis as done in the previous subsection for shift estimation. Figure 2b plots the
precision of the estimated parameters for different input noise levels. The estimated precision (dash-dot line)
matches the Cramer-Rao bound (continuous line), which implies the optimality of the Levenberg-Marquardt
registration.

Since eight parameters are involved in the optimization process, the 2D projective registration requires many
more iterations than the simple shift estimation. To speedup the process and reduce the chance of convergence
to a wrong local minimum, a multi-scale strategy is used. The registration is first estimated at a coarse scale, the
registration parameters are then used as initialization to another estimation at a finer scale. With a three-scale
scheme (Gaussian smoothing o = 4,1,0), it takes 10 to 15 iterations for the Levenberg-Marquardt registration
to convergence.

4.4. Beating the limit of registration

The Cramer-Rao bound dictates that there is a fundamental limit to the precision of any image registration. The
CRB derived in this paper, however, only applies to pairwise registration of noisy images. One way to improve the
precision of registration is to register a new image against a high-resolution mosaic reconstructed from previous
images. Since the mosaic image is of higher resolution and is less noisy, its gradient information is closer to the
noiseless ground truth. The gradient-based solution computed from these gradients is therefore more reliable.
Another way to improve the performance of registration is to involve multiple images in a single estimation.
Bundle adjustment® ensures registration consistency amongst several frames to reduce the registration error due
to noise of a single pairwise estimation. The shift estimated in the next section, for example, is the average result
of a forward and a backward shift estimation. Unfortunately, there is also a limit in the number of images used
in bundle adjustment. Due to many factors such as reducing overlapping areas, motion in the scene, perspective
or lens distortion, registration consistency might not hold for all images in a sequence.

5. SUPER-RESOLUTION APPLICATION

Registration with sub-pixel accuracy is desirable in many applications such as image mosaicking and Super-
Resolution (SR). In fact, with enough overlapping frames, SR can be done simultaneously with image mosaicking.
Figure 4 shows such an example of constructing a super-resolved panorama view from a shifted image sequence.
The wide view of a highway in figure 4d is reconstructed from 200 128 x 128 Low-Resolution (LR) frames. The
LR frames are captured by a panning camera. Frames number 0, 122 and 199 can be seen in figure 4a-c. The
camera also slightly tilts over 200 frames to cause sub-pixel shifts in the vertical direction for SR. Since the scene
is captured by a panning camera from afar, motion between frames are roughly translational. The displacement
between every adjacent frames are computed in both directions and the results are averaged to obtain a better
shift estimation. New frame is fused onto an existing mosaic by nearest neighbor pixel stamping. Despite many
poor data conditions (small frame size, low contrast, high noise, intensity flickering, moving cars and human,
dead sensors, ...) the estimated shifts are quite good and the reconstructed mosaic shows no blurring or jitter
artifact due to mis-registration.

The result of two-time SR can be compared against a single LR input in figure 3a-b. It is clear that the SR
image has much lower noise and higher dynamic range. These greatly improve the visibility of the scene. For
example, the hexagonal pattern on the concrete structure along the highway is only visible in the SR image.
Smaller details and reduced aliasing are also observable in a zoomed-in version of the SR image (figure 3d
compared to the same LR region in figure 3c¢). Notice that the fence is now visible on both side of the highway
crossing. Tree branches are also distinguishable from the background in the SR image.



6. CONCLUSION

In summary, we have derived a Cramer-Rao lower bound for any unbiased parametric image registration. The
minimum variance bound of shift estimation is proportional to input noise variance and inversely proportional to
the total gradient energy in the estimation direction. Although the gradient-based shift estimator is biased, the
bias can be eliminated by an iterative bias correction process. This iterative shift estimator is optimal in a sense
that its variance approaches the Cramer-Rao lower bound. The iterative shift estimator is also very efficient,
requiring only two iterations to achieve an accuracy of one-hundredth of a pixel for 256 x 256 images at normal
signal-to-noise ratio (SN R > 10dB). Similar to shift estimation, iterative 2D projective registration also reaches
the Cramer-Rao bound after 10 to 15 iterations of Levenberg-Marquardt optimization. Finally, registration
with sub-pixel accuracy has been applied to the application of image mosaicking and super-resolution of distant
surveillance videos.

APPENDIX A. TWO-DIMENSIONAL SHIFT ESTIMATION
A.1. Gradient-based 2D shift estimation

We start off with a local Taylor expansion for a two-dimensional signal:
L =5L+vl, +vyly+¢ (28)

where image I is a shifted version of image I; by a small displacement (vs,vy), Iy = Io — I is the discrete
temporal derivative, I, and I, are image derivatives in 2 and y dimension respectively, and ¢ is the truncation
error:
e= %v%]m + vgUy Ly + %vglnyr (29)
%vi]wm + %vgvyfmy + %vmvglmyy + %vzfyyy + ...
where the number of occurences of x and y in the suffix of I determine the order of derivative in that dimension.
Minimizing the MSE for v, and v, results in a set of equations in matrix form:
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where Det = Y 125 17 — (E I$Iy> is the determinant of the Hessian matrix in (30).
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A.2. 2D shift bias

The truncation bias for two-dimensional Taylor shift estimator can be derived analytically by putting I; =
vply + vyl + € to (31):
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where the even-order terms in the expression of ) eI, and ) eI, vanish due to Parseval’s theorem: (formulae
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for >~ eI, is similar and is therefore omitted):
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> el = 5o > Ligel: + U0y > Layle + 5Uat) > Lyl + &% > Iyyle + .. (33)
S S S S S



The bias due to noise is more complicated for the two-dimensional case (shown here for bias only):
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where v} is the estimated shift computed from (31) using derivatives of the noisy images IT = I; + ny; n, and
n, are derivatives of the noise n; in x and y dimension respectively. N is the over-estimation of the Hessian
matrix’s determinant if the gradient information of the noisy image is used:

N:ZniZIZ—i—ZnZZIf—FZnian (35)
S 5 S 5 5 S

A.3. Aperture problem and convergence

Accurate shift estimation is not always possible using a computational approach due to a phenomenon called the
aperture problem." In the aperture problem, the solution of shift estimation is not unique or is undefined due
to a homogeneous structure in the signals. For example, a translation is undefined for 1D signals if the signal is
constant over the estimated region. This causes a division-by-zero error in solution (17) for 1D shift estimation.
In 2D cases, solution (31) can also be undefined if the determinant of the Hessian matrix in (30) equals zero.
This happens when I,,/I, is constant over the supported region. In other words, the aperture problem occurs
for 2D signals when there is a single orientation over the entire neighborhood.

Like all other shift estimators, the iterative gradient-based shift estimator fails under the aperture problem.
However, it is also unstable for conditions close to the aperture problem. Under low SNR and high orientation
congruency, the absolute relative bias may get larger than one, which prevents the convergence of the iterative
solution: )

1.1 3
bias, 1 XS: z t%:”y N N +avg—|—bvgcvy—|—cv§—|—clz—z—I—...
vy vy Det+ N Det + N Det

If noise level is high or local orientation is uniform, N >> Det and the second term in (36) is close to one. As
soon as |v,| is smaller than a certain threshold while |v,| is still high, the 1/v, and v} /v, terms might become
large enough to amplify the absolute relative bias to more than one. This stops the convergence of the 2-D
iterative shift estimator and the solution thus ends up far away from the ground truth. However, this is not
surprising at all because the Cramer-Rao bound (equation 10) is then also very high.

(36)

There is a simple solution to alleviate this instability problem: pre-smoothing of images before shift estima-
tion.? Pre-smoothing causes an attenuation of all gradient-dependent terms in (36). Since N reduces much
faster than Det, the scalar term in (36) becomes much smaller than one and so do other terms in the formulae.
The relative bias is then more likely to stay well below one, and the iterative solution would thus converge.
As a more accurate registration is obtained, the 1/v, term in (36) will not cause an overshoot because _ I, I
approaches zero due to the pure noise in Iy ~ ny — ny.
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(a) a region of interest in LR frame no. 183 (b) two-time SR from a shifted sequence
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(c) zoom-in of the LR image (d) zoom-in of the SR image

Figure 3. Two-time super-resolution image versus a low-resolution image. All images are stretched.!?
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