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Summary

Moss et al. (2005) describe, in a recent paper, a filter that they
use to detect lines. We noticed that the wavelet on which this
filter is based is a difference of uniform filters. This filter is
an approximation to the second-derivative operator, which
is commonly implemented as the Laplace of Gaussian (or
Marr–Hildreth) operator. We have compared Moss’ filter with
(1) the Laplace of Gaussian operator, (2) an approximation
of the Laplace of Gaussian using uniform filters and (3)
a few common noise reduction filters. The Laplace-like
operators detect lines by suppressing image features both
larger and smaller than the filter size. The noise reduction
filters only suppress image features smaller than the filter
size. By estimating the signal-to-noise ratio and mean square
difference of the filtered results, we found that the filter
proposed by Moss et al. does not outperform the Laplace of
Gaussian operator. We also found that for images with extreme
noise content, line detection filters perform better than the
noise reduction filters when trying to enhance line structures.
In less extreme cases of noise, the standard noise reduction
filters perform significantly better than both the Laplace of
Gaussian and Moss’ filter.

Method

The comparisons here were done in two dimensions. Moss’
wavelet-based filter is described for three-dimensional (3D)
images, but is dimensionality independent. A two-dimensional
(2D) test image was created following the recipe given by
Moss: We drew three 1-pixel-thick lines of intensity 10 on a
background of intensity 0, and dilated them with decreasing
intensity to 5-pixels width. To this test image we then added
Gaussian distributed noise with a mean of 0 and a standard
deviation of 10/SNR (SNR being the chosen value for the
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signal-to-noise ratio as defined by Moss et al.), and linearly
stretched the result to fit the [0, 255] range. This stretching
did not change the content of the image, since we used 32-bit
floating point representation for the image data. The parameter
a from Moss’ filter was set to 6 pixels. Each of the filters,
described below, was then applied to test images with a SNR of
8, 2 and 0.5.

To estimate the SNR in the filtered results we used the
following procedure: (1) Find the multiplication factor that
minimizes the mean square difference between the noiseless
input image and the filter output, taking into account only
the pixels that fall within the test image lines (i.e. those pixels
that are nonzero in the noiseless input image). (2) Multiply
the filtering output with this value. This normalizes the ‘signal
level’ to 10. (3) Compute the standard deviation s over a set of
background pixels in the normalized filter output (we exclude
all pixels within a distance of 3a of the lines and the edge, see the
mask image in Fig. 1). (4) The SNR is given by 10/s. The value
of the minimized mean square difference gives an indication of
how well the filter was able to preserve the line.

The scripts we used for this comparison have been made
available online at http://clluengo.lbl.gov/mossfilter.html

Moss’ wavelet-based filter

For 2D, Moss’ filter requires eight 1D filter passes, eight clips
(which sets all negative values to 0), three image averagings
and two rotations. The rotations are the most expensive
components of this filter, and are used to improve the rotation
invariance of the filter (applying 1D uniform filters, which is
what the wavelet is built on, sequentially in each dimension
yields a rectangular filter kernel).

The Laplace operator

The Laplace operator ∇2 is constructed by addition of the
second-order derivative in each dimension (Jähne, 2002), that
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Fig. 1. The noisy input images and the results for the various filters in our test. On the top right corner is the mask image used to identify background
pixels for the SNR measure.

is

∇2 = ∂2

∂x2
+ ∂2

∂ y2
+ ∂2

∂z2
. (1)

The second-order derivative is best implemented as a Gaussian
derivative (Marr & Hildreth, 1980; Jähne, 2002), to avoid
enhancing the noise. This is often referred to as the Laplace
of Gaussian (LoG) or the Marr–Hildreth operator, and can be
implemented as a separable filter (Huertas & Medioni, 1986).
The Gaussian smoothing gives the LoG operator a parameter,
which has to be tuned to the thickness of the lines expected in
the image.

For this comparison we choose the parameter for the
Gaussian to be σ = 0.6a , with a being the parameter for Moss’
filter. This makes the two filters quite comparable, as can be
seen in Fig. 2. Also, we clipped the result of the operator,

setting all negative values to 0, to mimic the behaviour of Moss’
filter.

The difference of uniform filters

The LoG operator can be approximated by a difference of
Gaussians (Jähne, 2002). The image is smoothed at two scales,
and the difference taken. In 1D, if the Gaussian smoothing is
replaced by a uniform smoothing kernel, we obtain an operator
identical to the wavelet used by Moss. We implemented this in
2D (and called it difference of uniform filters) by using a disk
of diameter a as the smaller smoothing kernel, and a disk of
diameter 3a as the larger. As with the LoG, we clip negative
values to 0.

There are other filters that improve upon the LoG, such as
the nonlinear Laplace operator described by van Vliet et al.
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Fig. 2. Wavelet used by Moss et al. to construct their filter (—), compared to the second derivative of a Gaussian function (– –).

(1989). Another nice work on line detection is by Danielsson
et al. (2001). We did not consider it necessary to include any
of these here.

Noise reduction filters

Reducing noise must be one of the topics most studied in
signal and image processing. We added several common
methods to this comparison: the median filter (Jähne, 2002),
the Kuwahara–Nagao filter (Kuwahara et al., 1976; Nagao
& Matsuyama, 1979) and an alternating sequential filter
(Sternberg, 1986; Serra, 1988). These filters do not set the
background value to 0, but rather to the noise mean. Thus,
to better compare the result of these filters with the line
detectors we subtract the median of the noisy input image,
and then clip all negative values to 0. For both the median and
the Kuwahara–Nagao operator we used a disk with diameter
a − 1 as the filter kernel. The alternating sequential filter is
implemented as an open-close filter applied recursively with
disks of increasing size between 2 and a − 3 pixels.

Results and discussion

Figure 1 shows the input images and the result of each of the
filters described, for different setting of the input SNR. As can
be seen none of the methods work particularly well for very
high noise levels. Moss et al. show a better result at SNR = 0.5
on their 3D test image than the result the same filter obtains
here in 2D. In 3D a higher noise level is allowable because
of the increased number of pixels within a neighbourhood,

which leads to better statistics on the noise. This advantage
would equally improve the results of the other filters in this
comparison. For all but the lowest SNR levels, standard noise
reduction filters do a really good job of recovering the original
noiseless image.

Table1showstheSNRandmeansquaredifferenceestimated
for the images discussed above. High values of SNR are desired,
but not at the expense of increased mean square difference,
which would indicate that the signal is not being recovered
well. As can be seen, Moss’ filter and the difference of uniform
filters obtain a similar performance (with this measure),
whereas the LoG performs slightly better. We attribute this
difference to the optimality of the Gaussian as a low-pass filter
(Marr & Hildreth, 1980). The noise reduction filters break
down for extremely low SNR, but in less severe cases perform
much better than any of the line detecting filters.

We cannot compare the execution time of these filters
because our implementation of Moss’ filter is not optimized.
However, we can compare the computational complexity of
this filter with the LoG. As explained above, Moss’ filter is
implemented by adding four filtering results (or 24 in 3D),
obtained by a separable filtering kernel; some of these filtering
passes must be applied to a rotated version of the input image,
the output of which must be rotated back (two rotations in
2D or six in 3D). By contrast, the LoG can be computed by
adding the output of two separable filters (or three in 3D).
On our AMD Opteron (2.2 GHz) processor, the LoG filter with
σ = 0.6a (a = 6) takes 13 s to process a 300 × 300 × 300
voxel image. In comparison, a singe rotation of this image
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Table 1. SNR estimated for the filter results with, between brackets, the mean square difference obtained after
fitting the signal (see text for details).

SNR 8 2 0.5

Input image 8.02 (0.163) 2.00 (2.439) 0.50 (39.712)

Moss’ filter 37.57 (0.971) 9.24 (1.323) 3.39 (2.933)

LoG 47.16 (0.292) 11.35 (0.543) 3.82 (2.167)

Difference of uniform filters 34.73 (0.604) 8.81 (0.989) 3.34 (2.991)

Median filter 54.10 (0.076) 12.44 (0.436) 3.75 (2.599)

Kuwahara filter 67.50 (0.073) 15.61 (0.761) 4.04 (2.619)

Seq. open-close 566.94 (0.062) 72.06 (1.241) 14.34 (6.851)

around the z-axis takes 15 s. Moss’ filter requires 6 rotations,
24 filter passes and some additional arithmetic, which Moss
et al. reported taking 3.6 min on their Intel Xeon (2.8 GHz)
processor, on an image of the same size.

Conclusion

The wavelet-based filter presented by Moss et al. is very
similar to a Laplace-type filter. The complex implementation
of Moss’ filter makes it computationally expensive and, in our
study using 2D synthetic data, does not perform better than
other established techniques, such as the Laplace of Gaussian
operator.
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