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Abstract—When performing measurements in digitized images, the pixel pitch

does not necessarily limit the attainable accuracy. Proper sampling of a band-

limited continuous-domain image preserves all information present in the image

prior to digitization. It is therefore (theoretically) possible to obtain measurements

from the digitized image that are identical to measurements made in the continuous

domain. Such measurements are sampling invariant, since they are independent of

the chosen sampling grid. It is impossible to attain strict sampling invariance for

filters in mathematical morphology due to their nonlinearity, but it is possible to

approximate sampling invariance with arbitrary accuracy at the expense of

additional computational cost. In this paper, we study morphological filters with line

segments as structuring elements. We present a comparison of three known and

three new methods to implement these filters. The method that yields a good

compromise between accuracy and computational cost employs a (subpixel) skew

to the image, followed by filtering along the grid axes using a discrete line segment,

followed by an inverse skew. The staircase approximations to line segments under

random orientations can be modeled by skewing a horizontal or vertical line

segment. Rather than skewing the binary line segment we skew the image data,

which substantially reduces quantization error. We proceed to determine the

optimal number of orientations to use when measuring the length of line segments

with unknown orientation.

Index Terms—Mathematical morphology, granulometry, rotation invariance,

translation invariance.

�

1 INTRODUCTION

THE basic operations in mathematical morphology, dilation and
erosion, use a structuring element as filtering kernel. Flat structuring
elements (i.e., sets) specify a neighborhood over which the
operation has to take place (maximum or minimum filtering).1 In
the continuous domain, the set usually forms a compact shape such
as a disk. In the discrete domain, the set is composed of grid points
(pixels), often chosen to approximate a continuous-domain shape.
Becauseof this, theoperations in the twodomainsdonotproduce the
same results. Note that this is different from continuous-time (or
space) linear filters where the convolution integral between a band-
limited signal and a band-limited impulse response can be replaced
by sampling, discrete convolution, and reconstruction [1,
Section 8.4]. We refer to this as sampling invariance. Most authors
discuss the theory of morphological operations in the continuous
domain, and present implementations and applications in the
discrete domain. We combine these two domains, trying to obtain
a discrete operation that,when applied to a properly sampled, band-
limited image, yields the same result as the continuous-domain
morphological filter. Unfortunately, this can only be approximated
[2], [3]. This approximation can be significantly improved by

interpolation [2]: First, we interpolate by a factor n (to reconstruct
the continuous-domain input image from its samples [4]) followed
by the morphological filter using an n-times larger structuring
element (this reduces the influence of discretization effects at the
borders of the structuring element). Any difference between the
desired continuous result and the discrete result obtained in practice
we call “discretization errors.” In this paper, we aim tominimize the
discretization errors for a very difficult class of structuring elements:
line segments. Line segments as structuring elements typically
produce a large discretization error because of their unfavorable
surface to perimeter ratio; the discretization errors that occur when
sampling a binary shape are always located in a 1-pixel wide strip
along theboundaryof the shape. Thispaper extends our earlierwork
[5], improving upon the performance evaluation, providing insight
in computational complexity, andoffering access to the implementa-
tion of the presented methods. Note that, unless explicitly stated,
“translation invariance” is used to indicate invariancewith respect to
shifts in the continuous domain, that is, to (subpixel) shifts of the
continuous image before sampling. “Compatibility under rotation”
and “rotation invariance” are used in an analogous way.2

Using line segments as structuring elements we can construct

rotation-invariant morphological operators, i.e., operators that

adapt themselves to the local structure [6], [2]. It is for these

operators that we study the implementation of discrete line

segments here. Examples of other applications of line structuring

elements are road detection in airborne images [7], [8], finding grid

patterns on stamped metal sheets [9], and estimation of structure

orientation [10], [11].
In Section 2, we summarize three known and three new

implementations of the dilation or erosion with line structuring

elements. All of these approaches are compared in Section 3, where

they are tested for translation invariance (in the continuous-domain

sense). Section 4 shows a typical application that demonstrates this

translation invariance. Section 5 addresses the question of how

many orientations of the line structuring element should be used

when the orientation of the lines in the input image is not known.

2 METHODS FOR IMPLEMENTING LINE STRUCTURING

ELEMENTS

Themost simple implementation of the dilation with a line segment

as structuring element uses a Bresenham line segment [12], for

which an efficient, recursive algorithm by van Herk [13], [14] exists.

The drawback of this operation is that it is not even translation

invariant in the discrete sense (i.e., invariant over integer pixel

shifts). The reason is that there aremultiple Bresenham linespossible

for a given orientation,whichdiffer inwhere along the line one starts

to count.Usingperiodic lines [15], it is possible to construct recursive

dilations that are translation invariant in thediscrete sense. This only

yields a speed advantage over the basic implementation using

Bresenham lines for certain orientations and lengths. Another

solution, proposed by Soille and Talbot [11], combines multiple

recursive openings or closings to obtain discrete translation

invariance. This operation is closer to continuous-domain transla-

tion invariance than the basic implementation.However, it is limited

to orientations for which the periodic line [15] has a low periodicity,

due to the large number of openings or closings that would

otherwise be required. This means that in practice the orientation

and length will be rounded to more convenient values.
In the next three sections, we will propose alternative

operations that improve on the ones mentioned above in terms
of translation invariance and compatibility under rotation. They
accomplish this by interpolating in the input image (Sections 2.1
and 2.2) or by using gray-value structuring elements (Section 2.3).
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1. We do not make a distinction in this paper between the maximum and
the supremum over a set since the sets we consider are closed and the
functions are smooth.

2. Compatibility under rotation means �R ¼ R�, whereas rotation
invariance means �R ¼ �, using R as the rotation operator.
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2.1 Interpolated Line Segments by Skewing the Image

Operations along a Bresenham line can be implemented by skewing
the image, applying the operation along a column (or row), and
skewing the image back. Here, we consider this operation using
image skews with interpolation (that is, the rows or columns of the
image are shifted by subpixel quantities); see Fig. 1a.

The interpolation method used is an important factor in the
correctness of the output. The better the method is, the smaller the
error will be. We used cubic convolution to implement the skews.
This method is a good compromise between accuracy, computa-
tional cost and window size [16].

Note that—in contrast to the Bresenham lines—all samples lie
exactly on the line,whichyields abetter approximation to translation
invariance. The drawbacks are that the result needs to be skewed
back, which again requires interpolation, and that the sample
spacing along the line depends on the orientation. The former is
serious because the result of the discrete operation does not have a
direct relation to the result of the continuous operation. Interpolation
in this image can potentially introduce undesired image features.

2.2 True Interpolated Line Segments

The skewing method presented above yields the best accuracy on
only those columns (or rows) of the output image with an integer
shift (thereby avoiding interpolation). This typically occurs for only a
few columns (the distance between these columns is given by the
periodicity P’ of the Bresenham line of the given angle [15]). It is
possible to obtain the same accuracy for all output pixels by skewing
the image multiple times, or equivalently, increasing the sampling
density of each column, in such a way that the operation gives an
output value at each of the output locations. This is represented in
Fig. 1b.

We implemented this method by skewing the image once for
each column, changing the offset of the skew, and using only the
one output column that corresponds to that offset. A more efficient
implementation would use all those columns that have an integer
shift, so that only P’ skews are required; this would reduce the
number of operations substantially for a selected set of angles
(those that yield rational slopes).

For all discrete line segments mentioned up to now, the number
of samples used in the computation of the morphological operation
depends not only on the length of the segment, but also on the
orientation. Line segments along the grid are sampled with the
highest density; diagonal segments are sampled with the lowest
density. Thus, for some orientations there is a higher probability to
miss a local maximum (i.e., the maximum falls in between
samples) than for others. This makes the approximation to
continuous-domain translation invariance better for horizontal
and vertical lines than for diagonal lines. This difference also has
repercussions for the compatibility under rotation. Ideally, one
would like to sample all of these lines with the same density.
Rotating the image instead of skewing also alleviates this problem.
However, when rotating, only a limited set of samples falls exactly
on output samples and, in the worst case, this happens only for the

sample in the origin of the rotation. This means that an even larger
number of operations is required to compute the result of the
operation at all output pixels.

2.3 Band-Limited Line Segments

Another option to overcome sampling problems with discrete line

segments is to use smooth (approximately bandlimited) gray-value

structuring elements. Such a segment is sampling invariant and

does not have a limited set of available lengths. Even though the

morphological operation itself is still not sampling invariant

(meaning �ðfÞ � III 6¼ �ðf � IIIÞ, where III is the pulse train used

for sampling), it is expected that such a structuring element reduces

the discretization errors.
A band-limited shape has a smooth edge, such that the

continuous-domain shape can be reconstructed from the samples.
This implies that thepositionof theboundary isknownwith subpixel
accuracy. We obtain smooth edges by convolving the ideal,
continuous-domain shape with a Gaussian function, which is
approximately band-limited if the sample spacing is smaller or
equal to � [17]. Starting from an infinitely thin line segment, we
obtain

Lð‘;�Þðx; yÞ ¼ A � 1
2

1� erf
‘� 2 xj j

2�

� �� �
� exp �y2

2�2

� �
; ð1Þ

where ‘ is the length of the line segment, x is the coordinate-axis in
the direction of the segment and y is the coordinate-axis perpendi-
cular to it. Fig. 2a shows an example of such a band-limited line
segment, and Fig. 2b gives somedetails on its construction.Note that
the gray-value of the segment is 0, and the background has a value of
�A. A is the scaling of the image Lð‘;�Þ, and depends on the gray-
value range in the image to be processed. Amust be larger than the
gray-value range of the image, so that the background of the
structuring element never interacts with the image. Even though the
image Lð‘;�Þ is approximately band-limited for any A, its slopes are

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 11, NOVEMBER 2005 1827

Fig. 1. After skewing the image, horizontal lines correspond to lines under a certain orientation with respect to the image data. In (a), (Interpolated line segments,

Section 2.1), some of the original image samples (�) fall exactly on these lines, but most samples used (�) lie in between original grid points. The value at these pixels is

obtained by interpolation. In (b), (True interpolated line segments, Section 2.2), each of the output pixels is directly computed to avoid interpolation of the output of the

morphological operation. This does increase the computational cost of the operation.

Fig. 2. An approximately band-limited line segment constructed with (1), to be

used as gray-value structuring element. The difficulty lies in the normalization (with

respect to the image range) and defining the length of the line. (a) Gray-value

structuring element. (b) Construction.



not invariant to gray-value scaling. Since morphological operations
can be written as an interaction between slopes [18], it follows that

this scaling has an influence on the result of the operation. By
relating the value of A to the range of gray-values in the image, the

operation is invariant to gray-value scaling of the image, but not
invariant to, e.g., impulse noise (which increases the gray-value

range) or gray-value scaling of individual objects in the image. We

will be using a value of 1:0233 times the gray-value range of the
input. This value is chosen to make the cut-off point of the

structuring element image to be jxj � 1
2 ‘þ 2� (this gives the size of

the image needed to generate the structuring element).

3 COMPARISON OF IMPLEMENTATIONS FOR LINE
STRUCTURING ELEMENTS

We have implemented the following versions of the opening with a

line segment structuring element:3

. Method 1: Bresenham line segment.

. Method 2: recursive algorithm for the Bresenham line
segment [14].

. Method 3: composite discrete line segment (union of
openings) [11].

. Method 4: interpolated line segment by skewing the image
(Section 2.1).

. Method 5: true interpolated line segment (Section 2.2).

. Method 6: band-limited line segment (Section 2.3).

To compare the different methods, an image was generated that

contains many line segments of fixed length ‘0 ¼ 40 pixels and

orientation ’0 ¼ 0:4 rad (not a rational slope), but random subpixel
position (see Fig. 3a). These line segments were drawn using (1).

Openings with each of the implemented methods were applied to
this image, varying both the length andorientation of the structuring

element. The result of each operation is integrated, normalized, and
plotted in a graph. The result for these operations should be

R
½Lð‘;’ÞðfÞ�ðxÞdxR

fðxÞdx ¼ 1 ð’ ¼ ’0Þ ^ ð‘ � ‘0Þ;
0 elsewhere;

�
ð2Þ

as in Fig. 3b. Since the image contains band-limited lines, we
expect the result to obtain a smooth transition from one state to the

other. The more the result approximates the ideal situation, the
better the specificity of the operator.

These results are plotted in Fig. 4. Table 1 shows the time needed

to compute the data in Fig. 4 for each algorithm, as well as the
computational complexity of these algorithms, as discussed in

Section 2. We have timed the algorithms for different values of ’, L,

and N , and verified these complexities. A number of performance-
related observations can be obtained from these graphs and table:

. The simple discrete, noninterpolated implementations
(methods 1 and 2) never reach values approximating 1.
The composed, interpolated, and gray-value methods
(methods 3, 4, 5, and 6) reach higher values, close to the
ideal value of 1.

. All methods except method 6 show a staircase-like
dependency on the length. This is because of the inherent
discretized length of these segments. Note that the actual
length of the structuring element depends on the orienta-
tion. Inmethods 1 and 3, the angle is discrete aswell because
it is limited by the possible orientations of a discrete line of
finite length; this results in plateaus inwhich the structuring
element does not change.

. There are very few differences between methods 4 and 5,
which employ interpolation.

. The result of the gray-value method is very smooth, but
shows some “ringing.” This can be explained by the
sampling of the structuring element and the image. Results
of morphological filtering depend on the position of local
maxima or minima in relation to the sampling grid. Small
changes in the orientation of the line cause that a different set
of grid points will sit close to maxima or minima (i.e., the
ridge of the line).

. The computational cost of methods 3, 5, and 6 is one to two
orders of magnitude higher than the cost of the other three
methods. Formethod 3, this is on average over all the angles
used in this experiment. Thismethodhas a running time that
changes wildly with the chosen angle and length. For some
specific line segments, method 3 yields a highly efficient
algorithm that is comparable in execution time to method 2.

Taking these observations into account, it can be said that
methods 3, 4, 5, and 6 produce results that come much closer to the
expectations than the simple discrete methods. Method 3 has the
disadvantage of discrete angles and a strongly angle-dependent
running time. Method 6 is computationally more expensive and it
depends on the application if its superior results warrant this
expense. Finally, it does not appear to be necessary to use method 5,
since it produces a result almost identical to method 4. Method 4 is
much simpler to implement and computationally cheaper.

If the implementation of the opening satisfies the absorption
criterion, the graph should be decreasing for increasing length and
fixed angle. By looking at the difference between subsequent points
in each graph, it appears that only methods 2 and 5 satisfy the
absorption criterion, as expected: For a given angle, increasing the
length of the structuring element only adds pixels to it, unlike in
method 1; formethod 5 this also implies that the set of skewsuseddo
not change with the length of the structuring element, meaning that
the interpolation errors are identical as well. Method 4 only violates
the absorption criterion in a few isolated cases, due to the
interpolation in the result of the morphological operation.
Method 6, even though it produces a very smooth result, only
satisfies this criterion by approximation. Finally, our implementa-
tionofmethods 1and3only satisfies the absorption criterion for lines
along the cardinal directions of the grid. Increasing the length of an
arbitrary line segment causes a slight change of the apparent angle
(we round both the length and the angle to the nearest possible
discrete line segment), which causes a violation of the absorption
property. It is possible to implement method 3 to round only the
length, keeping the angle fixed. In this implementation, the
absorption property is satisfied. Most angles yield an irrational
slope, giving the Bresenham line an infinite periodicity. This means
that thenumberof openings overwhich theunion is taken is givenby
the image size.When rounding the angle, the slope ismade rational,
which results in a finite periodicity and a much smaller number of
openings.Wemust stress that none of these alternative implementa-
tions have a significant effect on the results shown in Section 4.
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3. Available online at http://clluengo.lbl.gov/line_se.html.

Fig. 3. (a) Input image and (b) ideal response for graphs shown in Fig. 4. A value of
1 is expected for the openings in which the orientation of the structuring element
matches that of the segments in the input image (0.4 rad), and the length ‘ is
smaller or equal to the length of these segments (40 pixels). A value of 0 is
expected for any other parameter of the structuring element. Because the input
image is band-limited, a smooth transition is actually obtained.



4 APPLICATION

We have applied the closing with these methods to a series of nine
images, recordedwithawide-fieldmicroscope (ZeissAxioplan,with
a Zeiss Fluar 10x lens and a Millix MicroImager camera). The stage
(Ludl Electronics) wasmoved back and forth between recordings, to
obtain subpixel shifts of the subject. Fig. 5a shows one of these
images. Using image number 5 as the reference image, we
determined the shift of the other eight images using the iterative,
gradient-based shift estimation method as detailed in [19]. The
closingwith thesixmethods studiedabovewasapplied toall images,
using a line segment of length 15 pixels, parallel to one of the sets of
lines on the test slide, to obtain images similar to Fig. 5b (the angle
was determinedmanually on the reference image by drawing a long
discrete line; it had a slope of�472=166, corresponding to an angle of
�0:3379). For eachmethod,we shiftedandcompared the resultswith
the result on the reference image, using as an errormeasure themean
square difference (computed only in a small region around the lines
that are being detected); these numbers are shown in Table 2. The
smaller these differences, the better the method is at approximating
continuous-domain translation invariance, as discussed in the

introduction. Note that the closing should decrease the difference
because it removes noise. Methods 4 and 5 produce the smallest
error, and there is notmuch difference between the two.Method 3 is
somewhat better than method 1, but still increases rather than
decreases the error. Method 2, lacking translation invariance in the
discrete sense, dramatically increases its error for larger shifts
between the images. Finally, method 6 does not perform as well as
expected, both because its larger width causes it to bemore sensitive
to noise and because of the uneven illumination across the image,
whichmakes the scaling factorA (chosen globally) to be too large for
the features being filtered. This shows that, even though thismethod
seems good in theory, it is not very useful in practice.

5 ANGULAR SELECTIVITY

5.1 Rotation Invariant Morphology Using Anisotropic
Structuring Elements

In [6], [2], we introduced a rotation-invariant anisotropic (RIA)
morphology. It is constructed by decomposing an isotropic
structuring element D, i.e., a disk in two dimensions, into its
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Fig. 4. Comparison of different implementations of the opening with a line segment structuring element. (a) Method 1. (b) Method 2. (c) Method 3. (d) Method 4.

(e) Method 5. (f) Method 6. See text for details.

TABLE 1
Computational Complexity of the Tested Algorithms and the Time in Seconds required to Compute Each Graph of Fig. 4

N is the number of pixels in the image, L is the length of the structuring element and ’ is its angle, P’ is the periodicity of a Bresenham line under angle ’, and W is the
width in pixels of the image if j’j < �=4, its height otherwise.



diameters, L’. This is generalized as an infinite set of rotated
versions of a lower-dimensional structuring element; for example,
a ball in three dimensions can be decomposed into rotated versions
of a disk or a line. In this paper, we limit ourselves to two-
dimensional images, such that

D ¼ ðx; yÞ 2 IR2 j x2 þ y2 � r2
� �

; ð3Þ

where r is the radius of the disk and

L’ ¼ ðx; yÞ 2 IR2 j x2 þ y2 � r2 ^ tanð’Þ ¼ y

x

n o
: ð4Þ

The opening in this framework, which we denote by ��,
corresponds to a supremum of openings, which is, as proven by
Matheron [20], an algebraic opening:

��LðfÞ ¼
_
’

�L’ðfÞ: ð5Þ

Note that such an operator was already proposed in [20] and has
been used by many authors afterward. Being an algebraic opening,
the increasingness and antiextensivity properties are satisfied. We
had proven earlier that the RIA opening (in the continuous
domain) also satisfies the absorption property [2]. All of these three
properties are required for an operator to be used in a
granulometry [21], [22]. However, a discretized version of this
operator will only be absorbing by approximation.

5.2 Discretizing the RIA Morphology

Implementation of the algebraic opening of (5) requires that we
apply our line segments at a finite number of orientations. Here,
we determine how many orientations are required. Since the
morphological orientation-space F ðx; ’Þ ¼ ½�L’ðfÞ�ðxÞ is not
bandlimited along the ’-axis we cannot apply the Nyquist
condition for sampling and reconstruction. Instead, we will look
for the number of orientations that will reduce the error below a
certain level. This number is directly proportional to the

circumference of the disk that is being probed by the rotated line
segments.

We use method 4, interpolated line segments, to implement the
openings. We experimentally verified that the conclusions are valid
for the other methods as well. In Fig. 6, we plotted the full width at
half the maximum (FWHM) of peaks in the orientation-space (as
resulting from the input image in Fig. 3a). This is a goodmeasure for
the width of the response as a function of the line segment length.
The figure shows an inverse relation between segment length and
response width, which confirms the direct relation between the
segment length (� circumference) and the number of orientations
that are needed.

To get an approximation to the number of orientations required,
we will assume that the distance along the orientation-axis between
samples is given by q=‘ (in rad), ‘ being the segment length and q
being some constant. This is equivalent to taking b�‘=qc samples
between 0 and � rad. By varying the value of q and computing a
granulometry, we find a suitable value for q such that decreasing it
further has little effect on themeasurement result. The granulometry
was applied to an image similar to the one in Fig. 3a, butwith the line
segments of random orientation. We applied RIA openings with
interpolated line segments (method 4). The results are shown in
Fig. 7. For values of q � 0:16, the graph is quite consistent. This
implies around 800 orientations should be used when computing a
RIA opening with a line of 40 pixels in length.

Fig. 7 shows a granulometric line (for small q) that is negative at
smaller ‘. As stated in Section 3, the method used here to
implement the openings does not satisfy the absorption criterion
because of the interpolation in the output of the morphological
filter. This same error is the one causing these negative values,
which are not produced by methods 2 or 5.

If this experiment is repeated for a method that has a discrete set
of possible angles (method 1 or 3), a larger value for q would be
obtained. Increasing the number of orientations would only cause
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Fig. 5. (a) An image of a test slide (512 by 512 pixels). (b) Closing with a line structuring element ‘ ¼ 15. (c) Input image. (d) Result of method 3. (e) Result of method 1.

(f) Result of method 4. The details show the differences between the various results.

TABLE 2
Mean Square Error (MSE) between Images Before and
After Applying the Closing with the Different Methods

All images are compared against image 5. The MSE is computed in a small area
around the lines that are expected not to change.

Fig. 6. The width (FWHM) of the response along the orientation-axis of the
morphological orientation-space F ðx; ’Þ, together with a line FWHM / ‘�1. The
disagreement for shorter line segments is due to the band-limit of the objects in the
input image.



the same angles to used more often because they are rounded to the
nearest possible values. The result of the operation is not changed.

6 CONCLUSIONS

We studied and compared different implementations of morpho-
logical operations with line structuring elements, under the
assumption that the input image is band-limited and properly
sampled. All differences between the result of the discrete
operation and the result expected for the equivalent continuous-
domain operation were considered discretization errors. We
showed that the two methods that use interpolation produce
notably smaller discretization errors than the methods that are
commonly used. We suggest the use of interpolated structuring
elements obtained by (subpixel) skewing of the input image (with
interpolation by cubic convolution), applying the morphological
operation along one of the grid axes, and then skewing the image
back. This method provides a good compromise between accuracy
of the result and computational cost. Interpolating the output
image of the morphological operation is not correct since it is not a
properly sampled version of a band-limited continuous image.
However, for the test image we used this had only a small negative
effect, as seen by the failure of the absorption criterion and the
negative values in Fig. 7. We showed the validity of this method by
applying it in a typical application.

To roughly determine the number of orientations that should be
used when applying a linear structuring element under all
orientations, we computed a granulometry with RIA morphology.
We conclude that about b6:5�‘c orientations should be used for a
structuring element of length ‘. This value is far too large for real-
world applications, where a constrained is often put on the
execution time, yielding a larger error.
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Fig. 7. Granulometries computed using RIA openings with different number of
orientations sampled. The number of orientations is given by �‘=q.


