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Abstract

Morphological sieves are capable of classifying objects in images according to their size. They yield a granulometry, which describes
the imaged structure. The discrete sieve has some disadvantages that its continuous-domain counterpart does not have: sampled disks
(used as isotropic structuring elements) are rather anisotropic, especially at small scales, and their area, as a function of the size in the
continuous domain, shows jumps at apparently arbitrary locations. These problems cause a severe bias and low precision of the derived
size distribution. Therefore we propose a new digitization scheme for implementing continuous sieves. First we increase the sampling
density of the structuring element and the image. This does not add new detail to the image, but yields a sampled structuring element
that is a much better approximation to its continuous counterpart, and thereby substantially reduces the discretization error. The second
innovation is to shift the structuring element with respect to the sampling grid; this makes the size increments smoother, and further
reduces the discretization errors. These ideas are validated on synthetic images. We also show that the proposed improvements allow
for a finer scale sampling.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Sieves and granulometries were first proposed by Math-
eron (1975). They have been used in both binary morphol-
ogy and grey-value morphology to measure particle-size
distributions (Tscheschel et al., 2000), as well as to charac-
terize textures (Asano et al., 2003; Bangham et al., 1994)
and shapes (Maragos, 1989). Because a sieve has an
increasing scale parameter, it results in a scale-space. Many
theoretical studies have been made, linking it with linear
scale-space theory and other non-linear scale-spaces (Alva-
0167-8655/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
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rez and Morel, 1994; Jackway and Deriche, 1996; Park and
Lee, 1996; Bangham et al., 1996; Chen and Yan, 1989).

A comparison can be made between morphological
sieves and sifting rocks in a gravel heap (Soille, 2003).
The rocks are sifted through meshes of decreasing size,
extracting rocks from the collection. Each mesh removes
the set of rocks that fall through it, but did not fall through
the ones before. Thus, each set contains rocks in a given
size range. The morphological opening cB and closing /B

operations perform a similar function to that of the mesh,
removing from an image those features (i.e. local maxima
or minima) that are smaller than the structuring element
(SE). The weight of each of the sets of rocks provides a
point in a size distribution, which gives information on
the gravel heap. Likewise, the integral over the result of
each opening or closing yields a point in the granulometry.

A sieve is defined in mathematical terms by a trans-
formation Wk having a size parameter k and satisfying
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the three following axioms, enumerated by Matheron
(1975)

• Extensivity or anti-extensivity: the rocks that remain in
the sieve are a subset of the initial rocks: Wk f 6 f.

• Increasingness: adding rocks to the heap does not dimin-
ish the number of rocks that remain in the sieve: f 6

g) Wk f 6 Wk g.
• Absorption: sifting at two different sizes k and m will give

the same result regardless of the order of the sieves;
the size of the largest sieve determines the result:
WkWm = WmWk = Wk, "k P m.

By definition, all closings and openings satisfy the first
two properties (the closing is extensive, the opening anti-
extensive). However, as shown by Matheron, not all clos-
ings or openings with SEs of increasing size satisfy the
absorption property. For example, a Euclidean disk satis-
fies this property, but a sampled Euclidean disk does not
because of the discretization errors (Vogt, 1988).

The accuracy of the size distribution obtained from a
granulometry depends on the characteristics of the mor-
phological operations used to compute this granulometry.
Two possibilities can be found in the literature: using
approximations to isotropic SEs of varying accuracy, such
as rectangles, octagons and the more refined approxima-
tion as defined by Jones and Soille (1996); and alternative
implementations of the opening or closing using curve evo-
lution (Brockett and Maragos, 1994; Sapiro et al., 1993;
van den Boomgaard and Smeulders, 1994). Using rectan-
gles or octagons does not provide the rotation-invariance
that would be expected from a size distribution measure-
ment. Jones and Soille’s method uses periodic line segments
to construct a series of approximations to disks of increas-
ing size that satisfy the absorption property. The SEs built
this way are fairly isotropic, and the morphological opera-
tions performed with them have a low computational cost
since they can be decomposed into simple operations. The
drawback is that the increase in size of these SEs is erratic
and the method yields a size distribution with low scale
sampling density. Finally, methods using curve evolution
are notoriously slow due to the small step size required
to obtain a stable solution to the differential equation,
and are therefore rarely used in practice. They provide per-
fect isotropy, but can only produce an approximation to a
morphological operation with a flat SE on a grey-value
image.

This paper proposes two improvements in the definition
of the discrete disk that greatly improve on the accuracy of
the granulometry with respect to other approximations to
isotropic SEs. We start by introducing the sieve (Section
2) and deriving a size distribution from it. This is examined
in the continuous domain. Then we go into the implemen-
tation: Section 3 discusses the discretization of the contin-
uous-domain granulometry, Section 4 contains the two
improvements to the sampled Euclidean SE, and Section
5 deals with the implementation details. The proposed
improvements are evaluated in Section 6 by comparing
the various approximations to the discrete disk.

2. Sieves, granulometries and size distributions

To illustrate the principles of sieving, we use the struc-
tural closing (i.e. closing with a SE) as the sieving opera-
tion. However, by substituting it for the opening, an
equivalent sieving operation is obtained. The difference is
that from the closing sieve one can derive a size distribution
of dark objects, whereas from the opening sieve a size
distribution of the light objects would be obtained.

We will use an isotropic SE (e.g. a disk in two dimen-
sions), expressed as D(x, r) = {xj kxk 6 r}. In this section,
it is assumed that the image f(x) is continuous and does
not have a boundary (f : Rn ! R). We construct a scale-
space F(x, r) by closing (/) the image f(x) at all scales
r 2 (0,1)

F ðx; rÞ ¼ /Dðx;rÞf ðxÞ; ð1Þ
F(x, r) is an image with one more dimension than f(x). Each
image F(x, r0) contains only dark objects larger than r0. We
define F(x, 0) = f(x). Note that the continuous sieve is a
continuous operation that produces a continuous scale-
space when applied to a continuous image.

The granulometry P ðrÞ ¼
R

F ðx; rÞdx is a function of the
scale r. Its scale derivative pðrÞ ¼ d

dr P ðrÞ is referred to as
pattern spectrum (Maragos, 1989; Soille, 2003) The granul-
ometry is an increasing function (or decreasing in the case
of the opening-sieve), with apparent transitions at the
scales where image features disappear (as in Fig. 1). The
pattern spectrum shows peaks at these locations. Normal-
ization of the pattern spectrum yields a probability density
function h(r) that is referred to as the size distribution,

hðrÞ ¼ pðrÞZ 1

r¼0

F ðx; rÞdx
¼ pðrÞ

P ð1Þ � Pð0Þ : ð2Þ
2.1. Invariances of the (cumulative) size distribution

Based on the closing scale-space, it is relatively easy to
construct a size distribution of the dark objects. As men-
tioned in the introduction, the weight of each of the sets
of rocks provides a point of the size distribution of these
rocks. Similarly, the integral of each of the images in the
closing scale-space can be used to construct a cumulative
distribution. This distribution is rotation and translation
invariant, because the closing is (Soille, 2003). By normal-
izing the cumulative distribution such that it ranges from 0
to 1, we make it invariant to the image size, offset and con-
trast, as well as the area fraction of the image covered by
the objects. The cumulative distribution is thus defined as

HðrÞ ¼

Z
F ðx; rÞdx�

Z
F ðx; 0ÞdxZ

F ðx;1Þdx�
Z

F ðx; 0Þdx
; ð3Þ
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Fig. 1. Demonstration of the granulometry. Left: Synthetic test image with two structures at different scales superimposed. The image is formed by lines of
grey-value a and b. Right: Abstracted granulometric curve that shows two jumps at the two scales present in the image.
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where F(x,1) is the original image closed with an infinite
SE, and is thus equal to the image filled with its maximal
grey-value. A size distribution is obtained by taking the
scale derivative of H(r),

hðrÞ ¼ d

dr
HðrÞ: ð4Þ
3. Discrete granulometries

A discrete sieve is a discrete operation (with discrete
SEs), applied to a digitized image, and resulting in a dis-
crete scale-space. This requires

• Discretizing the input image: f ðxÞ ! f̂ ½k�, where
f̂ : Zn ! R, k 2 Zn, x = kD and D the sample spacing.

• Discretizing the scales: r! i. We sample the scale-axis
at r = s[i], where i 2 N and s : N! R a scale-generating
function. For logarithmic sampling, s[i] = 2i/p, with p the
number of scale samples per octave.

• Discretizing the SEs: Dðx; s½i�Þ ! bD½k; i�.
This results in a discrete scale-space computed by

bF ½k; i� ¼ /D̂½k;i�f̂ ½k�: ð5Þ

Discretizing the input image poses no challenge. As long as
the input image f(x) is band-limited, it can be sampled
without loss of information (Nyquist, 1928; Shannon,
1949). Such a sampled image exactly represents the contin-
uous image. Sampling the SE, on the other hand, causes a
large discretization error, the error that originates after
reconstructing it from its samples. Due to this and the lack
of sampling-invariance of the closing operation itself, the
computed bF ½k; i� is not equal to the sampled version of
F(x, r) at x = kD, r = s[i]. The difference between bF ½k; i�
and F(kD, s[i]) is caused by discretization errors. Also, be-
cause F(x, r) is not band-limited, it is not possible to recon-
struct it from F(kD, s[i]). This is important especially along
the scale-axis, where it might be interesting to find the exact
location of peaks in h(r).

We need to stress here that pattern spectra as in e.g.
Maragos (1989) are discrete implementations of the sieve
with a series of SEs that do not necessarily increase uni-
formly in size. These are defined to satisfy the absorption
property, and the shape may vary to accomplish this. In
this paper we define a discrete granulometry that approxi-
mates the continuous one, but only satisfies the absorption
property by approximation. That is, the shape and size of
the SEs must approximate those of the continuous gran-
ulometry as defined above. The more accurately this is
accomplished, the closer it gets to satisfying the absorption
property.

3.1. Sampling the flat structuring element

Sampling a binary function causes severe quantization
errors. This has two problematic consequences:

• The original function cannot be reconstructed given the
samples. The discretization errors occur in a strip along
the boundary. The width of this strip is equal to the sam-
ple spacing D, the relative error is thus proportional
to D.

• The size increments of a finely sampled scale-space
become very erratic due to the irregular increase in size
of the sampled disk as a function of the radius.

An obvious solution is not to use flat but grey-valued
SEs, which can be sampled more accurately. A prominent
example of a grey-valued SE is the parabola (Dorst and
van den Boomgaard, 1994). However, a parabolic closing
does not produce the desired result, because a sieve that
uses parabolic closings will split a single object over a
whole range of scales. This makes the transformation of
the granulometry into a size distribution difficult, and its
results would be even more difficult to interpret. Section
4 discusses how to implement a binary disk minimizing
the discretization error.

3.2. Sampling the scale-axis

How to sample the scale axis is the second problem in
discretizing the granulometry. There is relatively little liter-
ature on this topic. In most articles, one-pixel increments
are used as a default solution. We suggest to use logarith-
mic sampling, so as to keep the relative error constant. One



Fig. 2. (a) Disk of radius 1.85 pixels, sampled (expected area = 10.7521, sampled area = 9). (b) Same disk, sampled on a grid four times as dense
(area = 11.0625). This is the SE one would use after interpolating the image four times. (c) Same disk, centered at (0.19,0.31) (area = 10.7500).
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might want to distinguish between 3-pixel objects and
4-pixel ones, but not between 100-pixel objects and 101-
pixels ones. Additionally, large objects are sparse in an
image, causing a linearly sampled size distribution to be
inaccurate at large scales. Particle or pore-size distributions
often are log-normal (Aitchison and Brown, 1957), mean-
ing that, when logarithmically sampled, they resemble a
normal distribution.

A sampled F[k, i] also produces a sampled H[i] =
H(r)jr=s[i]. In this case, the derivative in (4) can only be
obtained by approximation,

h½i� ¼ H ½iþ 1� � H ½i�
s½iþ 1� � s½i� : ð6Þ

An upper bound to the number of scale samples that are
useful is given by the discretization of the SE. If too many
samples are taken, then the differences between these SEs
are very small, and the discretization error has a large influ-
ence on the results. That is, the averaging effect introduced
by the limited number of samples along the scale-axis hides
some of the errors made in the spatial domain. This notion
links the scale sampling to the sampling of the SE, and is
illustrated in Section 6.

Even for band-limited images, the scale-space F(x, r) is
not band-limited along the scale-axis. Therefore, H(r) is
also not band-limited. This makes it impossible to obtain
all information on H(r) using a predefined set of scales
s[i]. Using adaptive sampling, however, it might be possible
to find the location of large jumps in H(r) (i.e. the peaks of
h(r)). Note that H(r) can be sampled at random locations;
it is not necessary to do this in a fixed order or with fixed
steps. Such a procedure is similar to finding zero-crossings
of a function numerically.
1 This also greatly diminishes the computational cost of the operation at
large scales.
4. Sampling the binary structuring element

Section 3 discussed problems encountered when discret-
izing the granulometry. One of the issues is how to discret-
ize the SE, which should be flat (and thus binary) if one
wishes to obtain a size distribution. This section proposes
two innovations to the discrete disk that greatly diminish
the discretization error: interpolation of the (grey-value)
image data while increasing the sampling density of the
disk by the same factor, and shifting the SE with respect
to the sampling grid. This is not a heuristic method, but
inspired by sampling theory. The relative discretization
error of sampled randomly positioned disk (using a regular
grid) is proportional to R�1.5 (van Vliet et al., 2004). Here
we skip the random positioning and use the optimal fixed
position with respect to the sampling grid.
4.1. Increasing accuracy with interpolation

We stated in the previous section that the discretization
error occurs in a strip along the boundary of the disk,
whose width is equal to the pitch of the sampling grid.
By decreasing this pitch the strip becomes thinner and
the error diminishes (see Fig. 2b).

The scaling property of the closing

f/Dða�1x;rÞf ða�1xÞgðaxÞ ¼ /Dðx;rÞf ðxÞ ð7Þ

teaches us that we can up-scale the input image and the SE,
and down-scale the result. Replacing the left-hand side by
a discrete closing, the equality is only true for a!1.
Increasing a (i.e. up-sampling the image), the discrete clos-
ing becomes a better approximation to the continuous clos-
ing. Optionally, one could down-sample the input image
for the larger SEs, so that the discretization error is
approximately equal for all levels of the scale-space.1
4.2. Increasing accuracy with a shift

Due to the symmetry of a sampled disk on a square grid,
all discretization effects are enhanced: when increasing the
size of a discrete disk, a multiple of four or eight pixels are
added to it. Placing the center of the disk away from the
origin, this symmetry is broken (Fig. 2c), allowing the disk
to be sampled more accurately. That is, we create a discrete
disk by



Fig. 3. Mean square relative error made when discretizing Euclidean disks
(with random radii), for different positions of the disk’s center with respect
to the sampling grid. There is a minimum at coordinates (0.19,0.31), but
the exact position is not very important, because quite a large region
around this minimum produces small errors.
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�D½n; i� ¼ fn j knDþ dk 6 s½i�g; ð8Þ
where d is the shift. The optimal d can be determined exper-
imentally by computing the mean square relative error of
the area for disks of many different sizes, centered at each
location. This results in the graph of Fig. 3. There is a clear
minimum at (0.19,0.31), and, due to symmetry, another
one at (0.31, 0.19). Fig. 4 shows the relative error made
when centering the disk at this location in comparison to
centering it at the origin. Remember that the continuous
closing is invariant to translation of the SE. For higher-
dimensional structures, the same experiment can be per-
formed to determine the optimal location of the origin.
For the three-dimensional sphere the optimal d is (0.16,
0.24, 0.34).

The one-dimensional isotropic SE makes this concept
easier to explain. If a segment is centered at position 0,
two pixels are added (one at each end) at the same time
when increasing its size (i.e. only lengths with an odd num-
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Fig. 4. Relative error in area for a disk centered at (0,0), and a disk
centered at (0.19,0.31), the location of the minimum in Fig. 3.
ber of pixels are possible). Centering it at position 0.5 the
same is true, but now it is always even in size. Optimal
asymmetry is obtained by centering it at position 0.25. In
this case, one pixel at a time is added to the SE. That is,
more distinct lengths are possible.
5. Implementation aspects

Implementing the granulometry as proposed here can be
accomplished with the following steps:

1. Determine the required interpolation factors ai given the
required filter sizes si and a few parameters: maximum
and minimum filter size, and maximum and minimum
allowed interpolation factor.

2. Determine the offset u and scaling v used for normaliza-
tion, as in (3): u ¼

P
f and v = n(¤f) � u, where n is the

number of pixels in f.
3. For each filter size si:

(a) Resample the image if needed: f 0[k] = f[k/ai].
(b) Apply the closing (or opening) with a SE of size aisi:

gi ¼ /DðaisiÞf
0.

(c) Sum the pixel values, divide by the interpolation
factor and normalize: H ½i� ¼

P
gi=a

N
i � u

� �
=v (with

N the image dimensionality).
We use values for a that are as small as possible, within
the preset constraints, but are always a power of 2. Taking
small values for a reduces the computation time: the clos-
ing with a SE that cannot be trivially decomposed (as ours
are) is an operation with a computational complexity of
O n

ffiffiffiffi
m
pð Þ, with n the number of pixels in the image and m

the number of pixels in the SE (van Droogenbroeck and
Talbot, 1996). Reducing the number of pixels by a factor
a reduces the computation time by a factor a3/2. We used
cubic convolution (Keys, 1981) to up-sample the images
when a > 1. This method is a good compromise between
accuracy, computational cost and window size. In the
experiments presented in the next section we have not
down-sampled the image for larger SEs.

MATLAB sources for the algorithm are available for
download at http://clluengo.lbl.gov/granulometry.html,
together with the scripts we used to run the experiments
described below.
6. Method evaluation

To illustrate the ideas on the sampling of the sieve pre-
sented above, the closing-sieve is applied to 13 identical but
rotated versions of a synthetic, band-limited image (Fig. 1,
left). It is a superposition of two line patterns, the finer one
forming squares half the size, and with a grey-value 50%
lower, than the coarser one. The position of the lines that
compose the image have been distorted by white noise
(standard deviation of 1 pixel; this distortion is identical
in each instance).

http://clluengo.lbl.gov/granulometry.html
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2 The diameter of the SE was determined by 2
ffiffiffiffiffiffiffiffi
n=p

p
, with n the surface

area of the generated disk.
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Fig. 5 shows size distributions for this image, as calcu-
lated using the closing-sieve without shifting the SE. The
various distributions result from choosing different interpo-
lation factors (1, 2, 4 or 8 times) and scale-sampling densities
(1, 2 or 4 samples per octave). Obviously, the best precision
is obtained when the image is interpolated eight times.

The discretization error is accentuated by a scale-sam-
pling rate that is too high. That is, the finer the scale sam-
pling, the more influence the spatial discretization error has
on the distribution. The reason is that the difference
between SEs of subsequent scales is smaller for a finer scale
sampling; this difference should always be larger than the
discretization error. This gives a relation between the accu-
racy of the sampling of the SE, and the number of scale
samples that can be computed.

We repeated this experiment using the shifted disk as
SE. The optimal shift of (0.19, 0.31) found through Fig. 3
was used. The results are shown in Fig. 6. It can clearly
be seen that this greatly improves the precision of the
method, especially at small scales. Using such a disk, an
interpolation factor of 2 might be enough to obtain the pre-
cision at small scales otherwise only obtained with an inter-
polation factor of 8. The improvement is insignificant for
the very large scales.
To demonstrate the increased sensitivity of this method
we compare it to other methods used in the literature: using
octagonal SEs, using sampled disk SEs, using Jones and
Soille’s approximation to the isotropic SEs (Jones and
Soille, 1996), and using a curve evolution approach with
the PDE as described by Maragos et al. (1994) (with a step
size of 0.01, which yields an algorithm orders of magnitude
slower than the proposed method). We applied the various
granulometries to a collection of band-limited disks with
diameters of 6 and 10 pixels (50 of each), and random
sub-pixel offset. The resulting size distributions are shown
in Fig. 7. Jones and Soille’s method suffers from uneven
and large increases in the size parameter2: both disk
cohorts fall into the same bin. The octagonal SEs also do
not provide enough resolution to distinguish the two diam-
eters, since they require two-pixel increments. The curve
evolution approach provides a very high level of rotational
and translational invariance (data not shown), but the dila-
tion itself is a smoothed approximation to the isotropic
dilation. This smoothing effect also yields a smoothed gran-
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ulometry, reducing its resolving power. The sampled
Euclidean SEs yield a poor size distribution because they
do not satisfy the absorption property required by the
granulometry. This causes a very large error that reduces
the resolving power of the method. Optimally shifting the
disk before sampling greatly increases the accuracy, and
yields a series of SEs that better (but not fully) satisfies
the absorption property. This improvement by itself
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enables the granulometry to distinguish two peaks in the
size distribution. Adding the interpolation further increases
the accuracy, enabling a correct measurement at even smal-
ler scales. With interpolation, both peaks appear at the
expected locations.

7. Conclusions

To overcome the problems induced by the discretization
of binary disks used in discrete morphological sieves, we
have proposed two improvements of the morphological
operations:

• interpolate the input image for small scales, which
allows for a denser sampling of the discrete disk; and

• place the origin of the disk away from the center (co-
ordinates (0.19, 0.31) were found to be optimal for
two-dimensional disks), which suppresses the irregular
size increments of the discrete disk.

These modifications are necessary to obtain an accurate
and precise size distribution. Even though the resulting
operation is strictly speaking not a sieve (because the
absorption property is not exactly satisfied), it produces
results that are closer to the results expected of a continu-
ous-domain sieve on the continuous image.

We show that the granulometry with these modifications
has a higher resolving power, especially at small scales,
when compared to the implementation using discretized
disk SEs, octagonal SEs, Jones and Soille’s method using
cascades of periodic line segments, or a curve evolution
approach. Nonetheless, the method proposed here has a
higher computational cost than any of the other methods
(except for curve evolution): the SE is not separable, and
the interpolation greatly increases the cost (doubling the
sampling density in each dimension increases the computa-
tion time by a factor 8 for a two-dimensional image).

We have also shown that the discretization error imposes
an upper bound to the number of samples that can be com-
puted for the cumulative size distribution. Reducing the
number of samples hides the discretization errors.
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