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Abstract—Path openings and closings are morphological oper-
ations with flexible line segments as structuring elements. These
line segments have the ability to adapt to local image structures,
and can be used to detect lines that are not perfectly straight.
They also are a convenient and efficient alternative to straight
line segments as structuring elements when the exact orientation
of lines in the image is not known. These path operations are
defined by an adjacency relation, which typically allows for lines
that are approximately horizontal, vertical or diagonal. However,
because this definition allows zig-zag lines, diagonal paths can
be much shorter than the corresponding horizontal or vertical
paths. This undoubtedly causes problems when attempting to use
path operations for length measurements.

This paper (1) introduces a dimensionality-independent imple-
mentation of the path opening and closing algorithm by Appleton
and Talbot, (2) proposes a constraint on the path operations to
improve their ability to perform length measurements, and (3)
shows how to use path openings and closings in a granulometry
to obtain the length distribution of elongated structures directly
from a gray-value image, without a need for binarizing the image
and identifying individual objects.

I. INTRODUCTION

Path openings and closings are morphological operations
whose structuring elements are flexible line segments. These
line segments have a general orientation, but due to their
flexibility they can rotate and bend to adapt to local image
structures. Path openings and closings were first proposed by
Buckley and Talbot [1], and received a more thorough theoret-
ical foundation by Heijmans, Buckley and Talbot [2], [3]. A
path opening of length L is equivalent to the supremum of all
openings with structuring elements composed of L connected
pixels arranged according to a specific adjacency relation. In
two dimensions (2D) there are four simple adjacency relations:
one that produces approximately horizontal lines, one that
produces approximately vertical lines, and two that produce
approximately diagonal lines. The horizontal path is formed
by adding pixels either horizontally or diagonally, but always
to the right (North-East (NE), East (E) and South-East (SE)
neighbors). The vertical path is formed using the North-West
(NW), North (N) and NE neighbors, and the diagonal paths
using either the N, NE and E or the E, SE and South (S)
neighbors. Figure 1 shows the horizontal path connectivity
diagram and some example horizontal paths.

Obviously, computing the opening with each of the possible
connected path structuring elements of length L is prohibitive
even for small values of L, since there are O(3L) such paths.
Buckley and Talbot [1] proposed a recursive algorithm to
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compute path openings that is O(NL) (with N the number
of pixels in the image), and needs 2L− 2 temporary images.
Later, Appleton and Talbot [4], [5] proposed a more efficient
algorithm that seems to be O(N log(L)), and only requires
three temporary images. Both algorithms are explicitly defined
for 2D images. Section II proposes a simplification to the
Appleton and Talbot algorithm, which allows for a definition
that is independent of image dimensionality.

A granulometry is a standard tool in mathematical morphol-
ogy that builds a size distribution of objects in an image by ap-
plying an opening (or closing) of increasing size, and summing
all pixel values after each step [6], [7]. In previous work [8],
I have shown how a supremum of openings (or an infimum of
closings) with line structuring elements at all orientations can
be used in a granulometry to measure the length of objects
in the image without segmenting the image first. Because the
number of orientations needed increases linearly with the line
length in 2D [9], this can be a time-consuming operation in
a 2D image. But it becomes prohibitive in 3D, where the
number of orientations needed depends quadratically on the
length. It is therefore attractive to use path openings instead.
In 2D there are only 4 orientations over which to compute the
path opening, independent of path length. In 3D there are 13
possible orientations. Using Appleton and Talbot’s algorithm,
the operation’s cost grows logarithmically with length, for any
number of dimensions. Two-dimensional path openings have
recently been used in a similar manner to detect roads in
satellite images [10].

There is, however, one caveat when using path openings:
as will be shown, diagonal paths can zig-zag (e.g. N, E, N,
E, N, etc. instead of NE, NE, NE, NE, NE, etc.), resulting in
a path that is physically much shorter than expected given
the pixel count. Section III shows how to avoid this. The
constraint introduced in that section also narrows the possible
orientations for one path, making it more selective. This
constraint is similar to that proposed by Buckley and Yang [11]
for shortest path extraction, though implemented in a very
different manner.

Subsection IV-D shows how the methods proposed in this
paper can be applied to estimate the length of wood fibers in a
3D microtomographic image, without the need to identify in-
dividual fibers through complex segmentation routines. Other
parts of Section IV highlight other possible uses of the path
opening operation.

The source code for the path openings as proposed in this
paper, together with the scripts used to generate all the results
presented, are available on line at http://www.cb.uu.se/∼cris/
pathopenings.html. All tests were done in MATLAB (The
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Fig. 1. a: Graph containing all possible 4-pixel horizontal paths that go through pixel p. To compute the 4-pixel path opening, one would compute the
minimum value over each path (104 combinations) and use the maximum of these values. b: Three possible horizontal paths with 7 pixels.

MathWorks, Inc., Natick, MA) using the DIPimage toolbox
(http://www.diplib.org/). Path opening algorithms were imple-
mented in C.

II. d-DIMENSIONAL PATH OPENINGS

This section describes the modifications to the published
algorithm to make it dimensionality independent. First I will
give a short description of the algorithm as presented by
Appleton and Talbot [4], [5]. This section ends with some
implementation details.

A. Appleton and Talbot’s Path Opening Algorithm

This is an ordered algorithm, which means it sorts all pixel
values and, starting at the lowest gray value, processes each
pixel exactly once. The algorithm requires three temporary
images. One temporary, binary image b marks each pixel as
active or inactive. Initially, all pixels are active, and become
inactive as they are assigned their final value. The other
two temporary images, λ+ and λ−, accumulate upstream and
downstream lengths for each pixel. The upstream direction is
given by the adjacency relation: for example when making
horizontal paths, upstream is to the E, and the set { NE, E,
SE } are the upstream neighbors. The downstream direction
is the opposite direction (in this case to the West (W)). These
images are both initialized to L, indicating that, for each
pixel, at the initial gray level, it is possible to draw a path
in either direction of length L. Since L is the target length,
it is not necessary to accumulate any value larger than L. As
the algorithm progresses, λ+ and λ− will decrease in value.
For a pixel p, λ+(p) + λ−(p)− 1 is the length of the longest
path through it.

The initialization of λ+ and λ− allows paths to extend
indefinitely past the image boundary. In Appleton and Talbot’s
algorithm, pixels closer to the boundary obtain lower values. In
this way paths are constrained to the image domain. There are
other ways to treat the boundary condition [3], but this is not
explored further in this paper. No boundary condition is correct
if it is not known what was outside the image. Therefore
it makes sense to use the boundary condition that requires
the least effort to implement or the least time to compute.

Furthermore, adding a dark border around the image also
constrains the paths in the opening to the image domain, but
in a much simpler manner (use a light border for the closing).

After initialization, all pixels with the lowest gray value are
selected for update, and the temporary and output images are
updated as detailed below. Then the next higher gray value
is chosen, and all pixels with this value that are still active
are selected for update, etc., until the highest gray value is
reached. It is possible to write directly in the input image, it
is not necessary to create a separate output buffer.

At each threshold level g, the selected pixels are processed
twice, once in the upstream direction and once downstream.
In each of these passes, upstream/downstream pixels are
iteratively enqueued. Pixels on the queue need to be processed
in the appropriate order. For example, when making horizontal
lines, the upstream direction is E, meaning that in the upstream
pass the enqueued pixels need to be processed from W to E. In
the downstream pass, the enqueued pixels need to be processed
from E to W.

In the upstream pass, for each of the selected pixels p the
corresponding λ−(p) is set to 0 and the upstream neighbors
are enqueued. Pixels in the queue are processed according to
their position in the image, such that pixels further upstream
are processed later. For each of the pixels q in the queue,
the maximum λ− of its downstream neighbors is found and
increased by one. For horizontal paths this is:

λ = 1 + max(λ−(NW (q)), λ−(W (q)), λ−(SW (q))) .

If this new value λ is smaller than λ−(q), λ−(q) is assigned the
value λ and its upstream neighbors are also enqueued. Because
λ− was initialized to L, the update procedure automatically
stops after L steps.

In a second, downstream pass, λ+ is updated in a similar
way.

Next, For each of the pixels q updated in these two
passes, the value λ(q) = λ+(q) + λ−(q) − 1 is computed.
If λ(q) < L, the pixel q is not part of a path of length L. The
corresponding pixel in the output image is set to the current
gray value g. Because this pixel will also not be part of a
longer path at higher gray values, b(q) is set to inactive and
λ+(q) = λ−(q) = 0.
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Note how, after sorting the image pixels by gray value,
there is no further comparisons of gray values. Therefore, to
compute the closing instead of the opening, one need only
change the initial sort order, starting at the largest gray value.

B. Simplifying the Algorithm

The most complex part of the algorithm as described above
is the queue used to process the pixels: depending on the
chosen orientation, pixels need to be sorted in different ways.
This sorting can be accomplished by writing four versions
of the algorithm, one for each possible orientation, but that
does not generalize to higher dimensional images. At the
expense of a slight increase in execution time, the above
algorithm can be modified such that, instead of processing
all pixels with identical gray value at the same time, the λ+

and λ− update procedure is performed for each input pixel
independently. The pixel queue can now be implemented as
a simple first-in, first-out (FIFO) queue. The recursive update
algorithm only requires a list n of offsets to the upstream and
downstream neighbors, such that, e.g. p + n(1) = NW (p),
p + n(2) = W (q) and p + n(3) = SW (q). By changing this
neighbor list, a different path orientation can be selected. And
by defining the neighbor list appropriately, the same algorithm
can process images of any number of dimensions.

This implementation of the algorithm starts by creating a
list of linear indices (or memory addresses) to every pixel in
the image. It skips the border pixels to avoid tedious out-of-
bounds tests when indexing neighbors. The list of indices is
then sorted according to the gray value of the input image
(low to high for the opening, high to low for the closing). The
temporary images b, λ+ and λ− described above are created
and initialized. b is set to inactive for all the border pixels
to stop the iterative propagation routine when it reaches the
image boundary. Two FIFO queues are created, Qq and Qc.
Qq is the queue used for propagating lengths. Qc is a queue to
which pixels are added for which either λ value changed, and
avoids testing all pixels in the image for changes at the end of
every length propagation pass. The binary image b is stored
using one byte per pixel, which lets two additional flags per
pixel to be stored in the same space: fq and fc. When a pixel
is added to Qq, fq is set, indicating that the pixel need not
be enqueued again; when the pixel is popped from the queue,
fq is reset. fc has the same function for queue Qc. These two
flags are only used for efficiency, and could be done without
at the cost of longer queues Qq and Qc. The full algorithm is
outlined in Figure 2.

By not processing pixels on the boundary of the image,
the algorithm never changes their value. What is more, the
pixels on the image boundary do not influence the result of
the operation. To circumvent this issue, it is possible to add a
one-pixel border around the image.

C. Adjacency Relations in d Dimensions

In the previous algorithm description I did not specify
how to create the offsets to the upstream and downstream
neighbors, n+ and n−. This list is the only element of the
algorithm that contains any notion of the image dimensionality.

Let us assume that the image is stored in a linear array such
that adding the integer value s1 to the address of any pixel
yields the address of its neighbor along the first dimension,
adding s2 yields the address of the neighbor in the second
dimension, etc. The values si are called strides. In a 2D image,
for example, the NE neighbor of p is p+s1−s2, and therefore
the value s1−s2 is the offset to the NE neighbor. This indexing
does not work on border pixels, which is why the border pixels
are not processed in the algorithm as described above. It is
relatively easy to add the necessary tests to be able to process
border pixels, but these significantly increase the execution
time of the algorithm.

Figure 3 outlines an algorithm to loop over every neighbor
of a pixel, no matter what the dimensionality d is, and compute
its offset based on the strides s. It includes a test “w is close
in direction to v”, to determine if a neighbor w needs to be
added to the list of upstream neighbors n+, given the path’s
main direction v. Here, v and w are defined as vectors with d
elements, each one taken from the set {−1, 0, 1}, and point at a
neighbor pixel. The test “w is close in direction to v” is defined
as follows: (1) wi 6= vi for at least one i; (2) wi = vi 6= 0
for at least one i; and (3) |wi − vi| ≤ 1 for all values of
i. In 2D this produces the same neighbor relations as in the
original path opening definition [1]–[5]. In higher dimensions
it produces an equivalent graph with paths that can bend in
any direction.

D. Enumerating All Possible Orientations

To obtain a path opening that is not constrained to a
specific orientation, one would take the supremum of the
path openings in each possible orientation. In 2D there are 4
possible orientations: 0◦, 90◦, 45◦ and −45◦. In d dimensions
the number of orientations is given by Nd = (3d − 1)/2 (this
is half the number of neighbors of a pixel). Enumerating these
orientations is very simple, using a loop similar to that shown
in Figure 3. This time we do a simple test on w to verify that
it is on the positive half-sphere: the first non-zero element of
w must be positive.

III. CONSTRAINING PATH OPENINGS

The one issue with path openings using the adjacency
relations as defined previously concerns the length of diagonal
paths (45◦ and −45◦ paths). An opening will preserve a two-
pixel wide line of certain length, but not a one-pixel wide line
of the same length, because it can zig-zag in the wider line but
not in the thinner one. This effect is demonstrated in Figure 4
and Subsection IV-C.

To reduce a path’s ability to zig-zag, it is possible to change
the adjacency graph. For example, Heijmans et al. mention the
possibility of an adjacency graph where even and odd steps
are different [3]. Their example graph [3, Figure 2d] forms
vertical paths from S to N; even rows are as described here,
containing steps either NW, N or NE; odd rows contain only
steps in the main direction, N. This results in lines with at least
half the steps to the N, meaning its angle is more constrained
and zig-zagging is reduced. The negative side effect is that
these openings are not invariant to a translation of 1 pixel
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create list of offsets n+ to upstream neighbors and n− to downstream neighbors
create a list i of indices to every pixel in the image I (except border pixels)
sort i according to value of I(i)
create temporary images b, λ+ and λ−

initialize: b← true, λ+← L, λ−← L
initialize: b(pb)← false (for all border pixels pb)
for every element p in i for which b(p) = true

propagate (p, λ−, n+, n−)
propagate (p, λ+, n−, n+)
for every element q in Qc :

if λ+(q) + λ−(q)− 1 < L :
I(q)← I(p)
b(q)← false, λ+(q)← 0, λ−(q)← 0

function propagate (p, λ, nf , nb) :
λ(p)← 0
enqueue in Qq all neighbors pf = p + nf for which b(pf ) = true
for every element q in Qq :

`←
∨

i
λ (q + nb(i)) + 1

if ` < λ(q) :
λ(q)← `
enqueue in Qq all neighbors qf = q + nf for which b(qf ) = true
enqueue q in Qc

Fig. 2. Dimensionality-independent version of the path opening algorithm. See text for definition of variables.

create an empty list n+

create coordinate array w, with d elements, initialized to −1
loop indefinitely :

if w = v or w is close in direction to v :
p = 0
for every i in (1, d) : p← p + visi

add the offset p to the list n+

for every i in (1, d) : (find the coordinates for another neighbor)
wi← wi + 1
if wi ≤ 1 : break (we have found a new neighbor to process)
wi← −1

if wi = −1 ∀i : break (we have processed all neighbors)
n−← −n+

Fig. 3. Dimensionality-independent looping over all neighbors to create a list of offsets to neighboring pixels. See text for definition of variables.

(a) (b) (c)

Fig. 4. The 45◦ path can have very different number of pixels depending on
the width it is allowed to have. a: When given the space, the path will zig-
zag, resulting in a physically shorter path than expected given the pixel count
(7 pixels). b: The same physical length can be covered with fewer pixels (4
pixels). c: The proposed constraint does not completely avoid the zig-zagging
of the path, but reduces its consequences to acceptable levels (5 pixels).

in the vertical direction, though translation invariance can be
recovered by combining the output of two openings.

I propose to constrain paths in a similar manner, but within
a single operation. When building the path with main direction
v, a step in a direction other than v must always be followed

by a step v. This is a less strict constraint than using the graph
described above because the restriction to the step is not given
by the location in the image, but rather by the previous step
taken. Figure 4c gives an example. With this constraint the
steps in a direction other than v can happen anywhere on the
path, but it is not possible for two of these steps to happen
consecutively.

To implement this idea two additional temporary images
are required: instead of one upstream and one downstream
length image, λ+ and λ−, we need two of each, one for
the normal length, and one for the constrained length: λ+,
λ+

c , λ− and λ−c . The constrained lengths are the lengths
propagated from the pixel in the main direction v, the normal
length can be propagated from any of the possible direc-
tions. When propagating lengths, the constrained length can
be propagated to any direction, whereas the normal length
can only be propagated in the main direction. This implies
that the constrained length must be used to update the next
pixel’s normal length, and the normal length must be used to
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create list of offsets n+ to upstream neighbors and n− to downstream neighbors
create a list i of indices to every pixel in the image I (except border pixels)
sort i according to value of I(i)
create temporary images b, λ+, λ+

c , λ− and λ−c
initialize: b← true, λ+← L, λ+

c ← L, λ−← L, λ−c ← L
initialize: b(pb)← false (for all border pixels pb)
for every element p in i for which b(p) = true

propagate (p, λ−, λ−c , n+
c , n+, n−c , n−)

propagate (p, λ+, λ−c , n−c , n−, n+
c , n+)

for every element q in Qc :
if λ+(q) + λ−c (q)− 1 < L or λ+

c (q) + λ−(q)− 1 < L :
I(q)← I(p)
b(q)← false, λ+(q)← 0, λ+

c (q)← 0, λ−(q)← 0, λ−c (q)← 0

function propagate (p, λ, λc, nf,c, nf , nb,c, nb) :
λ(p)← 0, λc(p)← 0
enqueue in Qq all neighbors pf = p + nf for which b(pf ) = true
for every element q in Qq :

`← λ (q + nb,c) + 1
if ` < λc(q) :

λc(q)← `
enqueue in Qq all neighbors qf = q + nf for which b(qf ) = true
enqueue q in Qc

`← ` ∨
{∨

i
λc (q + nb(i)) + 1

}
if ` < λ(q) :

λ(q)← `
enqueue in Qq neighbor qf = q + nf,c if b(qf ) = true
enqueue q in Qc

Fig. 5. Algorithm for the constrained path opening, compare to Figure 2. See text for definition of variables.

update the next pixel’s constrained length. Because constrained
and normal lengths alternate, it is necessary to add normal
upstream and constrained downstream lengths (and vice versa)
when computing the total length of a path through a point p.
This length is thus given by

λ(q) =
{
λ+(p) + λ−c (p)− 1

}
∨

{
λ+

c (p) + λ−(p)− 1
}

.

Furthermore, it can be shown that λ+ ≥ λ+
c and λ− ≥ λ−c .

The modified algorithm is given in Figure 5.

IV. RESULTS

This section contains some experimental results that quan-
tify and compare the performance of the path openings as
described in this paper, and illustrate some possible uses for
this operation.

A. Time versus Accuracy

Path openings have many different possible applications.
The most obvious one is to filter the image, preserving line-
like features while removing other features. The path opening
has to be applied once for each of the directions described
in Subsection II-D, which is 4 in 2D. The other method to
accomplish this, using openings with straight line segments,
becomes more accurate with increasing number of orientations
used [9]. Non-morphological methods such as the structure
tensor [12] or directional second derivatives (including steered
filters [12]) are often employed to detect linear features in
images. There is, however, a significant difference between
detecting and preserving: the morphological filters will keep

Fig. 6. Example input image used for the results in Figure 7.

the desired features unchanged while removing the non-desired
ones, whereas the non-morphological filters will yield a strong
response at the desired features, not preserving their intensities
nor shapes. Therefore I limited the following evaluation to the
morphological methods.

To answer the question of how the path opening compares
in quality to openings with straight line segments at the
same execution time, and how the path opening compares
in execution time to openings with straight line segments at
equal quality, the following experiment was carried out. Fifty
synthetic images were generated as follows, see Figure 6. A
grid of perpendicular lines cover the image. Each line was
given a small random rotation (between 0◦ and 1.9◦). The
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Fig. 7. Accuracy versus computation time of the various options to filter an image preserving linear structures. Values plotted are the mean over 50 repetitions.
The thick bars indicate the 25th and 75th percentiles, the thin bars the 10th and 90th percentiles, and the dots to minimum and maximum errors. Isotropic
openings are included to show the upper limit on the error (cross at the top left corner of the graph). For openings with discrete and interpolated lines, the
plot shows the result using round(2i) orientations, with i increasing linearly from 2 to 9 in steps of 0.5.

whole grid was rotated randomly, but avoiding angles close
to 0◦, 45◦ and 90◦. Lines were given a Gaussian profile
(σ = 1.2 pixels). Note that the lines were directly sampled
in their final position in the image, there was no resampling
of the image to obtain the rotations. No noise was added. A
region around the boundary of the image is set to a high gray
value to avoid edge effects. The images were 512 by 512 pixels
in size.

Both the path openings (L = 50 pixels) and the openings
with straight line segments (length 50 pixels) were applied
to each image, and compared to the input image. The error
measure used was the root mean square error, computed only
on and close to the lines of the input image. The average error
for each filter is plotted against computation time in Figure 7.
Openings with straight line segments were computed using
between 4 and 512 steps, and using two methods to compute
the opening: discrete lines and interpolated lines [9]. The graph
includes results for both the standard path opening and the
constrained path opening. Constraining the path approximately
doubles execution time, but does not affect the error measure
in this experiment. The graph also includes the result for the
isotropic opening (area equivalent to that of the line segments).
The isotropic openings, not preserving linear structures, gives
an upper bound for the error.

In this experiment, path openings produce results much
better than those that can be produced with openings with
straight line segments. The interpolated lines method obtains
a minimum at 91 orientations (the method does not improve

much with more orientations, but the interpolation errors keep
accumulating, thereby slightly increasing the error measure).
At 91 orientations, the error is 50% larger than for the path
openings, and the computation time four times as long as
that of the path openings. The difference in execution time
increases for increasing length, and decreases for decreasing
length.

B. Detecting Lines Without Knowing Their Exact Orientation

In this example application, I apply the path opening filter
to detect linear elements. Figure 8a shows a photograph of
a printed circuit board. A simple top-hat filter [6] filters the
image so that only thin elements remain, independent of their
length or orientation. The constrained path opening is then
applied in all four directions (Figure 8b-d), leaving only elon-
gated thin elements that are approximately horizontal, vertical
and diagonal. Note how the exact orientation of a line segment
is irrelevant. Most notably, this makes the algorithm insensitive
to distortions such as a small rotation, projective distortion and
lens distortions. In contrast, using straight structuring elements
requires exactly matching the orientation of the structuring
element with the orientation of the lines to be detected. In
Figure 8e-f these straight line operators failed to correctly filter
the image because none of the lines in the image are exactly
horizontal or vertical.
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(a) (c) (e)

(b) (d) (f)

Fig. 8. Line detection. a: Input image, photograph of a printed circuit board. b: Image filtered for diagonal lines using the supremum of the path openings
at 45◦ and −45◦. c: Image filtered for horizontal lines using a path opening at 0◦. d: Image filtered for vertical lines using a path opening at 90◦. e: Image
filtered for horizontal lines using an opening with a straight line segment at 0◦. f: Image filtered for vertical lines using an opening with a straight line segment
at 90◦.

C. Improved Length Estimation

This section studies the applicability of the path opening
to construct a granulometry. For accurately measuring length
using a granulometry, the opening (or closing) filter must
remove all line segments shorter than a specified length `,
and not affect the ones longer than `. The first problem that
one notices when studying the path openings is that diagonal
paths are longer than horizontal paths with the same parameter
L, since this parameter specifies the number of pixels in
the path, not its length. It is conceivable to modify the path
opening algorithm to more accurately measure path lengths,
using existing perimeter estimation algorithms [13], [14]. Here
I will ignore this problem, since, as shown in Section III, the
zig-zag of the diagonal path opening introduces a much larger
bias. This means that, in practice, diagonal paths are much
shorter than horizontal paths with the same parameter L. The
constrained path opening reduces this problem but does not
eliminate it. As shown in the following experiment, the zig-
zag in the constrained path opening approximately balances
the incorrect length measure used in the algorithm, producing
a reasonable length estimate. There is no justification for the
balancing of these two effects; it just happens that counting the
pixels of a line that slightly zig-zags as does the constrained
path yields a reasonable estimate of the physical length of the
path.

Eight images as in Figure 9 were generated. Each image
contains 50 lines of 40 pixels length at the same orientation.
Eight orientations were chosen at equal intervals between 0◦

and 45◦. Each line has a Gaussian profile (σ = 1) and a
random sub-pixel shift, as in reference [9].

The cumulative length distributions for these eight images
was computed with a granulometry, following reference [7],
using one of the following three operations at each length
scale `: (1) the supremum of 4 unconstrained path openings
with L = `, (2) the supremum of 4 constrained path openings
with L = `, and (3) the supremum of 2dπ`e openings with
straight line segments (by interpolation) of length ` [9]. The
length scale axis is sampled in increments of four pixels.
The results are shown in Figure 10. Ideally, the cumulative
distribution is zero for lengths ` smaller than the length of the
lines in the image (40 pixels), and one for larger `. Because
of the Gaussian profile of the lines and inaccuracies in the
operations, small deviations are expected; a perfect result is not
possible. For the horizontal lines, all three methods produce
a correct output, as expected. However, as the angle increases
the unconstrained path opening yields an increasingly severe
overestimation of the lengths of the lines (Figure 10a), due
to the zig-zagging discussed in Section III. By constraining
the paths as proposed in this paper, the length of diagonal
lines is measured much more accurately (Figure 10b). Only the
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Fig. 9. Three of the images used as input for the granulometries in Figure 10.
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Fig. 10. Length granulometries for the two images in Figure 9. a:
Granulometry using unconstrained path openings. b: Granulometry using
the constrained path openings proposed here. c: Granulometry using the
supremum over openings with straight line segments at many angles.

more computationally expensive and non-robust third method
is rotationally invariant (Figure 10c). Very similar results were
obtained with wider line segments in the input images (not
shown).

D. Length Distribution of Wood Fibers in 3D Images

Next I applied the granulometry with path openings on
a µCT image to demonstrate its usefulness for estimating
length distributions in 3D images. Thermomechanically pulped
(TMP) wood fibers were mixed with polylactide (PLA) as
matrix, at 10% weight fraction of fibers, and injection molded.
A small cube of approximately 1 mm3 was cut from the
sample and imaged at the TOMCAT beamline at the Swiss
Light Source (Paul Scherrer Institut, Villigen, Switzerland).
The resulting volumetric image was cropped to 7243 pixels
and further downsampled to 3623 pixels. Figure 11a shows the
middle slice from this volume, a little over 500 µm across.

The granulometry requires a uniform gray value over the
objects and the background if the goal is to obtain a size
(or, as in this case, length) distribution [7]. Binarizing the
image accomplishes this, but makes a hard decision as to
which pixels are fiber and which ones are matrix. Instead, I
choose to use clipping to make the foreground and background
gray values uniform without modifying the gray values of the
pixels at the edges of the objects. Using gray values in this
way improves the results of the granulometry [15]. Before
clipping the image to the range [62, 123], a bilateral filter
(separable implementation [16], spatial σ of 1 pixel, tonal
σ of 10) was applied to reduce noise. The result is shown
in Figure 11b. This image is the input to the granulometry
using constrained path openings, as used in Subsection IV-C.
Figure 11c-f shows the middle slice of the filtering result at
various length scales, demonstrating the increasing removal of
fibers from the volume. Note that, because the fibers are not
aligned with the cutting plane, their lengths are not evident
from the slice shown.

Figure 12 shows the cumulative distribution (line plot, right
vertical axis) for the image in Figure 11b, sampled twice
per octave. The bar graph in that figure is the derivative
of the cumulative distribution, and thus an estimate of the
volume-weighted distribution of fiber lengths in the sample.
Note however, that because of the boundary condition chosen
(fibers touching the image boundary are considered infinitely
long and do not contribute to the distribution), the distribution
underestimates the weight of the longer fibers. An unbiased
measurement requires a complex boundary condition, as is
known from stereology [17].
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 (a)  (b)  (c) 

 (d)  (e)  (f) 

Fig. 11. 3D µCT image of wood fibers embedded in plastic. a: Slice of the input image. b: Slice of the preprocessed image, to which the granulometry is
applied. c: Slice from the result of the path opening, at L = 32 pixels (∼45 µm); d: at L = 64 pixels (∼90 µm); e: at L = 128 pixels (∼179 µm); and f:
at L = 256 pixels (∼358 µm).
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Fig. 12. Cumulative distribution (line plot and right vertical axis) of fiber lengths in the volume image shown in figure 11, and its derivative (bar graph and
left vertical axis). The bar graph corresponds approximately to a log-normal distribution.

V. CONCLUSIONS AND DISCUSSION

The algorithm presented here increases the computational
cost of the algorithm as presented by Appleton and Talbot.
However, this increase is limited because the processing done
for one pixel potentially fixes the output value of many pixels,
thereby reducing the work needed for subsequent pixels at
the same gray level. In return for the small increase in cost,
the algorithm becomes simpler to implement, is applicable to
images of any number of dimensions, and is applicable to
floating-point images (the original version of the algorithm
assumes a limited set of gray values in the input image).

This opening algorithm processes gray values from lowest

to highest. In contrast, an efficient algorithm to compute the
area opening processes gray values from highest to lowest (the
down-hill algorithm) [18], [19]. Because the area opening is
similar to the path opening, it seemed at first that it should
be possible to write a similar algorithm for the path opening
as well. This turned out to not be possible because the path
opening does not consider the whole connected component as
a single unit: different parts of a connected component can
obtain different gray values after the path opening operation.
This is incompatible with the down-hill algorithm.

As mentioned earlier, the pixels at the border of the image
are not processed in order to keep the algorithm simple.
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Furthermore, due to the simple initialization, paths can extend
indefinitely past the image boundary. This means that any path
that goes to the edge is assumed to be infinite in length. Both
these limitations can be overcome by adding a border around
the image. To limit paths to the image domain, a dark border
must be added for the opening, or a light one for the closing.

The second modification proposed in this paper is the
constraining of the paths. By alternating between two con-
nectivity graphs, diagonal lines can not zig-zag as much. This
significantly improves the length accuracy of the method, and
thereby also the rotation invariance. This constraint increases
execution time and memory usage, but does not make the
algorithm much more difficult to implement. Additionally, the
constrained paths are more selective in orientation than the
unconstrained paths: the unconstrained path opening is not
able to separate the diagonal lines from either the horizontal
or vertical lines. Whether this point is positive of negative
depends on the application. A different way of improving
length accuracy is by using a more correct length measure.
However, using any length measure other than counting pixels
would require a much more complex and costly algorithm.

In this paper it is proposed to use the supremum over all path
openings instead of the supremum over many openings with
straight line segments at different orientations. Path openings
produce better results, even if the lines in the input image
are straight, because they do not need to exactly match the
orientation of the lines. Path openings are also faster for longer
lines, due to the very large number of orientations required
when using long lines (though for very short lines they might
be less efficient). The higher the image dimensionality, the
more time is saved by using path openings. An additional
advantage is that path openings are insensitive to a small
bending of the lines in the input. Such bending can occur
e.g. due to lens aberrations, or can be inherent to the data,
such as in the wood fiber example of Subsection IV-D. In this
example, fibers can be bent or partly broken, yet still need
to be measured correctly. Using straight line segments, a bent
fiber would be broken into shorter sections in which straight
lines do fit.
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