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Summary

This thesis deals with the application of mathematical morphology to images of some
kind of structure, with the intention of characterizing (or describing) that structure. The
emphasis is placed on measuring properties of the real-world scene, rather than mea-
suring properties of the digital image. That is, we require that the measurement tools
are sampling-invariant, or at least produce a sampling-related error that is as small as
possible. Filters defined by mathematical morphology can be defined both in the con-
tinuous space and the sampled space, but will produce different results in both spaces.
We term these differences “discretization errors”. Many of the results presented in this
thesis decrease the discretization errors of morphological filters.

The size distribution is the main tool used in this thesis to characterize structures. We
estimate it using a granulometry, which is the projection of a morphological scale-space
on the scale axis. This morphological scale-space is built with a sieve: an operation
that is extensive (or anti-extensive), increasing and absorbing. The volume-weighted,
cumulative size distribution of the objects in the image follows by normalization of
the granulometry. Two variants of this granulometry receive the most attention: one
based on isotropic, structural openings or closings, and one based on Rotation-Invariant
Anisotropic (RIA) morphology. RIA openings and closings complement the isotropic
ones, in that the latter remove objects based on their smallest diameter, whereas the
former remove objects based on any of the other diameters (such as the length).

Isotropic structural openings and closings use a disk (or ann-ball in n-D) as structuring
element. TheRIA openings and closings we are interested in use line segments as struc-
turing elements. These two shapes are extensively studied in this thesis, and we propose
various improvements to the classical algorithms that decrease the discretization errors
(that is, they improve the discrete approximation to the continuous operation). For any
shape, interpolation directly reduces discretization errors by reducing the relative sam-
pling error of that shape. In addition to that, for disks and balls we propose a small shift
with respect to the sampling grid to further reduce discretization errors. For the line seg-
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ment we propose an algorithm based on skews (with interpolation) of the image. Both
these shapes can also be improved by using gray-value structuring elements.

The only way of completely avoiding discretization errors in mathematical morphology
is using an alternative image representation. For one-dimensional images we propose to
use a piece-wise polynomial representation, based on spline interpolation. Due to the
continuous nature of this representation, discretization effects are no longer relevant.

We also study the selection of the morphological operation for the granulometry, and
some useful pre-processing steps to prepare the image so that the estimated size distri-
bution is more accurate. Among other things, we look at noise-reduction filters and their
effect on the estimated granulometry.

On a somewhat different note, the Radon transform (also known as Hough transform) is
studied. It detects parameterized shapes in an image, and can therefore also be used to
construct a size distribution. The most important difference between the Radon trans-
form and the granulometry is that the former is linear, whereas the latter is strongly
non-linear. Both methods do not require any form of segmentation, although they can
benefit from pre-processing.

We show how the Radon transform can be defined such that the resulting parameter
response function is band-limited. This makes it possible to define a minimal sampling
rate for this function, avoiding aliasing. The parameters can therefore be estimated with
sub-pixel accuracy. Secondly, the accuracy and precision of the Radon transform for
spheres is examined. In particular, we derive a theoretical approximation for the bias
in the estimated radii, and propose a way to modify the transform to reduce this bias.
Finally, a memory-efficient algorithm for the Radon transform is proposed.



Samenvatting

Dit proefschrift behandeld het toepassen van mathematische morfologie, op beelden van
een structuur, met de bedoeling deze structuur te karakteriseren (of te beschrijven). De
nadruk ligt op het meten van eigenschappen in de werkelijke wereld, in tegenstelling tot
het meten van eigenschappen van het digitale beeld. Dat is, we eisen dat de meetinstru-
menten bemonstering-invariant zijn, of tenminste een minimale bemonstering-gerela-
teerde fout maken. Filters gedefinieerd in de mathematische morfologie kunnen zowel
in de continue als in de discrete ruimte worden gedefinieerd, maar zullen verschillende
resultaten geven in beide ruimten. We noemen deze verschillen “discretisatiefouten”.
Veel van de resultaten die in dit proefschrift gepresenteerd worden reduceren de dis-
cretisatiefouten van morfologische filters.

De grootte-distributie is het belangrijkste gereedschap dat in dit proefschrift gebruikt
wordt om structuren te karakteriseren. We schatten deze distributie door middel van een
granulometrie, wat de projectie is van een morfologische schaal-ruimte op de schaal-
as. Deze morfologische schaal-ruimte wordt opgebouwd met een zeef: een operatie
die extensief (of anti-extensief), monotoon stijgend en absorberend is. De volume-
gewogen, cumulatieve grootte-distributie van de objecten in het beeld wordt verkregen
door normalisatie van de granulometrie. Twee varianten van deze granulometrie krij-
gen de meeste aandacht: één gebaseerd op isotrope structurele openingen of sluitingen,
en één gebaseerd op Rotatie-Invariante Anisotrope (RIA) morfologie. RIA openingen
en sluitingen complementeren de isotrope, daar deze objecten selecteren op de kleinste
diameter, waarRIA morfologie dat doet op een willekeurige andere diameter (zoals de
lengte).

Isotrope structurele openingen en sluitingen gebruiken een schijf (of eenn-bol in n-D)
als structurerend element. DeRIA openingen en sluitingen waar we geïnteresseerd in
zijn gebruiken lijnsegmenten als structurerende elementen. Deze twee vormen worden
uitgebreid bestudeerd in dit proefschrift. We stellen verschillende verbeteringen voor
die de discretisatiefouten in de klassieke algoritmen verminderen (dat is, ze verbeteren
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de discrete benadering van de continue operatie). Voor een willekeurige vorm zal in-
terpolatie rechtstreeks de discretisatiefouten verminderen door de relatieve bemonster-
ingsfout van de vorm te verminderen. Daarnaast, voor schijven en bollen stellen we een
kleine verschuiving voor ten opzichte van het raster, om verder de discretisatiefouten
te verminderen. Voor het lijnsegment stellen we een algoritme voor dat gebaseerd is
op afschuivingen (met interpolatie) van het beeld. Beide vormen kunnen ook verbeterd
worden door het gebruik van grijswaarde structurerende elementen.

De enige manier om discretisatiefouten volledig te vermijden in mathematische mor-
fologie is het gebruiken van een alternatieve representatie van het beeld. Voor één-di-
mensionale beelden stellen we een representatie voor, bestaand uit stuksgewijs interpo-
lerende polynomen verkregen via splines. Omdat dit een continue representatie is, zijn
discretisatiefouten niet meer relevant.

We bestuderen ook de selectie van de morfologische operatie voor de granulometrie, en
sommige nuttige voorbewerking-stappen om het beeld zodanig te transformeren dat de
geschatte grootte-distributie zuiverder is. Onder andere kijken we naar ruis-onderdruk-
kende filters en hun effect op de geschatte granulometrie.

We bestuderen verder de Radon transformatie (ook bekend als Hough transformatie).
Deze transformatie detecteert geparametriseerde vormen in een beeld, en kan dus ook
gebruikt worden om een grootte-distributie te schatten. Het belangrijkste verschil tussen
de Radon transformatie en de granulometrie is dat de eerste lineair is, terwijl de laatste
zeer niet-lineair is. Beide methoden behoeven geen enkele vorm van segmentatie, maar
ze kunnen wel voordeel uit voorbewerking halen.

We laten zien hoe de Radon transformatie gedefinieerd dient te worden zodat de verkre-
gen parameter-respons-functie band-gelimiteerd is. Dit maakt het mogelijk een minima-
le bemonstering-dichtheid te definiëren voor deze functie, en zo aliasing te voorkomen.
De parameters kunnen daardoor met sub-pixel nauwkeurigheid geschat worden. Daarna
wordt de zuiverheid en nauwkeurigheid van de Radon transformatie voor bolschillen on-
derzocht. We leiden een theoretische benadering af voor de afwijking van de geschatte
diameters, en stellen een aanpassing voor om deze afwijking te verminderen. Als laatste
stellen we een geheugen-efficiënt Radon algoritme voor.



Resumen

Esta tesis trata sobre la aplicación de Morfología Matemática a imágenes de algún tipo
de estructura, con la intención de caracterizar (o describir) esa estructura. El énfasis
lo ponemos en medir propiedades de la escena real, en vez de medir propiedades de
la imagen digital. Esto es, requerimos que las herramientas de medir sean invariantes
al muestreo, o al menos produzcan un error relacionado al muestreo que sea lo menor
posible. Filtros definidos en la Morfología Matemática pueden ser definidos tanto en
el espacio continuo como en el discreto, pero producen resultados diferentes en ambos
espacios. A estas diferencias les llamamos “errores de discretización”. Muchos de los
resultados presentados en esta tesis disminuyen los errores de discretización de los filtros
morfológicos.

La distribución de tamaños es la principal herramienta usada en esta tesis para caracteri-
zar estructuras. La estimamos usando una granulometría, que es la proyección de un es-
pacio de escalas morfológico sobre el eje de escala. Este espacio de escalas morfológico
se construye con una “coladera”: una operación que es extensiva (o anti-extensiva), cre-
ciente y absorbente. La distribución, cumulativa y pesada por volumen, de los tamaños
de los objetos en la imagen se obtiene normalizando la granulometría. Dos variedades
de esta granulometría reciben la mayor atención: una basada en aperturas o clausuras es-
tructurales isotrópicas, y otra basada en morfología Anisotrópica Invariante a la Rotación
(RIA). Aperturas y clausurasRIA complementan las isotrópicas, en que las últimas qui-
tan objetos según el diámetro menor, mientras que las anteriores quitan objetos según
otros diámetros (como la longitud).

Aperturas y clausuras estructurales isotrópicas usan un disco (on-bola enn-D) como
elemento estructural. Las aperturas y clausurasRIA en las que estamos interesados usan
segmentos de línea como elementos estructurales. Estas dos formas son estudiadas ex-
tensivamente en esta tesis, y proponemos varias mejoras a los algoritmos clásicos que
aminoran los errores de discretización (eso es, mejoran la aproximación discreta a la ope-
ración continua). Para cualquier forma, interpolación directamente reduce los errores de
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discretización, porque reduce el error de muestreo de esa forma. Adicionalmente, para
discos y bolas proponemos una pequeña traslación con respecto al retículo de muestreo
para reducir aun más los errores de discretización. Para el segmento de línea proponemos
un algoritmo basado en sesgar (con interpolación) la imagen. Ambas formas también
pueden ser mejorados usando elementos estructurales con niveles de gris.

La única forma de eludir completamente los errores de discretización en la Morfología
Matemática es usando una representación alternativa de la imagen. Para imágenes unidi-
mensionales proponemos usar una representación con segmentos de polinomio, basado
en interpolación con splines. Como esto es una representación continua, los efectos de
discretización ya no son relevantes.

También estudiamos la selección de operaciones morfológicas para la granulometría, y
algunos pasos de pre-proceso útiles para preparar la imagen de tal forma que la dis-
tribución de tamaños estimada sea más exacta. Entre otras cosas, echamos una mirada a
filtros que reducen el ruido y el efecto que tienen en la granulometría.

En un tono algo distinto, la transformada de Radon (también conocida como transfor-
mada de Hough) es estudiada. Detecta formas parametrizadas en una imagen, y por ello
también puede ser usada para construir una distribución de tamaños. La diferencia más
importante entre la transformada de Radon y la granulometría es que la anterior es line-
ar, mientras que última es muy no linear. Ambos métodos no requieren ninguna forma
de segmentación, aunque pueden beneficiarse de pre-proceso.

Enseñamos como la transformada de Radon se puede definir de forma que la función de
respuesta a parámetros resultante sea limitada en banda. Esto hace posible definir una
tasa de muestreo mínima para esta función, evitando aliasing. Los parámetros se pueden,
por tanto, obtener con exactitud sub-pixel. Después examinamos la exactitud y precisión
de la transformada de Radon para esferas. En particular, derivamos una aproximación
teorética para el error sistemático en el radio estimado, y proponemos una manera de
cambiar la transformación para reducir este error. Por último proponemos un algoritmo
para la transformada de Radon eficiente en memoria.



Research is what I'm doing when I don't know what I'm doing

(Wernher von Braun)

Introduction

In this thesis, methods from mathematical morphology will be described, with the pur-
pose of characterizing structures. Three things need to be clarified: what mathematical
morphology is, what structures are, and how methods from mathematical morphology
can be applied to characterize these structures.

Mathematical morphology is a collection of algorithmic tools that can be executed by a
digital computer and, when applied to an image, yield a transformed image. Transform-
ing images is referred to asimage processing.1 The goal of applying such algorithms
to images might be improving the appearance of these images, creating art, performing
measurements, or understanding what is imaged. In these last two cases we speak of
image analysis.2 Mathematical morphology was born in the mid 1960’s from work by
Georges Matheron and Jean Serra. At that time they heavily stressed the mathemati-
cal formalisms (probably because computers took a long time to compute the complex
transforms they were describing, and they recognized the importance of a strong mathe-
matical base). Many authors since have extended this set of tools, mostly working on the
mathematical base (definitions, propositions and theorems). Nonetheless, mathematical
morphology is a relatively simple and powerful tool to solve a wide variety of problems
in image processing and analysis.

We might distinguish objects,structureand texture. In principle, these are the same
phenomena but at different scales: individual objects, when repeated in either a random
or a predictable way, form structure. When the individual objects are not distinguishable,
but the repeating pattern still is, one refers to it as texture. A good example is cloth.

1Mathematical morphology can also be applied to other things besides images, and there are many more
methods next to mathematical morphology that are used in image processing.

2We use the term “image processing” for any operation that has an image as input and produces an
image as output, and “image analysis” for any operation that uses an image as input and produces numbers,
such as measurements, as output.
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Because it is woven, a cloth has texture, that is, its surface is not smooth but is formed by
a repetitive change in height. A closer look reveals the way the threads are intertwined in
a repeating fashion. This is structure. An even closer look reveals the individual threads.
These are the objects that form the structure. If you look even closer, you might discover
new texture, structure and objects, down to the atomic level. It all depends on the scale
at which you look at things...

This thesis focuses on how to apply methods from mathematical morphology to charac-
terize structures.

Characterizing Structure

We stated before that structure is a pseudo-regular repetition of basic building blocks.
Usually these building blocks are not exactly alike, and the repetition is not precisely
uniform. Some structure can be described well by random processes such as the Poisson
point process, meaning that the repetition is far from uniform. No matter how it was
generated, though, the parameters governing the construction of the structure (which are
also the parameters that might be used to characterize it) are not fixed values but random
variables. Thus, to characterize a structure, one should characterize the random variables
that generated it. These can be described by an average or median value, in more detail
by adding a variance, or completely by specifying aprobability density function. This is
a function expressing the probability that the random variable assumes a specific value.

Two instances of a structure, generated with identical random variables as input param-
eters, will yield different estimates of the underlying probability density function. This
is because of the finite extent of the structure. The larger the extent, the more the es-
timates will approximate the true distribution, and thus each other. If it is known how
good the estimates are (usually with a confidence interval), it is possible to compare the
estimated values for two instances. If the confidence intervals do not overlap, the two
instances were not generated by the same random variables. However, if they do overlap
it is not proven that the structures were the same: the measurements used to characterize
the structure might not be discriminatory enough.

Furthermore, the estimates of these random variables are obtained through measure-
ments, which are inherently noisy. This noise can be analyzed to determine how much it
adds to the uncertainty of the estimate. The measurement error can be eithersystematic
(i.e. the error is the same for all measurements: the measurement is biased) orstochastic
(each time the measurement is repeated, the result is slightly different). The systematic
error is inconsequential if the obtained estimates are compared to each other: they will
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all contain the same bias. However, when measurements are used as physical properties
(for example to derive other properties from) or to compare with measurements made
with a different method, systematic errors are important. In this case, both types of error
must be analyzed.

In this thesis we will mainly usesize distributionsto characterize structures. The size of
the elements that compose a structure is a random variable, and the size distribution is
the probability density function for this random variable. A measured size distribution
will deviate from the true size distribution because of two reasons:
– the error in the measurements (both systematic and stochastic), and

– the stochastic deviation of the sample these measurements were taken from (i.e. be-
cause of the limited extent of the instance).

From a size distribution it is possible to derive other statistical parameters related to size,
such as the minimum, maximum, average, median, variance, etc.

Digital Images

The structures that we study arecontinuous.3 To be able to use the computer as a mea-
surement instrument, we will image them (through e.g. lenses), and digitize the resulting
image. Digitizing requiressampling(recording the value of the image at regular inter-
vals) andquantization(due to storing these values in a digital computer with a finite
precision). The obtained data is called adigital image.

Quantization means that an arbitrary real value is being represented by a quantized value
that can be stored in a finite number of bits. Two values that differ by a small amount
might end up being identical in the computer’s representation, depending on the result
of the rounding operation. This quantization can be regarded as a source of noise, and
will contribute as such to the signal-to-noise ratio (SNR) of the image. As we regard all
images as noisy, this quantization does not need special consideration (we will discuss
noise sources later on).

However, the sampling does require special consideration. If the image being sampled
is band-limited (meaning the change in intensity from one location to the next is smooth
enough), it can be sampled without loss of information. To do so, the distance between
the samples must be small enough to follow the highest frequency in the image (i.e. the
strongest change in intensity). That is, the sampling frequency should be higher than

3We use the termcontinuousto describe a non-sampled image, irrespective of its differentiability.
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two times the highest image frequency. This condition is called thesampling criterion
or theNyquist sampling theorem[88, 108]. If this condition is met no information is lost,
and it is possible to reconstruct the original image from the set of samples by a linear,
shift-invariant (LSI) filter. Actually, this is only true for images with an infinite extent.
For digital images this is never the case, so some information is lost, especially near the
edges of the image. A sample is called apixel(for picture element); in three-dimensional
images a sample is often referred to asvoxel(for volume element).

There are various noise sources that come into play in the imaging process [140]. First
of all, if the physical signal we observe is derived from light, the quantum nature of light
will influence this signal (photon noise). That is, the signal strength must be connected
in some way to a photon count. The number of photons arriving at the light-sensitive
device is governed by a Poisson distribution. This is especially important for small pho-
ton counts. The light-sensitive device itself will also introduce some error in this photon
counting. For example, aCCD (charge-coupled device, common in modern cameras)
will produce adark current, a signal that is not related to the amount of light falling
on it, but to the temperature that it is operating at. This is referred to asthermal noise,
and is also governed by a Poisson distribution. When the signal is transferred from the
CCD, a frequency-dependent noise is added, calledread-out noise, which becomes more
important with increasing read-out rate. The electronics used to process these signals
(amplifier, analog to digital converter, etc.) also contribute noise. Other imaging tech-
niques have similar noise sources. If theSNR is not high enough, noise will significantly
influence any measurement performed on the image, sometimes in very complex ways.

Digital images of a structure can be obtained by any number of means. To process
these images, it is not important how they were obtained as long as certain conditions
are met (such as the sampling criterion). That is, a specific filter can be applied to the
image no matter what it contains or where it came from; whether it produces a useful
result or not is another matter. However, to interpret the image (as in measuring sta-
tistical properties), understanding the recording method is fundamental. For example,
some techniques such as Confocal Laser Scanning Microscopy (CLSM) and Magnetic
Resonance Imaging (MRI) blur the image more in one direction than in the others. Other
techniques produce shadowing effects that make the analysis very difficult, such as Scan-
ning Electron Microscopy (SEM). These images can all be filtered in the same way to,
for example, reduce noise, but they must be handled differently when the goal is to ob-
tain a size distribution. One way of accomplishing this is appropriate pre-processing.
The goal here is to convert the acquired image into a function that bears a good resem-
blance to the actual structure. Examples are restoration of theCLSM image, and some
shape-from-shading technique in case of aSEM image.
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Figure 1:From a real-world scene to a measurement through an imaging device that
produces discrete images. The real-world scene is projected (P), filtered (F) and
geometrically transformed (T) by the imaging device. The resulting image I(x) is
sampled, and some measurements are obtained from these samples. Our goal is to
design the measurement algorithm in such a way that its results are comparable to
measurements obtained directly from the physical world.

For this thesis we used images obtained with many different techniques. Each of these
produces band-limited images that were digitized satisfying the Nyquist sampling theo-
rem. This is very important as it allows us to relate the measurements obtained from the
digital image to the continuous image. Note that the continuous band-limited image is a
filtered, geometrically transformed projection of the physical world. Therefore, under-
standing the imaging technique used is vital to relate the measurements obtained from
the digital image to the real world (see Figure1).

When using digital images, there is the possibility of analyzing the samples instead of
the physical objects being imaged. One can find this in the literature very often. In
this case, the results on two instances of the same physical object can be very different.
In this thesis we try to avoid this, and propose algorithms for mathematical morphology
that are as independent as possible of the sampling process. By using the sampled image
in specific ways, it is possible to analyze the continuous image, and avoid characterizing
the samples themselves instead. Since the relation between the continuous image and
the real-world scene is known, the measurements obtained have a physical meaning.

All techniques studied in this thesis are applied togray-value images. These are im-
ages where each sample is represented by a scalar value (e.g. intensity, height, density,
concentration). We do not consider samples composed of more than one value (such as
color images), since that introduces complications that are unnecessary for the applica-
tions presented. Nor do we usebinary images(images that have been thresholded or
converted otherwise into an image where for each pixel we only know whether it be-
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longs to the foreground or the background). Such an image has lost a lot of information
present in gray-value images, among others the exact location of object boundaries.

Invariance and Isotropy

One important property for a good characterizing measurement isinvarianceto a set
of transformations. A measurement is invariant with respect to a certain transforma-
tion if its result is independent of the free parameters of the operation (note that this
condition is necessary and sufficient). Examples are translation, rotation, scale, con-
trast, background, illumination, etc. A filter, on the other hand, is invariant to a certain
transformation if the order in which the transformation and the filter are applied can be
changed without affecting the result. That is, if filtering the image and rotating its output
yields the same result as filtering the rotated image, it is said that the filter is invariant
under rotation (rotation-invariant filter).

Additionally, a filter or measurement can be said to becompatibleunder certain trans-
formation if it must be changed in a pre-defined way to account for the transformation.
For example, a filter is compatible under rotation if it yields the same result when the
output is rotated or when both the input and the filter itself are rotated.

Mathematical morphology only considers invariance within one domain. This means
that in the case of discrete data, the operation under which the measurement is invariant
is discrete as well: only operations that map the sample values onto new locations of the
sampling grid are considered (e.g. translation of the image by an integer multiple of the
grid spacing). Throughout this thesis we consider only continuous-domain invariances,
even though the data we use is discrete. That is, we are interested in measurements that
are invariant under translations, rotations, scalings, etc. of the imagebeforesampling.
We will use the termsampling-invariantto refer to an operation that is independent of
the chosen sampling grid. A sampling-invariant discrete measurement will produce the
same result as its continuous counterpart, which means that, if the continuous measure-
ment is rotation invariant, the discrete measurement will be too.

With linear filters, translation invariance and rotation invariance (in the continuous-
domain sense) are easily accomplished: as long as both the filter kernel and the im-
age are properly sampled, the convolution is invariant to the sampling grid [139]. With
mathematical morphology things are not this simple. Morphological operators produce
images that are not band-limited (they cannot be sampled, without loss, using a regular
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sampling grid).4 Therefore the discrete implementation of a morphological operation
cannot produce an image that represents the results on the continuous image. So even
though an operation in the continuous domain is invariant to translation and rotation, the
discrete version is not. A large part of this thesis deals with this specific problem.

An isotropicmeasure is rotation invariant. It produces the same result, no matter what
the orientation of the objects in the scene is. It accomplishes this by weighing all direc-
tions equally. For example, one could measure the average distance of the surface of an
American football to its center. Such an isotropic measure does not say anything about
the eccentricity or ellipticity. In contrast, ananisotropicmeasure is one that favors one
direction above the others. For example, the length of the projection of an object on the
x-axis: an American football has a different size shadow depending on its orientation.
However, using a measure that is anisotropic, it is also possible to construct a rotation-
invariant measure. The key to this problem is aligning the isotropic measure with some
(rotation-invariant) property of the object. For example, the largest distance between two
points on the surface of an American football is both anisotropic and rotation-invariant.

A scaling-invariantmeasure is independent of the magnification of the image. This
magnification is influenced by the projection in the imaging system as well as by the
density of the sampling grid. As long as this magnification is known, a measure can
be related to a physical quantity, thus being independent of the magnification. This, of
course, breaks down if the change in magnification is such that relevant features of the
scene are below the resolution of the imaging system (such that the structure becomes a
texture), or larger than the image field-of-view (such that the structure becomes a small
collection of objects).

Contrast invarianceis invariance to the scaling of the intensity axis. Though it seems
similar, it is unrelated tobackground invarianceandillumination invariance, which are
insensitivities to uneven or changing light sources. The background is produced by stray
light, also called ambient light (additive light source); the illumination light source is
multiplicative. Both types of light sources are usually not uniform, and must often be
corrected for to avoid erroneous measurements.

4Using a non-regular grid such an image might be sampled and reconstructed without loss (using some
pre-defined non-LSI filter). We will, however, not consider such a sampling scheme.
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This Thesis

The main contribution of this thesis is the creation of a link between discrete and continu-
ous mathematical morphology. That is, we propose discrete methods that, when applied
to discrete images, approximate their continuous counterparts as applied to the image
before sampling. The reason to develop such methods is that they yield measurements
that relate to measurements of the physical world, as in Figure1. An important, bene-
ficial side-effect of such sampling-invariant measurements is that they typically have a
smaller stochastic error because the contribution of the sampling to the error becomes
negligible.

To develop these sampling-invariant discrete methods we need to explore changes to
classical discrete mathematical morphology. This is done in Chapters3, 4 and5. Chap-
ter 3 gives an overview of granulometries and then proceeds to define something that is
not a granulometry in the strict sense, but approximates the continuous-domain isotropic
granulometry much better than any discrete granulometry5. Chapter4 improves on the
basic operators of discrete mathematical morphology, so as to obtain operators that pro-
duce the same results as their continuous-domain counterparts6. We have only been able
to implement this for one-dimensional images, though. Then-dimensional version is
possible, but very complex to implement. Chapter5 takes a closer look at line segments
as structuring elements. Line segments are notoriously difficult to represent discretely,
and this chapter examines various approaches, comparing their performance with the
continuous-domain line segment7.

To make this thesis self-contained to some extent, the first chapter introduces mathe-
matical morphology. It introduces all the operators, as well as the notation, used in this
thesis.

Chapter2 introduces an alternative to the isotropic structuring element that is also rota-
tion invariant8. The closing and opening in this framework were already described by
Matheron [79] from a different point of view.

Chapter6 examines solutions to some common problems encountered when applying
the granulometry in practice: noise, the image border, the large diversity of shapes com-
posing the structure, etc. These solutions involve pre-processing the input image and

5A large part of Chapter3 has been submitted for publication [74].
6Chapter4 has been adapted from [72].
7A portion of Chapter5 has been published in [73].
8Chapter2 has been published in a reduced form in [70].
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adapting the operations used in the granulometry itself.

Chapter7 presents various applications of the granulometry9. These constitute the goal
of this thesis, illustrate the use of the techniques discussed in it, and prove the validity
and usefulness of the proposed methods.

Finally, and on a different note, Chapter8 is a paper about the Radon transform, yet to be
published [67]10. Although the Radon transform is unrelated to mathematical morphol-
ogy, it can also be used to characterize structures: it detects a shape in an image, without
the need for segmentation, yielding the parameters for each instance of that shape. In
fact, the Radon transform has quite a lot in common with the morphological sieve; both
transform an image by fitting a pre-defined shape family to it. The difference is the way
the similarity of a shape with the image is computed: the Radon transform is a linear
transformation, whereas the sieve is strongly non-linear. The method to extract rele-
vant information from these two transforms is also different. AppendixA is a technical
report, published in [69], that contains the derivation of an equation used in this paper.

9Chapter7 contains results published or submitted for publication in [18, 71, 74]
10An earlier, shorter version of this paper has been published in [68].





The important thing is never to stop questioning

(Albert Einstein)

Chapter 1

Mathematical Morphology

This chapter reviews the basics of mathematical morphology. It is meant to make this
thesis self-contained to some extent, and to introduce the notation used in the following
chapters.

Over the years, different notations for mathematical morphology have emerged. Each
one has its advantages and disadvantages. We use the monadic operator style as used
by e.g. Soille [114], because most of the equations in this thesis are simpler in this
notation than when using the dyadic operators used by authors such as Matheron [78] or
Serra [103].

There are also two different definitions for the dilation, which differ in the mirroring of
the structuring element. The definition used by e.g. Haralick [43] or Heijmans [44] is
chosen such that the dilation and erosion form an adjunction [45]. This is interesting
if one uses theoretical concepts such as complete lattices. The definition used by e.g.
Serra and Soille, on the other hand, makes the dilation and erosion symmetric. Using
this definition, these operations correspond directly to the local maximum and minimum
filter, respectively. It also makes both of them a special case of the more general rank
filter [117]. We feel that this latter definition fits better with our filtering approach.

History

Mathematical morphology was born in 1964 from work by Matheron and Serra, the for-
mer working for the French Geological Survey (BRGM) on the hydrodynamics of porous
media, the latter at the French Steel Institute (IRSID) on the petrography of an iron ore
body [80]. In that year, both authors published their first reports concerning some of
the methods that now are part of mathematical morphology. Right away they started
building on each other’s results. In January of 1966, J.C. Klein and J. Serra finished the
Texture Analyser[61] (TAS). It allowed the analysis of binary images using any structur-
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ing element based on straight lines along the three axes of the hexagonal grid. Later that
year Matheron and Serra coined the term “mathematical morphology”, as well as other
terms commonly used in the field now. The Centre de Morphologie Mathématique was
created on April 20, 1968, by the Ecole de Mines de Paris at Fontainebleau, and manned
by Matheron and Serra. This center is considered the birthplace of mathematical mor-
phology, and to this day is an important center for research in the field.

In 1964 Matheron had rediscoveredMinkowski algebra. Minkowski defined the set
addition (dilation) in 1903, which Hadwiger studied in detail in a work published in
1957 [42]. This work also introduces the set subtraction (erosion), as well as their
combinations (opening and closing). Hadwiger’s field is the Integral Geometry, which
spawned a field of study calledstereology. Stereology is therefore closely related to
mathematical morphology, although both fields come with a very different way of think-
ing. In stereology, a statistic is computed from the image1 (for example, the number of
points of a regular grid that fall on a particular phase of the structure, or the number of
phase boundaries crossed by a line), resulting in a number that characterizes the struc-
ture in some way (volume fraction and surface area, respectively, for the two examples
given above). What was new about Matheron and Serra’s way of thinking was the trans-
formation of the image into a new one. The difference between the images is limited to
structures with a specific shape and size. These fields have grown closer together, but
are still considered separate fields by many.

In the rest of this thesis, we will use the term “morphology” for “mathematical morphol-
ogy”. Statements in the rest of this chapter that are not followed by a reference implicitly
refer to Soille [114].

Basics

When morphology was first introduced, it was based on set theory. In practice, this
means it was limited to binary images (pixels having one of only two values). Naka-
gawa and Rosenfeld [86], in 1978, were the first to link the binary dilation and erosion
operations to the maximum and minimum filters applied to gray-value images. Stern-
berg [121] introduced the notion of umbra around 1978, which made it possible to apply
all the mathematics developed for binary images to gray-value images. We will consider

1George Leclerc Buffon presented his needle problem to the Royal Academy of Sciences in Paris,
1777 [84]. He showed that a needle, falling randomly on a grid of lines, intersects each line with a proba-
bility directly proportional to the length of the needle, without any further assumptions. This is one of the
basic principles of stereology.
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only gray-value morphology because it is more general and therefore can be applied to
binary images producing the same results that would be produced by set operations. The
morphological operations we will review in the next sections usestructuring elements
as probes to analyze the image. We believe that flat structuring elements (i.e. defined
by a set) make morphology easier to explain. Nonetheless, it is also possible to define
structuring elements as non-flat functions. This is an even more general case, which we
will also exploit in this thesis. By defining the gray-value structuring element to have
only values of 0 and−∞, one mimics a structuring element defined by a set. We will
explain the morphological operations using flat structuring elements, and then give the
modified definitions for gray-value structuring elements.

In this chapter, the functionf : Rn→ R is a continuous, gray-value image (defined on
an infinite domain). We will not consider the operations as applied to digitized images
yet. The setB⊂ Rn will represent the structuring element.

B̌ = {−x | x∈ B} (1.1)

is the mirrored set,
TtB = {x+ t | x∈ B} (1.2)

is the translated set, and
SsB = {sx| x∈ B} (1.3)

is the scaled set. The operatorsTt andSs are also applied to functions. Finally,
∧

and
∨

represent the infimum and supremum respectively. We consider all sets closed,2 and we
only concern ourselves with smooth, real images. Therefore, we can use the minimum
value as the infimum, and the maximum value as the supremum. We use these terms
interchangeably.

1.1 Dilation and Erosion

The two basic morphological operators are thedilation, denoted byδ, and theerosion,
denoted byε. They are defined respectively as the maximum and minimum value of a

2The difference between open and closed sets is not relevant when processing continuous, band-limited
functions.
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a: Input b: Dilation c: Erosion

Figure 1.1:Demonstration of the dilation and erosion on a test image. The structuring
element used was a disk with a radius of7.5 pixels, which is the amount by which the
dark objects have shrunk and expanded, respectively (image size is 256 by 256 pixels).

function f in a neighborhood defined by the structuring elementB,

[δB( f )](x) =
∨
b∈B

f (x+b) (1.4)

[εB( f )](x) =
∧
b∈B

f (x+b) . (1.5)

The dilation expands the light objects in the image, and shrinks the dark ones. The
erosion has the opposite effect. Figure1.1 shows this behavior on a test image. These
two operators are related by a simple and obvious property,duality,

δ(− f ) =−ε( f ) . (1.6)

This means that applying one to the ‘foreground’ produces the same result as applying
the other to the ‘background’. That is, the dilation expands the light objects in the same
way as the erosion expands the dark ones.

Properties

The dilation and the erosion have some interesting properties that are rather trivial to
prove (for these proofs we refer to Soille [114]). For example, both operators preserve
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the ordering relation (increasingness),

g≥ f ⇒

{
δ(g)≥ δ( f )
ε(g)≥ ε( f ) .

(1.7)

If the structuring element contains the origin, there is also theextensivityof the dilation
and theanti-extensivityof the erosion,

0∈ B⇒ δB( f )≥ f ≥ εB( f ) . (1.8)

This implies that, as long as the origin is included in the structuring element, the dilation
never lowers the value of the image at any point. The light objects in the image are
enlarged. If the origin is not included inB, the objects are enlarged and translated:

y∈ B⇒ [δB( f )](x)≥ f (x+y)≥ [εB( f )](x) . (1.9)

Obviously, the result of the dilation at a pointx is only affected by a region aroundx in
input image. This region is defined by the structuring elementB. This property is called
local knowledge. The same holds for the erosion.

Also, both the dilation and the erosion are invariant to translation and contrast change,
and compatible under scaling:

δBTt = TtδB (1.10)

δB(a f) = aδB( f ) (1.11)

δSsBSs = SsδB . (1.12)

But there are also some less obvious properties. For example, the dilation and the erosion
are defined by theirdistributivity,

δ( f ∨g) = δ( f )∨δ(g) (1.13a)

ε( f ∧g) = ε( f )∧ ε(g) . (1.13b)

The dilation distributes with the supremum, and the erosion with the infimum. This is a
very important property when dealing with sets, but it is not used much when working
with gray-value images.
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Also, the structuring element can be decomposed because of theassociativityof the
operator,

δδB(C) = δBδC (1.14a)

εδB(C) = εBεC . (1.14b)

This property looks a little curious in this notation, but using Minkowski algebra it looks
familiar. δB(C) is then written asC⊕B; εB(C) asC	B. The associativity property now
reads

f ⊕ (C⊕B) = ( f ⊕C)⊕B (1.15a)

f 	 (C⊕B) = ( f 	C)	B . (1.15b)

This means that if a structuring element can be written as the Minkowski addition of two
or more simpler structuring elements, the dilation (or erosion) operation becomes much
simpler to implement and cheaper to compute. We will come back to this later in this
section.

Furthermore, it is possible to change the order of the operands and operations (commu-
tativity):

δBδC = δCδB . (1.16)

Gray-Value Structuring Elements

Using gray-value structuring elements, the dilation and the erosion bear a great resem-
blance to the convolution integral. Let us define the structuring element as a function
b : Rn→ R. The dilation is written as

[δb( f )](x) =
∨

y∈Rn

f (x+y)+b(y) , (1.17)

and the erosion as
[εb( f )](x) =

∧
y∈Rn

f (x+y)−b(y) . (1.18)

Comparing these equations to the convolution integral we observe that the integral is
substituted by a supremum (or infimum) and the multiplication is substituted by an ad-
dition (or subtraction). Another difference is that the structuring element is not mirrored,
whereas the convolution kernel is. As mentioned earlier, some authors mirror the struc-
turing element for the dilation, but not for the erosion. Also note that, when defining
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Figure 1.2:The notion of umbra serves to apply set morphology to functions. Dilating
F, the umbra of f , with B, the umbra of b, yields the umbra of the result obtained
when dilating the function f with b. The function b is a parabola, with the origin at
its maximum.

b only with values 0 and−∞, one obtains the operators as defined previously for flat
structuring elements, with

B = {x | b(x) = 0} . (1.19)

An intuitive understanding of this operation can be obtained through the notion ofum-
bra. The functionf is converted into a setF by adding a new dimension,3

F = {(x,y) | y≤ λ f (x)} , (1.20)

whereλ is a shape parameter [51] (this value is undefined by the problem; there is usu-
ally no relation between the intensity and the spatial axes). The structuring elementb
is treated in the same way. As can be seen in Figure1.2, the set dilationδB(F) yields
the umbra of the dilated functionδb( f ). When using flat structuring elements, the di-
lation translates the slopes, that is, the umbra is extended only horizontally. Non-flat
structuring elements also extend the umbra in the newly defined direction, they-axis,
thereby introducing new gray-values in the functionf . Also, flat structuring elements
are insensitive to the shape parameterλ .

For all pointsy whereb(y) <−I +b(0) (with I =
∨

f −
∧

f , the total gray-value range in
the input image), the sumf (x+y)+b(y) can never influence the result of the supremum.
Therefore, only the pointsy for which b(y)− b(0) ≥ −I need to be considered when

3The functionf represents a surface, the setF is the solid body whose surface is represented byf . If f
is ann-dimensional function,F hasn+1 dimensions.
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⊕ ⊕ ⊕ ⊕ ⊕ = ⊕ =

Figure 1.3: Left:Successive dilation with a small square structuring element produces
the same result as dilation with a large one.Right: Two one-dimensional dilations in
orthogonal directions produce the same result as one dilation with a large square
structuring element.

computing the dilation. This limits the support of the structuring element used.

Using this definition, the operations are no longer contrast invariant. It is necessary
to change the structuring element accordingly: it is compatible under scaling of the
intensity-axis,

δab(a f) = aδb( f ) . (1.21)

Decomposition of the Structuring Element

As stated before, a structuring element can be decomposed into smaller structuring el-
ements, which makes the computation of the dilation and the erosion faster. Equa-
tions (1.14a) and (1.14b) show that, if a structuring elementB can be written as the
dilation of B1 with B2, then one might as well use two dilations with the composing
setsB1 andB2, instead of the one withB. In many cases this is computationally more
efficient.

For example, instead of applying a dilation with a square of sizen units, one can apply
n iterations of a dilation with a square of 1 unit in size (see Figure1.3). Moreover, this
same square can be decomposed into two orthogonal line segments. A dilation or an
erosion with a discrete line segment can be accomplished with only three comparisons
per image pixel, irrespective of the length of the line segment [46, 118], thus making a
dilation with a square a computationally cheap operation.

It is also possible to approximate a disk by dilation with a series of line segments. The
more segments used, the better the disk is approximated. For example, three line seg-
ments form a hexagonal structuring element, and four an octagonal one.



Closing and Opening 33

1.2 Closing and Opening

When combining the dilation and the erosion one obtains theclosing, denoted byφ, and
theopening, denoted byγ,

φB = εB̌δB (1.22)

γB = δB̌εB . (1.23)

The dilation can diminish the number of local minima, which cannot be restored by a
subsequent erosion. Thus, the closing produces a simplification of the image. Note the
mirroring of the structuring element in the second operation. It is required to give the
closing and opening some of their defining properties (idempotence and (anti-)extensi-
vity). It also causes the operation to be independent of the placing of the structuring
element with respect to the origin. When looking at an image as composed of objects, a
closing removes dark objects that are smaller than the structuring element used (i.e. the
ones in which the structuring element does not fit). See Figure1.4 for an example. In
this light, the closing at a pointx can be written as the maximum value of the imagef
over the structuring elementB, shifted in such a way that the obtained value is minimal.
This shift is constrained by the requirement that the structuring element hit the pointx
under consideration. In other words,

[φB( f )](x) = [εB̌δB( f )](x) =
∧
z∈B̌

∨
y∈TzB

f (x+y) . (1.24)

Note that, becausez∈ B̌, TzB always contains the origin. Of course, the same notation
can be used for the opening. A closing or opening with a gray-value structuring element
can be constructed with a dilation and erosion using the gray-value structuring element.

Properties

The closing and the opening share quite a few properties with the dilation and the ero-
sion. First of all, the two operators are dual,

φ(− f ) =−γ( f ) , (1.25)

because the operators from which they are constructed are dual as well.

Like the dilation and the erosion, these operators are increasing,

g≥ f ⇒

{
φ(g)≥ φ( f )
γ(g)≥ γ( f ) .

(1.26)
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a: Input b: Closing c: Opening

Figure 1.4:Demonstration of the closing and opening on a test image. The structuring
element used was a disk with a diameter of15pixels, which is the minimal size of the
remaining dark and light features, respectively.

As we saw earlier, increasingness can be interpreted as a preservation of the ordering
relation between images.

The closing and the opening are also extensive and anti-extensive, respectively:

φ( f )≥ f ≥ γ( f ) . (1.27)

However, unlike the dilation and the erosion, this property holds for all closings and
openings, irrespective of the structuring element used. Because the structuring element
is mirrored, the origin is always included in the region from which the maximum (or
minimum) is selected. Adding this relation to Equation (1.8) results in an interesting
ordering relation:

0∈ B⇒ δB( f )≥ φB( f )≥ f ≥ γB( f )≥ εB( f ) . (1.28)

The translation and contrast invariances of the dilation and the erosion, as well as the
compatability under scaling, are also inherited by the closing and the opening.

φBTx = TxφB (1.29)

φB(a f) = aφB( f ) (1.30)

φSsBSs = SsφB . (1.31)
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However, there are some other properties not shared with the dilation and the erosion. A
very important property isidempotence,

φBφB = φB (1.32a)

γBγB = γB , (1.32b)

which means that applying a closing to an image more than once with the same struc-
turing element is futile.

Finally, theabsorptionproperty,

B = γCB⇒

{
φCφB = φB = φBφC

γCγB = γB = γBγC ,
(1.33)

is satisfied only ifB is open with respect toC, that is, if applying the opening with set
C to the setB, the setB does not change. This condition usually holds whenB andC
are scaled versions of the same convex set (e.g. a rectangle or a disk). This property will
prove useful in Chapter3. Note that idempotence is a special case of absorption (the
caseB = C, sinceγB(B) = B). Also note that the closing generally does not commute
with itself. It is only commutative when one of the structuring elements is open with
respect to the other one.

Algebraic Closing and Opening

Of all the properties defined above, extensivity, increasingness and idempotence define
the closing operation. This means that any operation that satisfies these three properties
is called a closing (the same is true for the opening, substituting anti-extensivity for
extensivity). However, there are operations that satisfy these properties but cannot be
written in terms of a dilation followed by an erosion.

To distinguish these two types of closings, we callstructuralor morphological closing
the closing constructed with a dilation and an erosion. If a closing is not a morphological
closing, it is called analgebraic closing, and can be written as the infimum of a family
of morphological closings [79],

Ψ( f ) =
∧
i

φBi ( f ) . (1.34)
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a: Input b: Structural closing c: Parametric closing

d: Area closing e: Closing by reconstruction f: Flooding

Figure 1.5:Demonstration of the various algebraic closings.a: Input image.b: The
structural closing (same images as in Figure1.4). c: The rank-min or parametric
closing; the structuring element is a disk with diameter 15 pixels, with 20% of the
pixels ignored.d: The area closing, using an area of 177 pixels, which is the area of a
disk with a diameter of 15 pixels.e:The closing by reconstruction, again using a disk
with a diameter of 15 pixels.f: The flooding, implemented with the UpperEnvelope
algorithm (see Section6.3), with a connectivity of4, a maximum depth of40 and no
limit on the size (these parameters handle the merging of the regions).
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Among algebraic closings are (see an example of each in Figure1.5):

– Parametric closings: much like a structural closing, a feature is removed if the struc-
turing element does not fit in it. The difference is that here a specified number of
mismatched points are ignored. That is, the fitting condition is relaxed somewhat.
It can be written as the infimum of all closings with a structuring element of which
the specified number of points has been removed. It is also calledrank-min closing
because it is usually implemented with arank filter followed by an erosion [100].
The rank filter returns thenth largest value of a neighborhood of the input image,n
being the rank of the filter [117].

– Attribute closings: features are selected by some attribute, such as size. It can be
interpreted as the infimum of all closings with a structuring element with that attribute
(of which there might be an infinite number, of course). The most frequently used
attribute closing is thearea closing[1, 29], which removes dark features with an
area (number of pixels) smaller than some threshold. Note that it is required that the
attribute be increasing for this to be a closing [22, 23].

– Closing by reconstruction: implemented by a dilation followed by an erosion by
reconstruction (see Section1.3). It is actually an attribute closing, the attribute being
the ability of the structuring element to fit the feature. Note that it removes the same
‘holes’ as the structural closing with the same structuring element, but it does not
change the shape of the holes it does not remove.

– Floodings: based on the watershed transform (see Section1.3), the image is trans-
formed by filling up the minima (catchment basins in the watershed transform) [83].
The rate of filling and the stopping criterion define the result. This transform is also
referred to asupper leveling. Its dual operation is thelower leveling. The flooding
is a form of closing by reconstruction [82], but the seed image used in the dilation
by reconstruction is not defined by an erosion. Section6.3 gives the details of the
UpperEnvelope algorithm, which implements a flooding.

The dual transform of the algebraic closing is the algebraic opening. For each of the
examples above, an opening counterpart exists.

1.3 Other Morphological Tools

Besides dilations and erosions with structuring elements, and their combinations, there
are many other morphological tools available to the image analyst. Here we summarize
some we will be using later.
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a: Mask b: Seed c: Result

Figure 1.6:Demonstration of the reconstruction by dilation.

Reconstruction by Dilation

Reconstruction by dilation, infimum reconstructionor propagationis an iterative con-
strained dilation [39] applied to an image, called seed image. The constraint is given
by another image, called mask image. The seed image is dilated in such a way that the
result at any point is never larger than the mask. The procedure is iterated until conver-
gence (i.e. no more changes are possible). Figure1.6shows an example. A constrained
dilation is also calledgeodesic dilation.

Such an iterative dilation can be accomplished through various algorithms [137], but the
most elementary implementation uses dilations with a very small structuring element,
and after each dilation the point-wise minimum of the result with the mask is taken. The
algorithm terminates when an iteration introduces no changes in the result.

The Watershed Transform

Thewatershed transform[31] is an operation (only defined for gray-value images) that
can be used forsegmentation(dividing the image into regions of similar properties) [16].
Like the reconstruction by dilation and the skeletonization, the watershed transform is
an iterative algorithm. It can be visualized as a gradual flooding of the surface defined
by the image (see Figure6.10on page119). The lowest points are filled first, and are
called the catchment basins. As the water level rises, the catchment basins grow in size.
At the points where two of these basins meet, dams are raised, to avoid merging. These
dams sit at the watershed lines. When the whole image has been flooded, the dams form
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a: Input b: Watershed c: Result on smoothed input

Figure 1.7: Demonstration of the watershed transform. In the middle is the result
of the watershed (this includes some simple region merging). Note the poor perfor-
mance, especially in the noisy region. By applying a simple noise-reduction filter, the
median filter on a 7-by-7 window in this case, the performance increases drastically.

a network of connected segments that separate the different regions in the image. See
Figure1.7for an example.

For this to be a correct segmentation, some pre-processing of the image is essential.
Smoothing is required to reduce the number of local minima, each of which forms a
catchment basin. Figure1.7shows the importance of this. Depending on the contents of
the image, other operations like edge detection might prove useful pre-processing steps.

The watershed transform is usually followed by a region merging algorithm. This merg-
ing step can be performed simultaneously with the transform by building the watersheds
selectively. Section6.3discusses a method to accomplish this.





Drawing on my fine command of language, I said nothing

(Mark Twain)

Chapter 2

Rotation-Invariant Anisotropic
Morphology

When analyzing images without a preferred orientation, or with an unknown one (as
is the case, for example, of an image acquired after placing a sample randomly un-
der a microscope), it is desirable to use rotation-invariant operations. As stated in the
introduction, a rotation-invariant operation yields an output that is independent of the
orientation of the scene with respect to the sampling grid. We also stated that it is pos-
sible to construct a rotation-invariant operator with anisotropic operators. This can be
accomplished in one of two ways:

– Using a single anisotropic operator whose orientation depends on the (local) image
content (e.g. estimate the orientation of the structure under study and create an opera-
tor that takes this orientation into account). This can be done for the image as a whole
or on a point-by-point basis. In the latter case this is referred to assteered filteringor
adaptive filtering. Adaptive filtering also allows changing the shape and size of the
filter, not only its orientation. See [10] for an example of adaptive filtering.

– Using an infinite amount of these anisotropic operators, and selecting a result that
satisfies certain properties, e.g. the maximum, minimum or median value. The selec-
tion can, again, be done on a point-by-point basis. This is the approach we follow in
this chapter.

In this chapter we develop a new morphological framework that we will callRIA mor-
phology. RIA stands for “Rotation-Invariant Anisotropic”. Section2.1 introduces the
RIA counterpart of the dilation and erosion operators. These are not a dilation and ero-
sion in the strict morphological sense, because they do not commute with the supremum
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and infimum, respectively. Therefore, we call themsedimentationand wear.1 Sec-
tion 2.2 introduces theRIA closing and opening. These do satisfy all three properties
required for the algebraic closing and opening, but are not constructed using the sedi-
mentation and wear operators. TheRIA closing and opening were already defined by
Matheron [79], but from a different point of view. These operators also fit within the
larger theoretical framework of group morphology [96, 97, 98].

RIA morphology is based on an isotropic structuring element in a lower-dimensional
space than the image space. In the image space, therefore, it is anisotropic. By giving
this structuring element rotational freedom (i.e. aligning it with some feature of the
image), it becomes rotation invariant.

This chapter is limited toRIA morphology in the continuous domain. Actual imple-
mentation details are deferred to Section7.3, where theRIA opening is used, and to
Chapter5, were implementation details of linear structuring elements are discussed.

Notation

As in Chapter1, the functionf : Rn→ R is a continuous, gray-value image.

The setD is a flat, isotropic structuring element of radiusr,

D = {x | x∈ Rn,‖x‖ ≤ r} , (2.1)

andL is a flat isotropic structuring element with less dimensions thanf ,

L = {x | x∈ Rm,‖x‖ ≤ r} , (2.2)

where 0< m< n, so thatRm is them-dimensional subspace ofRn. Finally, Lϕ = RϕL
is L rotated over an angleϕ, andLx,ϕ = RϕTxL is L translated overx and then rotated
over an angleϕ. For two-dimensional images,Lϕ is a rotated line segment. For three-
dimensional images it can be either a rotated line segment or a rotated disk. In this case,
ϕ represents the Euler angles. RIA morphology operations are demonstrated with line
segments only, but it is possible to substitute e.g. the rotated disk for this line segment
without changing any of the equations and proofs. Since bothD andLϕ are isotropic (in
some subspace), they are point-symmetric around the origin. Therefore, mirroring these
structuring elements does not introduce a change,D = Ď andLϕ = L−ϕ = Ľϕ . In this

1We use these terms because they have similar meanings to dilation and erosion, but do not posses the
morphological connotations.
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chapter, we refrain from using the superfluous set mirror operation with these structuring
elements.

2.1 RIA Sedimentation and Wear

A flat, isotropic structuring elementD of radiusr can be decomposed into (an infinite
number of) rotated line segmentsLϕ of length 2r. These segments are the diameters of
the disk. The dilation with this disk then becomes

δD( f ) = f ⊕D = f ⊕
⋃
ϕ

Lϕ =
∨
ϕ

[
f ⊕Lϕ

]
=
∨
ϕ

δLϕ
( f ) . (2.3)

Instead of taking the supremum over the orientation, we take the infimum. This defines
a new morphological operator, which we will callRIA sedimentation, and denote with
the symbolδ^,

[δ^
L ( f )](x) =

∧
ϕ

[δLϕ
( f )](x) =

∧
ϕ

∨
y∈Lϕ

f (x+y) . (2.4)

This operator takes the maximum of the image over a line segment rotated in such a way
as to minimize this value. In contrast, an isotropic dilation uses the maximum over a
line segment rotated in such a way as to maximize this value, (see Figure2.1).

Using the terminology of binary morphology, theRIA sedimentation differs from the
isotropic dilation in that a point belongs to the sedimented object if all rotated line seg-
ments (the diameters) hit the object. For the isotropic dilation, just one of the diameters
needs to hit the object.

Figure2.2 shows the effect that the operator has on an object boundary. Note that a
convex object boundary is not changed, but a concave one is. We like to compare this
sedimentation operator with a train running along a track.2 The train wagons (which are
constrained at both ends to the track) require some extra space at the inside of the curves.
This operator, applied to a train track, and using a structuring element with the length
of the wagons, reproduces the area required by them. This, of course, only holds when
the curvature is small enough. Figure2.3shows the effect of theRIA sedimentation on
a test image.

2The behavior of a train track operator was first introduced by P.W. Verbeek in the early nineties. RIA

morphology and the sedimentation operator were not developed with this idea in mind.
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Figure 2.1: Difference between an isotropic dilation and theRIA sedimentation.
Left: The isotropic dilation chooses the orientation of the linear structuring ele-
ment so that the maximum value over it is maximized.Right: TheRIA sedimentation
chooses the orientation to minimize this value.

RIA wear is defined as the dual of theRIA sedimentation, and will be denoted with the
symbolε^,

ε
^
L ( f ) =−δ

^
L (− f ) =−

∧
ϕ

δLϕ
(− f ) =

∨
ϕ

[
−δLϕ

(− f )
]
=
∨
ϕ

εLϕ
( f ) . (2.5)

Properties

Below, we present and prove the properties satisfied by both theRIA sedimentation and
wear, as well as some properties of the dilation and the erosion that are not satisfied by
these new operators. When properties are identical for both operators, we only mention
them for theRIA sedimentation. In this case, the property and its proof for theRIA wear
can be obtained by substituting the corresponding symbols and inverting the infimum
and supremum operators.

Property 1 Invariance under translation and change of contrast, and compatibility un-
der scaling:

δ
^
L Tt = Ttδ

^
L

δ
^
L (a f) = aδ

^
L ( f )

δ
^
SsLSs = Ssδ

^
L
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a: Original

L

b: Sedimentation c: Construction

Figure 2.2:Effect of theRIA sedimentation on an object boundary.c: The sedimented
object boundary is constructed by drawing line segments L of fixed length between
all pairs of points on the original boundary that are at the correct distance from one
another.

Proof: because both the dilation and the minimum are translation invariant,

δ
^
L Tt( f ) =

∧
ϕ

δLϕ
Tt( f ) =

∧
ϕ

TtδLϕ
( f ) = Tt

∧
ϕ

δLϕ
( f ) = Ttδ

^
L ( f ) . (2.6)

Because both the dilation with a flat structuring element and the minimum are contrast
invariant,

δ
^
L (a f) =

∧
ϕ

δLϕ
(a f) =

∧
ϕ

aδLϕ
( f ) = a

∧
ϕ

δLϕ
( f ) = aδ

^
L ( f ) . (2.7)

Finally, because the dilation is compatible under scaling, and the infimum is a point
operation,

δ
^
SsLSs( f ) =

∧
ϕ

δSsLϕ
Ss( f ) =

∧
ϕ

SsδLϕ
( f ) = Ss

∧
ϕ

δLϕ
( f ) = Ssδ

^
L ( f ) . (2.8)

Property 2 Rotation invariance:

δ
^
L Rθ = Rθ δ

^
L
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a: Input b: RIA sedimentation c: Isotropic dilation

Figure 2.3:Demonstration of theRIA sedimentation on a test image. The structuring
element used was a line with a length of20pixels. Compare to the isotropic dilation;
the disk has a diameter of20pixels.

Proof: It is easy to see that the dilation is compatible under rotation, meaning that
the operation is invariant under rotation if the structuring element is rotated by the same
amount as the image. This gives us

δ
^
L Rθ ( f ) =

∧
ϕ

δLϕ
Rθ ( f ) =

∧
ϕ

Rθ δLϕ−θ
( f ) , (2.9)

taking Lϕ−θ as the setL rotated byϕ and then by−θ . Since it does not matter if the
infimum is taken before or after rotating the image,∧

ϕ

Rθ δLϕ−θ
( f ) = Rθ

∧
ϕ

δLϕ−θ
( f ) . (2.10)

But the infimum over all anglesϕ does not change by the offsetθ because of the peri-
odicity of the orientation, thus

Rθ

∧
ϕ

δLϕ−θ
( f ) = Rθ

∧
ϕ

δLϕ
( f ) = Rθ δ

^
L ( f ) . (2.11)

Rotation invariance of theRIA morphology is a key property, necessary for the correct
analysis of images with an unknown orientation, or images without a single dominant
orientation.
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Property 3 Increasingness:

g≥ f ⇒

{
δ^

L (g)≥ δ^
L ( f )

ε^
L (g)≥ ε^

L ( f )

Proof: for any structuring elementB, the dilation is increasing:

g≥ f ⇒ δB(g)≥ δB( f ) . (2.12)

It follows that
δ

^
L (g) =

∧
ϕ

δLϕ
(g)≥

∧
ϕ

δLϕ
( f ) = δ

^
L ( f ) . (2.13)

The same argument proves the other inequality.

Property 4 Extensivity / anti-extensivity:

δ
^
L ( f )≥ f ≥ ε

^
L ( f )

Proof: because of the extensivity of the dilation (if the structuring element contains
the origin, which it does for the rotated line segments), we know that

δLϕ
( f )≥ f , ∀ϕ ; (2.14)

it follows that
δ

^
L ( f ) =

∧
ϕ

δLϕ
( f )≥ f . (2.15)

The same argument proves the other inequality.

Property 5 Comparison with isotropic morphology:

δD( f )≥ δ
^
L ( f )≥ f ≥ ε

^
L ( f )≥ εD( f )

Proof: together with the extensivity of theRIA sedimentation (Property4), the
relation

δ
^
L ( f ) =

∧
ϕ

δLϕ
( f )≤

∨
ϕ

δLϕ
( f ) = δD( f ) (2.16)

proves the first statement. The other one is proven in a similar way.
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Applications

As mentioned above, theRIA sedimentation affects only concave boundaries. By apply-
ing theRIA sedimentation iteratively, the boundary of the objects will expand outwards
until it becomes convex. Likewise, theRIA wear shrinks convex boundaries until the ob-
ject disappears. This process is similar to a curve evolution [106]. One might apply the
RIA sedimentation and wear alternatively to see the object become convex and shrink.
This has similarities in the differential equations of non-linear diffusion [41, 144] and
the related field of level-set methods [107]. Pursuing these applications would lead us
away from the theme of this thesis.

2.2 RIA Closing and Opening

Following the second definition of the closing, as in Equation (1.24), the closing at point
x is given by the maximum over the structuring element after shifting it in such a way
that the result is minimized. The constraint for this shift is that the structuring element
must contain the pointx (see Figure2.4a).

To define theRIA closingwe need again to decompose the diskD into its diameters.
However, when we do this, we can only use those diameters that actually hit the origin,
so that the pointx is always included in the structuring elements used. In accordance to
this, we define a new morphological operation as the maximum of the imagef over the
linear structuring elementL after shifting and rotating it in such a way that the result is
minimized, while keeping the pointx within L (see Figure2.4b). It will be denoted by
φ^, and defined by

[φ^
L ( f )](x) =

∧
ϕ

∧
y∈Lϕ

∨
z∈Ly,ϕ

f (x+z) . (2.17)

This is the same as the minimum of the closings, at all orientations, with a line segment
as structuring element,

φ
^
L ( f ) =

∧
ϕ

∧
y∈Lϕ

Ty

∨
z∈Lϕ

Tz( f ) =
∧
ϕ

εLϕ
δLϕ

( f ) =
∧
ϕ

φLϕ
( f ) , (2.18)

but not equal to anRIA sedimentation followed by anRIA wear. Intersections of closings
with rotated line segments are not new (see for example [103, 115]).

Again using the terminology of binary morphology, theRIA closing differs from the
isotropic closing in that a point belongs to the closed object if all of the diameters hit the
object. For the isotropic closing, just one of the diameters needs to hit the object.
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a: Isotropic closing b: RIA closing

Figure 2.4:The closing with an isotropic structuring element (disk) is determined by
shifting the disk in such a way that it minimizes the supremum of the image over its
support, but still hits the point being evaluated. TheRIA closing is determined by
shifting and rotating the line segment in such a way that it minimizes the supremum
of the image over its support, but still hits the point being evaluated.

It is possible to imagine this operation creating a two-dimensional space, with the ro-
tation angleϕ as one axis, and the shifty as the other (see Figure2.5). Each location
in this space represents a possible position ofL over the image, relative to the pointx
being evaluated. The value at each point(y,ϕ) is the maximum of the imagef over the
support of the rotated and translated structuring elementLy,ϕ . The absolute minimum
in this space is the result of the operation. This notion will return when we prove some
properties of this operator.

The RIA openingis defined as the dual of theRIA closing, and denoted by the symbol
γ^,

γ
^
L ( f ) =−φ

^
L (− f ) =−

∧
ϕ

φLϕ
(− f ) =

∨
ϕ

[
−φLϕ

(− f )
]
=
∨
ϕ

γLϕ
( f ) . (2.19)

Figure2.6shows the effect of both theRIA closing and opening on a test image.

Properties

SinceRIA closing is an infimum of structural closings, it is an algebraic closing. This
means it is an increasing, idempotent and extensive transform, as discussed in Chap-
ter 1. Below, we present and prove the properties satisfied by both theRIA closing and
opening. As before, we do not explicitly write most of these down for theRIA opening,
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L

x

y ϕ

Figure 2.5:The construction of theRIA closing.Left: A line segment Ly,ϕ . Right:The
two-dimensional space spanned by the variablesϕ and y. The absolute minimum in
this space is the result chosen by theRIA closing.

especially when they are identical for both operators. In this case, the property and its
proof for theRIA opening can be obtained by substituting the corresponding symbols
and inverting the infimum and supremum operations.

Property 6 Invariance under translation and change of contrast, and compatibility un-
der scaling of the coordinate-axes:

φ
^
L Tt = Ttφ

^
L

φ
^
L (a f) = aφ

^
L ( f )

φ
^
SsLSs = Ssφ

^
L

These properties can be proven in the same way as Property1.

Property 7 Rotation invariance:

φ
^
L Rθ = Rθ φ

^
L

This property can be proven in the same way as Property2.
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a: Input b: RIA closing c: Isotropic closing

Figure 2.6:Demonstration of theRIA closing on a test image. The structuring element
used was a line with a length of20pixels, which is the minimal length of the remaining
dark features. Compare to the isotropic closing; the disk has a diameter of20pixels.

Property 8 Increasingness:

g≥ f ⇒

{
φ^

L (g)≥ φ^
L ( f )

γ^
L (g)≥ γ^

L ( f )

This property can be proven in the same way as Property3. Also, this property is proven
by Matheron [79] because theRIA closing is an infimum of closings (i.e. an algebraic
closing).

Property 9 Extensivity / anti-extensivity:

φ
^
L ( f )≥ f ≥ γ

^
L ( f )

This property can be proven in the same way as Property4. As with the increasingness,
this property was proven by Matheron.

Property 10 Extended extensivity:

δ
^
L ( f )≥ φ

^
L ( f )≥ f ≥ γ

^
L ( f )≥ ε

^
L ( f )
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Proof: By definition,

[φ^
L ( f )](x) =

∧
ϕ

∧
y∈Lϕ

∨
z∈Ly,ϕ

f (x+z) (2.20)

and
[δ^

L ( f )](x) =
∧
ϕ

∨
z∈Lϕ

f (x+z) . (2.21)

If y = 0 (which is always a part ofLϕ ) minimizes Equation (2.20), it becomes identical
to Equation (2.21). Any other value decreases the result of theRIA closing. We conclude

[φ^
L ( f )](x) =

∧
ϕ

∧
y∈Lϕ

∨
z∈Ly,ϕ

f (x+z)≤
∧
ϕ

∨
z∈Lϕ

f (x+z) = [δ^
L ( f )](x) . (2.22)

The same argument shows that

γ
^
L ( f )≥ ε

^
L ( f ) . (2.23)

Adding Property9, the proof is completed.

Property 11 Absorption:

L(1) ⊇ L(2)⇒

{
φ^

L(2)φ
^
L(1) = φ^

L(1)

φ^
L(1)φ

^
L(2) = φ^

L(1)

Proof: To prove the first equality, letg = φ^
L(1)( f ). By definition, there exists a

ϕ = ϕ1(x) and any = y1(x) for each locationx such that

g(x) =
∧
ϕ

∧
y∈L(1)

ϕ

∨
z∈L(1)

y,ϕ

f (x+z) =
∨

z∈L(1)
y1(x),ϕ1(x)

f (x+z) . (2.24)

These are the values for the rotation and shift ofL(1) that minimize the supremum over
its support, and are the ones selected by the operator (see Figure2.5).

The result of the operator for all locationsx+ z, with z∈ L(1)
y1(x),ϕ1(x)

is equal or smaller
to the result at the pointx,

g(x)≥ g(x+z) , z∈ L(1)
x1(x),ϕ1(x)

. (2.25)
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This is seen by the fact that, for the locationsx+z, the value ofg(x) is also a part of the

(y,ϕ) space in which the minimum is taken. This inequality also holds forz∈ L(2)
x1(x),ϕ1(x)

,

becauseL(2) ⊆ L(1).

We have

[φ^
L(2)(g)](x) =

∧
ϕ

∧
y∈L(2)

ϕ

∨
z∈L(2)

y,ϕ

g(x+z)≤
∨

z∈L(2)
y1(x),ϕ1(x)

g(x+z) , (2.26)

becausey1(x) andϕ1(x) are not necessarily the optimal values (those that minimize the
expression) fory andϕ. Furthermore,∨

z∈L(2)
y1(x),ϕ1(x)

g(x+z)≤ g(x) , (2.27)

using Equation (2.25). This means thatφ^
L(2)(g) ≤ g. From the extensivity property

(Property9), we haveφ^
L(2)(g)≥ g. Therefore we must conclude thatg= φ^

L(2)(g), which
proves the first equality.

To proof the second equality, letg = φ^
L(2)( f ). In the spirit of Equation (2.24), the values

ϕ1(x) andy1(x) minimize the expression

[φ^
L(1)( f )](x) =

∧
ϕ

∧
y∈L(1)

ϕ

∨
z∈L(1)

y,ϕ

f (x+z) =
∨

z∈L(1)
y1(x),ϕ1(x)

f (x+z) . (2.28)

We know that

[φ^
L(1)(g)](x) =

∧
ϕ

∧
y∈L(1)

ϕ

∨
z∈L(1)

y,ϕ

g(x+z)≤
∨

z∈L(1)
y1(x),ϕ1(x)

g(x+z) , (2.29)

because the choice ofϕ1(x) andy1(x) need not be optimal for this function.

We can chooseϕ2(x) and y2(x) such thatL(2)
y2(x+z),ϕ2(x+z) ⊆ L(1)

y1(x),ϕ1(x)
, for eachz ∈

L(1)
y1(x),ϕ1(x)

. Using these values ofϕ2(x) andy2(x),

[φ^
L(1)( f )](x) =

∨
z∈L(1)

y1(x),ϕ1(x)

f (x+z) =
∨

z∈L(1)
y1(x),ϕ1(x)

∨
t∈L(2)

y2(x+z),ϕ2(x+z)

f (x+z+ t) . (2.30)
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Becauseϕ2(x) andy2(x) need not be optimal,∨
z∈L(2)

y2(x),ϕ2(x)

f (x+z)≥ g(x) . (2.31)

Taking Equations (2.29), (2.30) and (2.31) together, we have[φ^
L(1)( f )]≥ φ^

L(1)(g). How-
ever, becausef ≤ g (Property9, extensivity), and using the increasingness property
(Property8), φ^

L(1)( f ) ≤ φ^
L(1)(g). Thus, we can conclude thatφ^

L(1)( f ) = φ^
L(1)(g), which

proves the second equality.

Property 12 Idempotence:
φ

^
L φ

^
L = φ

^
L

This is a special case of Property11(absorption), settingL(1) = L(2), and thus is proven.
This property is also proven by Matheron [79] because theRIA closing is an infimum of
closings.

Property 13 Sieving:
L(1) ⊇ L(2)⇒ φ

^
L(1) ≥ φ

^
L(2)

Proof: because of the extensivity (Property9),

φ
^
L(1)( f )≥ f . (2.32)

Applying theRIA closing with structuring elementL(2) to both sides we get

φ
^
L(2)φ

^
L(1)( f )≥ φ

^
L(2)( f ) , (2.33)

since the operation is increasing (Property8). The left-hand side can be simplified to

φ
^
L(1)( f )≥ φ

^
L(2)( f ) , (2.34)

by absorption (Property11).

The sieving property is a requirement for granulometric applications (see Chapter3).
Basically, it states that theRIA closing can be applied with different size parameters
to an image, and the larger this parameter, the more dark features will be removed.
All features removed at a smaller scale will also be removed at a larger scale. This
allows such a sequence of operators to ‘sieve’ the features in an image and classify them
according to size.
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Property 14 Commutativity:

φ
^
L(1)φ

^
L(2) = φ

^
L(2)φ

^
L(1)

Proof: if L(1) ⊇ L(2), by absorption (Property11),

φ
^
L(1)φ

^
L(2) = φ

^
L(1) = φ

^
L(2)φ

^
L(1) . (2.35)

Else, ifL(1) ⊆ L(2),
φ

^
L(1)φ

^
L(2) = φ

^
L(2) = φ

^
L(2)φ

^
L(1) , (2.36)

by that same property.

Property 15 Comparison with isotropic morphology:

φD( f )≥ φ
^
L ( f )≥ f ≥ γ

^
L ( f )≥ γD( f )

This property can be proven in the same way as Property5.

Applications

A structural closing removes dark objects in which the structuring element does not fit.
This operation is only rotation invariant if the structuring element is isotropic (i.e. a disk
in 2D or a ball in 3D). When using an isotropic set with radiusr, a feature in the image
is not removed if the sizes of that feature in all directions are larger or equal to 2r. That
is, the smallest diameter of the feature is discriminating.

The RIA closing also removes dark objects in which the structuring element does not
fit. Because it is allowed to rotate, rotation invariance is achieved. However, the set
has no extension in one or more directions. This means that it will fit inside features
where the isotropic set would not fit. A one-dimensional set (line segment) will therefore
discriminate on length (or largest diameter). A two-dimensional set (a disk) in a three or
higher-dimensional image discriminates on the second largest diameter of the features.
This way, it is possible to construct structuring elements that will discriminate on any of
the dimensions.

We will use theRIA closing in an application to measure the length distribution of rice
grains, in Section7.3.
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2.3 Morphological Orientation-Space and RIA Morphology

A morphological operationΨ that uses rotated versions of an anisotropic structuring
elementL can be used to construct a morphologicalorientation-space,

F(x,ϕ) = [ΨLϕ
( f )](x) . (2.37)

Much like a scale-space (see footnote1 on page57), in which the image is extended
with a new dimension, an orientation-space adds one or more dimensions representing
orientation. Within this space it is possible e.g. to separate oriented structures [37]. The
RIA sedimentation and closing result from a minimum projection along the orientation-
axes,

[Ψ^
L ( f )](x) =

∧
ϕ

F(x,ϕ) . (2.38)

TheRIA wear and opening result from a maximum projection. The argument-minimum
projection (or the argument-maximum projection in the case of the erosion or opening)
results in an estimation of local orientation [119, 120]. In a sieve, this orientation-space
is extended with a scale dimension, resulting in a joint orientation-scale-space.

The idea of the orientation-space is used later when studying implementation aspects of
RIA Morphology. Because it is not possible to compute the pertinent operation for an
infinite set of orientations, it is obvious that some error will be made. By examining
what happens in orientation-space, we can determine how the number of orientations
relates to the size of the structuring element. This is discussed in Section5.7.



All exact science is dominated by the idea of approximation

(Bertrand Russell)

Chapter 3

Granulometries

This chapter introduces the morphologicalsieve, the tool that we use to characterize
structures in this thesis. The sieve is a multi-scale closing or opening, and which results
in agranulometryor size distribution.

Sieves were first proposed by Matheron [79]. They have been used in both binary mor-
phology and gray-value morphology to measure particle-size distributions [126], as well
as characterize textures [8, 13, 116] or shapes [75]. Because a sieve has an increasing
scale parameter, it results in ascale-space.1 Many theoretical studies have been made,
linking it with linear scale-space theory and other non-linear scale-spaces [7, 52, 92].
See also [14, 28].

A comparison can be made between morphological sieves and sifting grains in a heap
of sand [114]. The grains are sifted through meshes of decreasing size, extracting grains
from the collection. Each mesh removes the set of grains that fall through it, but did not
fall through the ones before. Thus, each set contains grains in a given size range. The
weight of each of the sets of grains provides a point in a size distribution, which gives
information on the sand heap. As seen in Chapter1, the opening and closing operations
perform a similar function to that of the mesh, removing from an image those features
that are smaller than the structuring element.

A sieve is defined in mathematical terms by a transformation having a size parameterλ

and satisfying the three following axioms, enumerated by Matheron [79]:
– (Anti-)extensivity: the grains that remain in the sieve are a subset of the initial grains.

– Increasingness: adding grains to the heap does not diminish the number of grains that
remain in the sieve.

1A scale-space is an extension to an image obtained by adding a scale dimension [62, 146]. Such an
image has many interesting properties related to human vision, and is used extensively to solve problems
in image analysis and robot vision.
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– Absorption: sifting at two different sizesλ andν will give the same result regardless
of the order of the sieves; the size of the largest sieve determines the result (although
in the sand heap analogy it would be the finest sieve that determines the result).

By definition (see Section1.2), all closings and openings satisfy the first two properties.
However, as shown by Matheron, not all closings or openings with structuring elements
of increasing size satisfy the absorption property. For example, an Euclidean disk sat-
isfies this property, but a sampled Euclidean disk does not because of the discretization
errors [142].

We start by introducing the sieve (Section3.1) and deriving a size distribution from it
(Section3.2). All of this is examined in the continuous domain. Then we go into the
implementation details (Sections3.3, 3.4 and3.5). Specifically, two improvements to
the traditional implementation are discussed. Section3.6evaluates these improvements,
comparing the various possible implementations of the discrete disk.

3.1 The Sieve and the Pattern Spectrum

We illustrate here the notion of sieving using the structural closing (i.e. closing with a
structuring element) as the sieving operation. However, by substituting it for the open-
ing, an equivalent sieving operation is obtained. The difference is that from the closing
sieve one can derive a size distribution of dark objects, whereas from the opening sieve
a size distribution of the light objects would be obtained. None of the properties or
equations in this and the next sections change from the one type of sieve to the other.
Section6.1presents other types of sieves from which distributions with other properties
are obtained.

We will use an isotropic structuring element (e.g. a disk in two dimensions), expressed
asD(x, r) = {x | ‖x‖ ≤ r}. In this and the next section, it is assumed that the imagef (x)
is continuous and does not have a boundary (f : Rn→ R). We construct a scale-space
F(x, r) by closing the imagef (x) at all scalesr ∈ (0,∞):

F(x, r) = [φD(y,r)( f )](x) . (3.1)

Each imageF(x, r0) now contains only dark objects larger thanr0. We defineF(x,0) =
f (x). Note thatF(x, r) is an image with one more dimension thanf (x): if x is ann-
dimensional vector,F(x, r) hasn+1 dimensions.

A sum projection on the scale-axis ofF(x, r) is often called a granulometry, and its
derivative is referred to aspattern spectrum[75, 114]. The granulometry is an increasing
function (or decreasing in the case of the opening-sieve), with jumps at the scales where
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Figure 3.1:Demonstration of the granulometry.Left: Synthetic test image with two
structures at different scales superimposed. The image is formed by lines of gray-
value a and b.Right: Abstracted granulometric curve that shows two jumps at the
two scales present in the image.

image features disappear (as in Figure3.1). The pattern spectrum has peaks at these
locations.

The difference between a pattern spectrum and a size distribution is the normalization,
as we will see next.

3.2 The Size Distribution

Based on the closing scale-space, it is relatively easy to construct a size distribution
of the dark objects. As mentioned in the introduction, the weight of each of the sets
of rocks provides a point of the size distribution of these rocks. Similarly, the integral
of each of the images in the closing scale-space can be used to construct a cumulative
distribution. This distribution is rotation and translation invariant, because the closing
is. By normalizing the cumulative distribution such that it ranges from 0 to 1, we make
it independent of the image size and contrast, as well as the area fraction of the image
covered by the objects. The cumulative distribution is thus defined as

H(r) =
∫

F(x, r)dx−
∫

F(x,0)dx∫
F(x,∞)dx−

∫
F(x,0)dx

, (3.2)

whereF(x,∞) is the original image closed with an infinite structuring element, and is
thus equal to the image filled with its maximal gray-value. A size distribution is obtained
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by taking the derivative ofH(r),

h(r) =
d
dr

H(r) . (3.3)

What Is Actually Being Measured

Note that, as the structuring element used is isotropic, the closing operation removes
a dark object (or part thereof) if its smallest diameter is smaller than the structuring
element. Therefore, whenever we mention the size of an object, we actually mean its
smallest diameter. To use another diameter (e.g. the length) as a selection criterion, it is
possible to use theRIA closing presented in Chapter2. We use such a granulometry in
an application in Section7.3.

Using other types of closings, or other shapes for the structuring element, different gran-
ulometries are obtained that measure different features of the dark objects under exami-
nation (see Section6.1). Using openings instead of closings, light objects are measured.

Difference Between Multi-Scale Structure and Two-Phase Structure

Some structures contain different scales. Think about a telephone cable, composed of
many bundles, each of which is made out of hundreds of thin wires. The wires are part
of two structures at different scales. The morphological scale-space as described in this
section is capable of finding both scales. Take as an example the structure in Figure3.1,
which is formed by lines of gray-valuesa andb. A closing at scaleS1 fills the smaller
dark regions with gray-valuea. Another closing at scaleS2 fills the larger regions with
gray-valueb. This results in a single point belonging to two objects, its volume being
split over two levels of the distribution: at levelS1 with weighta/b, and at levelS2 with
weight(b−a)/b.

The method as described here to calculate a size distribution assumes a homogeneous
image. If this is not the case, the distribution will obviously be different when estimated
from different regions of the image. The structure in Figure3.2produces the same size
distribution to that in Figure3.1. To be able to distinguish these cases, some additional
analysis would be required, either on the original image (e.g. a homogeneity analysis)
or on the scale-spaceF(x, r).
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Figure 3.2:Synthetic test image with inhomogeneous structure that produces the same
size distribution as the image in Figure3.1.

Objects with Sloped Edges

It is obvious, when looking at the description of the sieve, that image features composed
of gray-value ramps will be separated into many scales. For example, imagine a dark
object of which the gray-value decreases towards its center (e.g. an inverted pyramid). In
this case, what we have (according to the closing-sieve) is many superimposed shallow
objects of decreasing size (much like the Russian matryoshka dolls). Thus, what a person
objectively sees as a single object, is being turned into a multi-scale object, and spread
out into many levels of the sieve.

We found that clipping the image’s gray-values alleviated some of the symptoms related
to this. In some specific cases an appropriate pre-processing step (e.g. high pass-filtering,
line or edge detection) solves this problem. See Chapter6 for more information on these
topics.

3.3 Discrete Granulometries

A discrete sieve is a discrete operation (with discrete structuring elements), applied to a
digitized image, and resulting in a discrete scale-space. This requires:

– Discretizing (by point-sampling) the input image:f (x)→ f̂ [k], where f̂ : Zn→ R,
k∈ Zn, x = k∆ and∆ the sample spacing.

– Discretizing the scales:r → i. We sample the scale-axis atr = s[i], wherei ∈ N and
s : N→ R a scale-generating function. For logarithmic sampling,s[i] = 2i/p, with p
the number of scale samples per octave.
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– Discretizing (also by point-sampling) the structuring elements:D(x,s[i])→ D̂[k, i].

This results in a discrete scale-space computed by

F̂ [k, i] =
(

φD̂[m,i] f̂
)

[k] . (3.4)

Discretizing the input image poses no challenge. As mentioned in the introduction of
this thesis,f (x) can be sampled without loss of information as long as it is band-limited.
Sampling the structuring element, on the other hand, causes a large discretization er-
ror. Due to this and the lack of sampling invariance of the closing operation itself, the
computedF̂ [k, i] is not equal to the sampled version ofF(x, r) at x = k∆, r = s[i]. Any
difference between̂F [k, i] andF(k∆,s[i]) is caused by various discretization errors. Also,
becauseF(x, r) is not band-limited, it is not possible to reconstruct it fromF(k∆,s[i]).
This is important especially along the scale-axis, where it might be interesting to find
the location of peaks inh(r).

We need to stress here that pattern spectra as in e.g. [75] are discrete implementations
of the sieve with a series of structuring elements that do not necessarily increase uni-
formly in size. These are defined to satisfy the granulometric property, and the shape
may vary to accomplish this. In this section, we define a discrete granulometry that ap-
proximates the continuous one, but does not satisfy the granulometric property. That is,
the shape and size of the structuring elements must approximate those of the continuous
granulometry as defined above. The more accurately this is accomplished, the better the
granulometric property will be satisfied.

Sampling the Flat Structuring Element

Sampling a binary function causes severe quantization errors. This has two problematic
consequences:

– The original function cannot be reconstructed given the samples. The problems occur
in a strip along the boundary. The width of this strip is equal to the sample spacing
∆, the relative error is thus proportional to∆.

– The size increments of a finely sampled scale-space become very erratic due to the
irregular increase in size of the sampled disk as a function of the radius.

An obvious solution is not to use flat but gray-valued structuring elements, which can
be sampled more accurately. A prominent example of a gray-valued structuring element
is the parabola [32]. However, a parabolic closing does not produce the desired result,
because a sieve that uses parabolic closings will split a single object over a whole range
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of scales: the object is only partially filled with one closing, larger closings will fill the
object further. This makes the transformation of the granulometry into a size distribution
difficult, and its results would be even more difficult to interpret. More likely is a band-
limited disk, which has a smooth transition and can be sampled correctly, but is still quite
flat. We will examine such a gray-value structuring element Section3.5. Section3.4
discusses how to implement a binary disk minimizing the discretization error. These
two possible implementations are compared in Section3.6.

Sampling the Scale-Axis

We still have not discussed how to sample the scale-axis. There is relatively little litera-
ture on this topic. In most articles, one-pixel increments are used as a default solution.
We suggest to use logarithmic sampling, so as to keep the relative error constant. One
might want to distinguish between 3-pixel objects and 4-pixel ones, but not between
100-pixel objects and 101-pixels ones. Additionally, large objects are sparse in an im-
age, causing a linearly sampled size distribution to be inaccurate at large scales. Particle
or pore-size distributions often are log-normal [6], meaning that, when logarithmically
sampled, they resemble a normal distribution.

A sampledF [k, i] also produces a sampledH[i] = H(r)|r=s[i]. In this case, the derivative
in Equation (3.3) can only be obtained by approximation,

h[i] =
H[i +1]−H[i]
s[i +1]−s[i]

. (3.5)

An upper bound to the number of scale samples that are useful is given by the discretiza-
tion of the structuring element. If too many samples are taken, then the differences be-
tween these structuring elements are very small, and the discretization error has a large
influence on the results. That is, the averaging effect introduced by the limited number
of samples along the scale-axis hides some of the errors made in the spatial domain.
This links the scale sampling to the sampling of the structuring element. This notion is
illustrated in Section3.6.

Even for band-limited images, the scale-spaceF(x, r) is not band-limited along the
scale-axis.2 Therefore,H(r) is also not band-limited. This makes it impossible to obtain
all information onH(r) using a pre-defined set of scaless[i]. Using adaptive sampling,
however, it might be possible to find the location of large jumps inH(r) (i.e. the peaks of

2Nor is it band-limited in any other direction.
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a: Sampled disk b: Denser grid c: Shifted

Figure 3.3: a:Disk of radius1.85pixels, sampled (expected area =10.7521, sampled
area = 9). b: Same disk, sampled on a grid four times as dense (area =11.0625).
This is the structuring element one would use after subsampling the image four times.
c: Same disk, centered at(0.19,0.31) (area = 10.7500).

h(r)). Note thatH(r) can be sampled at random locations; it is not necessary to do this
in a fixed order or with fixed steps. Such a procedure is similar to finding zero-crossings
of a function numerically.

3.4 Sampling the Binary Structuring Element

Section3.3discussed problems encountered when discretizing the granulometry. One of
the issues is how to discretize the structuring element, which, as discussed earlier, should
be flat if one wishes to obtain a size distribution. This section proposes two changes to
the discrete disk that greatly diminish the discretization error. Both these changes are
evaluated in Section3.6.

Increasing Accuracy with Interpolation

We stated in the previous section that the discretization error occurs in a strip along the
boundary of the disk, whose width is equal to the pitch of the sampling grid. By de-
creasing this pitch the strip becomes thinner and the error diminishes (see Figure3.3b).

The scaling property of the closing, as in Equation (1.29),

Sα−1φSα (D)Sα( f ) = φD( f ) (3.6)
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teaches us that we can up-scale the input image and the structuring element, and down-
scale the result. Replacing the left-hand side by a discrete closing, the equality is only
true forα→∞. Increasingα (i.e. up-sampling the image), the discrete closing becomes
a better approximation to the continuous closing. Optionally, one could down-sample3

the input image for the larger structuring elements, so that the discretization error is
approximately equal for all levels of the scale-space.4

Increasing Accuracy with a Shift

Due to the symmetry of a sampled disk on a square grid, all discretization effects are
enhanced: when increasing the size of a discrete disk, a multiple of four pixels are
added to it. Placing the center of the disk away from the origin, this symmetry is broken
(Figure3.3c), allowing the disk to be sampled more accurately:D(x, r) = {x | ‖x−δ‖ ≤
r}. The optimal shiftδ can be determined experimentally by computing the mean square
relative error of the area for disks of many different sizes, for eachδ . This results in
the graph of Figure3.4. There is a clear minimum atδ = (0.19,0.31), and, due to
symmetry, another one atδ = (0.31,0.19). Counting the samples that fall inside a shape
is an unbiased estimator for the area [141]. Therefore, minimizing the mean square
error of the estimated area is a good way of determining the optimal shiftδ . Figure3.5
shows the relative error made when centering the disk at this location in comparison to
centering it at the origin. Remember that the continuous closing is invariant to translation
of the structuring element. For higher-dimensional structures, the same experiment can
be performed to determine the optimal location of the origin. For the three-dimensional
sphere the optimal location isδ = (0.16,0.24,0.34).

The one-dimensional isotropic structuring element makes this concept easier to explain.
If a segment is centered atδ = 0, two pixels are added (one at each end) at the same time
when increasing its size (i.e. only lengths with an odd number of pixels are possible).
Centering it atδ = 0.5 the same is true, but now it is always even in size. Optimal
asymmetry is obtained by centering it atδ = 0.25. In this case, one pixel at a time is
added to the structuring element. That is, more distinct lengths are possible. This makes
it possible to sample the granulometry more accurately.

3Down-sampling before applying a closing should be done such that local or regional maxima are pre-
served. This can be accomplished by dilating the image with a square structuring element of size equal to
the down-sampling factor, and sub-sampling the result.

4This also greatly diminishes the computational cost of the operation at large scales.
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Figure 3.4:Mean square relative error made when discretizing Euclidean disks (with
random radii), for different positions of the disk’s center with respect to the sampling
grid. There is a minimum at coordinates(0.19,0.31), but the exact position is not very
important, because quite a large region around this minimum produces small errors.
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Figure 3.5:Relative error in area for a disk centered at(0,0), and a disk centered at
(0.19,0.31), the location of the minimum in Figure3.4.
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3.5 Using Gray-Value Structuring Elements

Instead of using a binary structuring element, it is possible to use a gray-value struc-
turing element. A disk with a certain minimal diameter can be sampled correctly if its
edge is smooth. We use an error function to represent the transition from foreground
to background; this is equivalent of convolving the binary shape with a Gaussian ker-
nel. Both the error function and its derivative, the Gaussian function, are approximately
band-limited, and can be sampled with very little loss of information. The sample spac-
ing should be smaller or equal toσ [66, 139] for this to be the case. The image to be
used as a structuring element is therefore defined as

D(x, r,σ) = A· 1
2

{
−1−erf

(
|x|− r√

2σ

)}
, (3.7)

whereσ is larger or equal to 1,r is the radius of the disk, andx is the coordinate vector
(see Figure3.6). Note that the gray-value of the disk is 0, and the background has a
value of−A. A is the scaling of the image, and depends on the gray-value range in the
image to be processed.

It is not directly clear, however, how to scale this imageD(x, r,σ). It is obvious that the
heightA of the disk must be larger than the range of gray-values in the image. If it is
not, the edge of the image used as structuring element will influence the morphological
operation, which is not desirable (see the subsection on gray-value structuring elements
on page30ff ). But this height will also influence the shape of the disk. Even though
the disk is approximately band-limited for anyA, its slopes are not invariant to gray-
value scaling. Since morphological operations can be written as an interaction between
slopes [32], it follows that this scaling definitely has an influence on the result of the
operation. By relating the value ofA to the range of gray-values in the image, the
operation is invariant to gray-value scaling of the image, but not invariant to e.g. impulse
noise (which increases the gray-value range), or gray-value scaling of individual objects
in the image.

Figure3.7contains examples of a dilation with a gray-value structuring element scaled
with different quantities. It shows what happens whenA is smaller than the gray-value
range of the input image, and what happens whenA is chosen too large. We will be
using a value of 1.0233 times the gray-value range of the input. This value is chosen to
make the cut-off point of the structuring element image5 to be|x| ≤ r +2σ .

5This provides the size of the image needed to generate the structuring element. By limiting this size,
the operation can be made more efficient.
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Figure 3.6:Construction of the band-limited disk with a Gaussian profile. The profile
is given by the error function as a function of the distance to the center of the disk.
The difficulty lies in the normalization (with respect to the image range) and defining
the width of the disk.

3.6 Method Evaluation

Rotation Invariance

To illustrate the ideas on the sampling of the sieve presented above, the closing-sieve is
applied to 13 rotated versions of a synthetic image (Figure3.1, left). It is a superposition
of two line patterns, the finer one forming squares half the size, and with a gray-value
50% lower, than the coarser one. The position of the lines that compose the image have
been distorted by white noise (standard deviation of 1 pixel).

Figure3.8shows size distributions for this image, as calculated using the closing-sieve
without shifting the structuring element. The various distributions result from choosing
different subsampling factors (1, 2, 4 or 8 times, with interpolation) and scale-sampling
densities (1, 2 or 4 samples per octave). The best precision is obtained when the image
is subsampled eight times. However, the discretization error is accentuated by a scale-
sampling rate that is too high. That is, the finer the scale sampling, the more influence
the discretization errors have on the distribution. The reason is that the difference in the
area of the disks between subsequent scales is smaller for a finer scale sampling; this
difference should always be larger than the discretization error. This gives a relation
between the accuracy of the sampling of the structuring element, and the number of
scale samples that can be computed.
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a: SE b: Input c: A = 128 d: A = 260.86 e: A = 512 f: A = 1024

Figure 3.7:Effect of the scaling of the band-limited disk. From left to right, the struc-
turing element used, the input image (gray-value of 255 in the middle pixel), and the
result of the dilation after scaling the structuring element by various quantities. Note
how the scaling of the structuring element needs to be larger than the image range,
or else its edge becomes part of the structuring element. Also note that the apparent
size of the disk in the results becomes smaller as the scaling of the structuring element
increases.

We repeated this experiment using the shifted disk as structuring element. The opti-
mal shift of (0.19,0.31) found through Figure3.4 was used. The results are shown in
Figure3.9. It can clearly be seen that this greatly improves the precision of the method,
especially at small scales. Using such a disk, an subsampling factor of 2 might be enough
to obtain the precision at small scales otherwise only obtained with an subsampling fac-
tor of 8. The improvement is insignificant for the very large scales.

We repeated the above experiment again using band-limited disks as structuring ele-
ments, but without subsampling in the input image. Figure3.10compares the results
with those of the binary structuring elements without subsampling. Band-limited disks
yield a better precision than binary disks, but only for scales starting at about 4. Smaller
disks are ill-defined (they cannot be sampled correctly, and therefore produce erroneous
results). Even though a band-limited disk is sampling invariant, meaning it can be re-
sampled on a different grid (e.g. a shifted grid), computing a granulometry with a shifted
gray-value structuring element produces different results. This is because the morpho-
logical operation itself is not sampling invariant. The size distribution obtained by a
shifted gray-value disk is more precise than that obtained by one centered on the sam-
pling grid.

Precision

A better approximation to rotation invariance does not necessarily yield higher discrim-
inating qualities. To determine if this is the case, we defined band-limited objects with
a fixed length, a random orientation, and a random width taken from a log-normal dis-
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Figure 3.8:Size distribution measured using the sieve with different subsampling fac-
tors (with interpolation) and scale sampling densities (1, 2 and4 samples per octave),
and averaged over results on13 rotated versions of the test image in Figure3.1. The
structuring element used is a disk centered on the origin of the grid. The size of the
detected dark objects is plotted on the x-axis, whereas the fraction of detected ob-
jects is plotted on the y-axis. The continuous line represents the average measured
cumulative distribution. The error bars indicate the standard deviation.
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Figure 3.9:Measured size distribution, as in Figure3.8, using a structuring element
optimally placed with respect to the sampling grid.
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Figure 3.10:Size distributions estimated using different implementations of the flat
disk as structuring element. The top two graphs are identical to the top-right graph in
Figures3.8and3.9 respectively. The two bottom ones are obtained in the same way,
but using band-limited disks as structuring elements. Notice how shifting the disk
(bottom right) is also beneficial in the case of band-limited disks. The granulometries
are not correct for scales up to about4 pixels, because band-limited disks of those
sizes cannot be sampled correctly.

tribution. The granulometry measures this width. We created 1000 images of each of
two classes, as in Figure3.11, each containing 64 objects. The two classes are described
by the distributions of the widths: 2N(µ,σ2) = 2N(1.500,0.250) and 2N(1.515,0.250) (in pixels).
The difference between the classes is thus a 1% shift in the mean of the logarithm of the
width. We then estimated the size distribution of these objects is using a granulometry
with four samples per octave, using
1. the non-modified closings, and

2. the closings modified by shifting the structuring element and subsampling (with in-
terpolation) the input image four times (we did not use variable subsampling factors
in this case).

On each estimate we fitted a volume-weighted log-normal distribution yielding an esti-
mated log-mean value for each image.

We computed the estimated mean with a 95% confidence interval for each class based
on 300 estimates randomly chosen from the set. If the confidence intervals do not over-
lap, the granulometry was able to distinguish the two classes based on 300 images of
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Table 3.1:Ability of the non-modified and modified granulometries to distinguish two
size distributions with a very small difference in the means, based on the average
over 300 estimates of each class. The modified granulometry distinguishes about
68%, whereas the non-modified one distinguishes about 61%.

non-modified

yes no totals

yes 3022 371 3393
modified

no 5 1602 1607

totals 3027 1973 5000

Figure 3.11:One synthetic image from the sequence used to demonstrate the improved
discriminating abilities of the granulometry with the proposed modifications.

each class.6 We determined for how many of 5000 such random subsets the improved
granulometry and the standard granulometry were able to distinguish the two classes.
The results are shown in Table3.1. In 7.42% of the cases the improved granulometry
was able to distinguish the classes where the standard method was not. In 0.10% of the
cases the reverse was true. In total, the improved granulometry was able to distinguish
the two classes in about 68% of the cases.

6300 images seems to be the amount necessary to get a reasonable chance of distinguishing the two
classes. With 200 images about 30% of the sets yield a positive result; with 500 images both methods
achieve near 100% distinction rate.
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Figure 3.12:Estimated and true size distributions for a sequence of test images simi-
lar to that in Figure3.11. See text for more details.

Accuracy

A similar experiment to the one above can be used to measure the bias of the estimated
granulometries. We used a sequence of 200 images similar to the one in Figure3.11.
This time each image contains 16 objects whose widths are given by the distribution
2N(2.5,0.8). We plotted the averaged estimated distribution, together with the 95% confi-
dence interval and the theoretical distribution, in Figure3.12. We used a shifted binary
structuring element with subsampling. Note that the distributions are volume-weighted.
Also, the distribution is nulled for diameters larger than 57 pixels, to make sure that the
shapes do not overlap when generating the images. The plotted theoretical distribution
was convolved with a small Gaussian kernel to match the smoothing in the band-limited
objects (note that, because the objects are band-limited, their volume is spread out over
a small set of scales; see page61). The changes introduced by this in the distribution
are noticeable only at the smaller scales because of the logarithmic scale axis. This
smoothing is only an approximation to the actual change in the distribution caused by
the band-limitness of the objects.

The two curves are in good agreement with each other except in a small region around 9
pixels diameter (and at 4 pixels as well, but the differences there are too small to be seen
on the graph). The differences at these points are probably due to the approximation
taken when computing the theoretical distribution (i.e. the smoothing we applied).



When a distinguished but elderly scientist states that something is possible, he is almost certainly right;

when he states that something is impossible, he is very probably wrong

(Arthur C. Clarke)

Chapter 4

Sampling-Free Morphology on
One-Dimensional Images

As mentioned in the introduction, band-limited images, when sampled properly, do not
loose any information in the sampling process. One of the consequences is that the
original, continuous-domain function can be reconstructed from the samples. Another
consequence is that linear filters1 can be applied to the sampled image to obtain a result
that is identical to that obtained when filtering the continuous-domain image. However,
non-linear filters usually cannot be implemented in such a way that the results are com-
parable to continuous-domain filters. Morphological filters are no exception, as testifies
Figure4.1. We already saw some techniques in Sections3.4 and3.5 to better approx-
imate the continuous-domain morphology. Other authors have suggested techniques
involving curve evolution [25, 102]. In this chapter we go a step further and implement
an algorithm that applies morphological operations (dilation, erosion and their combina-
tions) to a continuous representation of a signal. The result of this operation is no longer
an approximation, but an exact result. Alas, creating the continuous representation from
samples does introduce errors. The main reason for this is that, because the whole signal
is not available (the sampled image is finite in extent), it is not possible to use an ideal
interpolator.

Thesampling-free morphologyintroduced here is applied to a continuous representation
of the signal, yielding again a signal in that same representation. It is possible to sample
this signal, but this would introduce aliasing because it is not band-limited. For some
operations, like the granulometry (Chapter3), this is not a problem, because the result
of the operation needs to be integrated to obtain a measurement result. That is, it is not
necessary to obtain a sampled result. The continuous representation used in this chapter

1And some non-linear operations as well.
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Figure 4.1:The discrete dilation is not translation invariant, as this example shows.
In the middle of the top row is a continuous signal. We sample this signal twice,
using uniform sampling, but with a different offset of the sampling grid. We are still
able to recreate the original signal from both these instances, but the results of the
dilation are different. Neither result is the same as a sampled version of the result of
the continuous dilation.

allows for the computation of the integral of the signal. We will be putting this to use
when evaluating the algorithm.

Section4.1 describes the continuous representation, Section4.2 explains the algorithm
for the dilation, and Section4.3 shows how to apply it to compute the erosion, closing
and opening. The algorithm is described for one-dimensional signals only. In Section4.5
we summarize our ideas about a possible multi-dimensional implementation, although
it has not been implemented. Although possible, the implementation would be quite
complex. In Section4.4, the one-dimensional algorithm is applied to some test images
to show the advantage of the algorithm over the classical discrete morphology.

4.1 Continuous Representation of a Signal

To reduce the sampling error of morphological operations, a continuous representation
of the signal is required, a functionf : R→ R defined on an interval[x0,xN]. We must
be able to
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– represent band-limited signals accurately,

– represent signals with discontinuities in the first and higher derivatives, and

– obtain such a representation from a set of given samples.
We propose to use a piece-wise polynomial function, which is easy to work with. If
we limit ourselves to third-order polynomials, zero-crossings, maxima and minima can
be found analytically. Also, it is possible to construct a good approximation of a band-
limited function with third-order polynomials [130].

Representing a 1D Signal as a Piece-Wise Polynomial

To represent a continuous one-dimensional function as a set of third-order polynomial
segments, the following information is required:
– Starting point of each polynomial (xi)

– Polynomial coefficients (ai , bi , ci , di)

– Length of each polynomial (l i)
Since the function we are representing is defined everywhere in the signal domain, the
end point of a polynomial is equal to the starting point of the next one. Thus the length
is redundant, and we only need to store the starting points of each polynomial and the
end point of the last polynomial. The function is then written as a collection of segments
Si(x)

Si(x) = ai +bi(x−xi)+ci(x−xi)2 +di(x−xi)3 , (4.1)

i ∈ [0,1,2, ...N−1], plus a right boundxN.

Certain operations on such a representation are trivial. For example, shifting the func-
tion just requires incrementing or decrementing the starting pointsxi , and negating the
function is accomplished by negating all the polynomial coefficients. Other operations
we apply to the polynomial function are sampling (evaluating the function at chosen
locations) and integration. The integral over the function is the sum of the integral over
each segment, determined by∫ xN

x0

f (x)dx=
N−1

∑
i=0

1
4dix

4
i+1 + 1

3cix
3
i+1 + 1

2bix
2
i+1 +aixi+1 . (4.2)

Converting the Sequence of Samples into a Piece-Wise Polynomial

To create the piece-wise polynomial representationf (x) from the given samplesf [n],
we require an interpolation function that has certain characteristics:
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– The resulting function must have as many continuous derivatives as possible (since
the original band-limited signal is infinitely differentiable). We use third-order poly-
nomials, thus we require that the second-order derivative be continuous.

– It must be a local representation. That is, the zone of influence of a single pixel must
be limited, because only a limited number of samples is available.

– It must be capable of producing a polynomial representation.

An interpolator that satisfies these constraints is the cubic spline interpolator [20, 26,
131]. It produces polynomial segments in between each two sample points. Although
its impulse response decays quite quickly, it requires a filter with an infinite impulse re-
sponse (IIR) to determine the polynomial coefficients. ThisIIR filter can be implemented
recursively [129]. Note that a spline of infinite order equals the ideal interpolator (the
sinc function) [130]. Thus, a cubic spline is an approximation of the ideal interpolator.

When the input samples are noisy, it might be better to use a least squares spline [131].
In this case, the reconstructed function does not need to be equal to the samples at the
sample locations, and thus can be smoother. Furthermore, by computing the piece-
wise polynomial in this way the number of pieces is reduced, which makes subsequent
processing faster as well.

4.2 Sampling-Free Dilations

Examining the 1D dilation operation with a flat, compact structuring elementB, one can
readily see that the result is composed of plateaus (constant sections) as well as slopes
with the exact same shape as can be found in the input signal (see Figure4.2). Let us
define the setB as

B = {x|x∈ [−r, r]} . (4.3)

The plateaus are formed when, at a pointx, the maximum value over the neighborhood
B comes from a local maximum2 (see Figure4.2a). At points nearx, the maximum
over the neighborhood will also come from the same local maximum, and will therefore
receive the same value. These plateaus will have a width of at most 2r, centered on the
local maximum.

2We do not distinguish regional and local maximum, using the latter term for both.
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2r

a: Creating plateaus

r

r

b: Shifting slopes

Figure 4.2:Construction of the dilated function.a: Maxima create plateaus in the
output.b: Slopes are shifted by a fixed distance, dictated by the size of the structuring
element. In these graphs, the thin black line is the input signal, the dotted black line
is the output signal, the thick black line shows how the output signal is constructed,
and the thick gray lines give the size of the structuring element (2r).

The sloped regions are produced when the maximum overB does not come from a local
maximum. In this case, it must come from the border of the structuring element (see
Figure4.2b). At nearby points, the resulting value also comes from the same edge of
the neighborhood. Therefore, a slope is created that is an exact copy of a slope from the
input signal, shifted byr or−r. This is a result from the slope transform [19, 32, 76, 77].

Thus, for a one-dimensional signal, the output of the dilation with a flat, compact struc-
turing element is the point-wise (or, in our case, the segment-wise) maximum of three
functions:
– the input signal translated byr: f (x− r),
– the input signal translated by−r: f (x+ r), and

– a signal composed of plateaus centered around each of the local maxima.
Note that approximately three comparisons for each output segment are required: one
when creating the plateau function, and two when taking the maximum over the three
segment functions. This is consistent with the van Herk algorithm, which requires three
comparisons for each output pixel [46]. Creating the plateau function requires less than
one comparison for each output segment because it typically contains far fewer segments
than the input image.
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The above analysis is valid for flat, compact, symmetric structuring elements. Any non-
symmetric, flat, compact structuring elementC, defined by

C = {x|x∈ [−r−d, r−d]}= {x|x+d ∈ [−r, r]} , (4.4)

can be converted into a symmetric structuring elementB by translating the input or the
output signal:

δC( f ) = δBTd( f ) = TdδB( f ) . (4.5)

A non-compact structuring element can be constructed with the union of compact struc-
turing elements:

δ[
⋃

i Bi ]( f ) =
∨
i

δBi ( f ) . (4.6)

Thus, the above analysis suffices for any flat structuring element.

Extending the algorithm for gray-value structuring elements is more complex, but might
be accomplished through the slope transform [19, 32, 76, 77]. We have not pursued this.

Creating the Plateau Function

Creating the function composed of the plateaus requires that all local maxima be found.
This is accomplished by examining the first and second order derivatives of each of the
polynomials:

S′i(x) = 0 ∧ S′′i (x) < 0 ⇔ x is a local maximum. (4.7)

Note that these derivatives can be obtained analytically from the spline representation.
Finding the zero crossings of the first derivative is accomplished by solving a quadratic
equation. Additionally, in the result of a previous morphological operation there can be
maxima in the form of cusps and plateaus. These will be found only on knots (boundary
points between polynomial segments), and are identified by comparing the derivatives
of both polynomials at those points:

S′i(xi+1)≥ 0 ∧ S′i+1(xi+1)≤ 0 ⇔ x is a local maximum; (4.8)

if they are both equal to 0,xi+1 might be on a plateau that forms a local minimum. It is
not necessary to specifically detect this situation, because it will not influence the result
in any way.

Each maximum found generates a plateau of size 2r. The plateau function is obtained
by taking a portion of each of these segments such that, where they overlap, only the one
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Figure 4.3:Construction of the plateau function. At each local maximum a plateau
(0th order polynomial) with the size of the structuring element is set. In the case of
overlapping plateaus, the one with the highest value is kept intact; the other one must
be cropped. Empty regions are filled with segments of value−∞ so that the function
is defined everywhere in the signal domain.

with the largest value is retained (see Figure4.3). To do this, we sort all found maxima
according to their value, largest first. We then add a 0th order polynomial segment,
ranging fromx− r to x+ r, and with valuef (x), for each maximum atx. Each segment
added should not overlap with any of the polynomials already present in the function,
so it must be cropped to the available space. At the end of this process, eventual ‘holes’
must be filled with segments of value−∞, so that the generated function is defined
everywhere in the signal domain, and can be stored in the same manner as the input
signal.

Computing the Maximum over the Segment Functions

The last step is to find the function that is the maximum of the three functions. This
is a two-step process in which first two functions are compared, and then the result is
compared to the third. To avoid complicated exceptions in the algorithm, we pad the
three functions with zero-order polynomials so that they span the same interval (from
x0− r to xN + r). The translated versions of the input signal are extended with the edge
value (so as to keep them continuous). The function containing the plateaus is extended
with −∞.
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This function comparison is very simple, but potentially generates quite a lot of seg-
ments. For each (portion of a) segmentS1

i (x) in one function that spans the same region
as another (portion of a) segmentS2

i (x) in the other function, the intersection points
S1

i (x) = S2
i (x) must be found (this is a cubic equation, the solution can be found in Bron-

stein [26]). There are up to three intersection points, and thus up to four sub-segments.
For each of these, the polynomial with the larger value is used to construct the output
signal.

4.3 Sampling-Free Erosions, Closings and Openings

Since the erosion is the dual of the dilation, it can be implemented by inverting the
signal, applying the dilation, and inverting the result again:

εB( f ) =−δB(− f ) . (4.9)

As stated above, inverting the piecewise polynomial function is easily accomplished by
negating all the polynomial coefficients.

The closingφ is created by applying an erosion to the result of the dilation,

φB( f ) = εB̌[δB( f )] , (4.10)

and the openingγ is constructed the other way around,

γB( f ) = δB̌[εB( f )] . (4.11)

The algorithm as described above can be applied to its own result, so that implementing
closings and openings becomes trivial.

4.4 Method Evaluation

A First Examination of the Algorithm

We extracted a line out of a band-limited image to apply our methods to. Figure4.4
shows two portions of this line, along with the reconstructed continuous function, the
result of a discrete dilation (i.e. one applied to the samples directly) and that of the
sampling-free dilation proposed here. Figure4.5 shows the results of the discrete and
sampling-free closings on the same signal.
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In these figures we can see that the sampling-free dilation reaches higher values than the
discrete variant at some points, especially on plateaus. The value of this signal at these
points is equal to the value of the true local maximum of the input signal (or rather of
the cubic spline approximation). Likewise, the closing has higher values at the plateaus
(the continuous version is equal only in exceptional cases). The differences would be
larger if the structuring element did not have a length equivalent to an integer number of
pixels.

Granulometry

We created a signal of which we know the function that represents the granulometric
curve. To the samples of this signal we applied a granulometry (as in Chapter3) with
both the sampling-free and discrete closings, and compared the results to the theoretical
granulometric curve.

The signal we used is a sine,

f (x) = sin

(
2πx
T

)
, (4.12)

with T the period. The sampling distance is 1, meaning thatT must be larger than 2 for
error-free sampling. The theoretical granulometric curve is described by

h(r) =

{
1
π

sin
(

rπ

T

)
− r

T cos
(

rπ

T

)
for r < T,

1 for r ≥ T,
(4.13)

with r the size of the structuring element. We used two periods:T1 = 200
9 andT2 = π.

These values were chosen so that each period of the sine has a different offset with re-
spect to the sampling grid. Both signals can be correctly sampled at a rate of 1. The
first one can be interpolated very accurately using cubic splines, whereas the second
will produce larger errors due to the inability of the spline to correctly reconstruct high-
frequency signals (see Figure4.6). The frequency characteristic of the cardinal cubic
spline can be found in [131, Figure 2]. The spline interpolation on the second signal
produces a result that is obviously not an exact reproduction of the input signal. There-
fore, the result of the granulometry is inaccurate as well. However, it lies much closer to
the theoretical curve than the result of the discrete granulometry. Another obvious draw-
back of the discrete granulometry is the discreteness of the structuring element, which
can only be constructed with integer lengths. Because of this, the granulometry with the
sampling-free closing could be sampled much more densely.
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Figure 4.4:Two interesting portions of a 1D signal, together with its sampling-free
dilation. The open dots give the values of the discrete dilation for comparison. The
structuring element has a length of5 pixels.
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Figure 4.5:Two interesting portions of a 1D signal, together with its sampling-free
closing. The open dots give the values of the discrete closing for comparison. The
structuring element has a length of5 pixels.
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Figure 4.6:Granulometry of a sine function sampled at different rates. On the left are
the samples and the continuous function created with cubic splines. On the right is
the result of the granulometry, computed with both discrete and continuous-domain
morphology, compared to the theoretical granulometric function. For the top signal,
the theoretical and sampling-free granulometries match exactly; therefore, the dotted
line is hidden by the continuous one.

We repeated the above experiments after adding noise to the input samples (see Fig-
ure4.7). The results show more or less the same characteristics, except that the granu-
lometric curves deviate a bit more from the theoretical (noiseless) values.

4.5 Extension to Multi-Dimensional Images

Morphological operations can be defined for images of any dimensionality. Therefore,
we would like to extend our algorithm to multi-dimensional images as well. This is,
however, not an easy task.

Obviously, extension to multi-dimensional images by processing each dimension sepa-
rately will not work. In this case, maxima lying in between raster lines will be missed.
This shows that it is necessary to create a patch representation of the image (using multi-
dimensional cubic splines), and work on that.
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Figure 4.7:Granulometry of a sine function sampled at different rates. Noise was
added to the samples prior to the analysis. On the left are the samples and the contin-
uous function created with cubic splines. On the right is the result of the granulom-
etry, computed with both discrete and continuous-domain morphology, compared to
the theoretical granulometric function of the noiseless signal.

However, using multi-dimensional structuring elements with this representation also in-
troduces a problem: we would need to create a translated version of the input image for
each point along the boundary of this structuring element. Since there are an infinite
number of these points, this is an impossible task. If we would simplify the structuring
element by taking only a limited number of points along the contour, we would again
miss some of the local maxima.

Thus, we should limit ourselves to one-dimensional structuring elements working on a
patch representation of a multi-dimensional image. Now we can implement the same
operations we suggested above: create two translated versions of the input image (one
for each end of the structuring element), and an image consisting of plateaus centered
around each of the local maxima in the image; then take the maximum over these three
images. In this case, however, local maxima are all points for which there is a maximum
in the direction of the structuring element. These points form lines (in a two dimensional
image; in ann-D image this is a (n−1)-D plane). The plateaus we create are therefore
patches with a zero-order polynomial in one direction, and some third-order polynomial
in all the orthogonal directions. These polynomials are taken from the input patches
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along the local maxima line.

The only problem with this approach is that the patches produced by a dilation have very
complex boundaries (given by third-order polynomials). This makes an implementation
difficult, although the mathematical description remains relatively easy.

As seen in Section1.1, using linear structuring elements it is possible to create more
complex multi-dimensional structuring elements such as the rectangle, the hexagon, the
octagon, etc. These shapes are increasingly better approximations of a disk. Thus, it
would be possible to create an arbitrarily accurate approximation to the isotropic struc-
turing element using multi-dimensional sampling-free morphology.





Experiment and theory often show remarkable agreement when performed in the same laboratory

(Daniel Bershader)

Chapter 5

Discrete Morphology with Line
Structuring Elements

We have seen in Section1.1 that many structuring elements can be decomposed into
line segments. For example, the square, hexagon and octagon, which are increasingly
accurate approximations of the disk, can be decomposed into two, three and four line
segments, respectively. Thus, it is possible to create an arbitrarily accurate approxima-
tion of a disk by increasing the number of line segments used. The advantage of using
lines instead ofn-dimensional structuring elements is a reduction in the computational
complexity. Furthermore, it is possible to implement a dilation or erosion by a line seg-
ment under an arbitrary orientation with only 3 comparisons per pixel, irrespective of
the length of the line segment, using a recursive algorithm [46, 118].

Adams [2] showed how to create an optimal discrete disk using dilations with line seg-
ments. These disks are only approximations of the sampled Euclidean disk. The op-
timality is a trade-off between accuracy and efficiency. For multi-scale closings with
these disks, however, absorption does not hold. Jones and Soille [54] improved on this
by using periodic lines, so that the absorption property is satisfied. Nonetheless, these
structuring elements sacrifice accuracy to gain implementation efficiency. The results
developed in Section3.4are not valid for disks implemented in this way.

The morphology introduced in Chapter2 also uses line segments. It is for these op-
erators that we study the implementation of discrete line segments here. Examples of
other applications of line structuring elements are roads in airborne images [27, 55], grid
patterns on stamped metal sheets [128], and structure orientation estimation [119, 120].
We start by introducing Bresenham lines, the basic discrete lines. The most simple im-
plementation of the dilation uses a Bresenham line segment as structuring element. For
efficiency purposes, one might compute regional maxima over a Bresenham line across
the image (using the recursive algorithm mentioned above). The drawback is that this
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operation is not even translation invariant in the discrete sense (i.e. invariant over inte-
ger pixel shifts). Jones and Soille [54] introduced periodic lines, which are studied in
Section5.2. Using periodic lines, it is possible to construct recursive dilations that are
translation invariant in the discrete sense. After that we introduce operations obtained
by interpolating the image to obtain regional maxima over line segments (Sections5.3
and5.4), and a gray-value structuring element that implements an approximately band-
limited line segment (Section5.5).

All of these approaches are compared in Section5.6. They are then tested for rota-
tion invariance and translation invariance. Section5.7 addresses the problem we men-
tioned earlier in Chapter2: we cannot compute an operation under all orientations (the
orientation-axis of theRIA morphology must be sampled as well); how many operations
do we need to compute?

The sampling-free morphology introduced in Chapter4 should be able to implement
morphological operations along arbitrary line segments without error. We leave this
method out of the comparison since we do not have an implementation for multi-dimen-
sional images.

5.1 Basic Discrete Lines: Bresenham Lines

Bresenham [24] published an algorithm to draw a line segment of any orientation on
a plotter that could only draw horizontal, vertical and diagonal lines. The algorithm
combines small portions of these lines to form a line segment of any orientation. In
image processing,Bresenham linesare formed by steps in the eight cardinal directions
of the grid.

To efficiently implement a dilation with a line segment of any orientation, the recursive
algorithm proposed by van Herk [46] can be applied to a Bresenham line crossing the im-
age [118], as in Figure5.1(lines can be tiled to cover the whole image). This results in,
at each point, the maximum over some pixels (along the line) at each side of that point.
The problem is that, for neighboring pixels, the configuration of this neighborhood is
different. Take as an example a line that goes up one pixel for each two that it goes right.
Such a line is drawn by making one step right and one diagonally up (see Figure5.2).
There are two ways of starting this line (one of the two steps must be taken first), so that
each pixel along this line is embedded in one of two different neighborhoods. The dila-
tion along this line will therefore be computed with two different structuring elements
(both versions are an equally good approximation of the continuous line segment), the
results of both alternated from pixel to pixel. When the image is translated horizontally
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Figure 5.1:A Bresenham line across the image can be tiled so that each pixel in the
image belongs to a single line. Along these lines it is possible to compute the dilation
(or any other operation).

Figure 5.2:The problem with a Bresenham line is that each pixel along the line is
embedded in a differently shaped neighborhood. Each of these neighborhoods are
equally good approximations of the continuous line segment.

by one pixel, and translated back after the operation, a different result is produced than
when the operation is computed without translation.

Only the horizontal, vertical and diagonal lines can be used to compute dilations that are
translation invariant (in the discrete sense). For all other orientations, the shape of the
structuring element changes from point to point in the image. This should not pose a
significant problem for band-limited images. All shapes used are equally poor approxi-
mations of the continuous line segment. The error introduced because of this outweighs
the problems caused by the shape-change due to the recursive implementation.

We implemented this method by skewing the image in such a way that all pixels belong-
ing to the Bresenham line are aligned on a row (or column, depending on the orientation
of the line) of the image (that is, each column is shifted by an integer amount of pixels).
On this skewed image the operations can be applied along the rows, and the result must
be skewed back.
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Soille and Talbot [120] proposed to use the intersection of the closings (or the union
of the openings) along all possible Bresenham lines of the desired orientation. In the
example above, where there are two possible Bresenham lines representing the same
continuous line; this would be the minimum of two closings. Using this method, discrete
translation invariance is assured. But, in relation to the goal we set in the Introduction,
this operation is not satisfactory. Most importantly, the operation is still not translation
invariant in the continuous-domain sense. Also, the width of the line changes according
to the orientation with respect to the sampling grid: the more possible Bresenham lines
exist for the desired orientation, the thinner the structuring element will appear (this is
because the operation is less restrictive, and the line segment is allowed to “wiggle” in
between the image features). Less importantly for us, this method is not applicable for
dilations or erosions (since the intersection of dilations is not a dilation and the union of
dilations leads to a dilation with a thick line segment).

Another problem with the discrete line segment (whether implemented with a recursive
algorithm or not) is that the length, defined by an integer number of pixels, depends on
the orientation of the segment. For each orientation, there is a different set of lengths
that are possible to construct. As the same time, the number of samples per unit length
changes with the orientation.

5.2 Periodic Lines

Periodic lines were introduced by Jones and Soille [54] as a remedy to the lack of (dis-
crete) translation invariance of the morphological operations along Bresenham lines. A
periodic line is composed of only those points of the continuous line that fall exactly on
a grid point, see Figure5.3. These lines are thus formed of disconnected pixels, except
for lines in one of the three cardinal orientations. When considering only these points,
it is possible to use a recursive implementation along the periodic lines that is transla-
tion invariant in the discrete sense. However, because of the sparseness of the points
along such a line, they are not useful except in constructing more complex structuring
elements.1 For example, by dilating a periodic line segment with a small connected
segment, one creates a connected line segment, as in Figure5.4. Thus, to implement
a (discrete) translation-invariant dilation, one would compute a dilation with a periodic

1Using periodic lines instead of connected discrete lines in building a discrete disk, the absorption
property is satisfied [54]. Discrete approximations to the Euclidean disk should thus only be constructed
in this way to be used in a granulometry. Note that in Chapter3 we ignored the absorption property of
the discrete disk to create a more accurate granulometry, at the risk of having a (slightly) non-increasing
granulometric function.
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Figure 5.3:The problem of the Bresenham line can be solved by using only a limited
number of pixels on the line. This way, each neighborhood is the same, although it is
no longer connected. This is a periodic line.

⊕ =

Figure 5.4:By dilating a periodic line segment with a small structuring element, it
is possible to join it up. This further limits the available lengths of the structuring
element to multiples of the period.

line segment, and on the result apply another dilation with a small connected line seg-
ment (which does not need to be implemented recursively because it is so small).

The drawbacks of this method are the small number of orientations for which it is useful
(there are only few orientations that produce a short periodicity, for longer periodicities
the line segment needed to connect the periodic line is longer as well), and the limited
number of lengths that can be created (the length is a multiple of the periodicity, which
depends on the orientation).

Because the result of this implementation is the same as that obtained by a direct (non-
recursive) implementation using a Bresenham line segment as structuring element, we
do not consider it separately in the comparison of Section5.6.

5.3 Interpolated Lines by Skewing the Image

We mentioned above that operations along a Bresenham line can be implemented by
skewing the image, applying the operation along a column (or row), and skewing the
image back. In this section we consider image skews with interpolation (that is, the
rows or columns of the image are not shifted by an integer number of pixels, but by
sub-pixel quantities); see Figure5.5.
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Skew

Figure 5.5: After skewing the image, horizontal lines correspond to lines under a
certain orientation with respect to the image data. Some of the original image samples
(·) fall exactly on these lines, but most samples used (◦) lie in between original grid
points. The value at these points is obtained by interpolation.

The interpolation method used is an important factor in the correctness of the output.
The better the method is, the smaller the error will be. We used cubic convolution [56]
to implement the skews. This method is a good compromise between accuracy, compu-
tational cost and window size.2

The lines obtained in this way are interpolated, but have the same number of samples as
the Bresenham line of the same parameters. It is expected that these result in a somewhat
better approximation to translation invariance. The major drawback is that the result
needs to be skewed back. As stated before, morphological operations do not produce
band-limited images, and therefore the results are not sampled properly. Interpolating
the result of a morphological operation is questionable at best.

The reason we need to interpolate in the resulting image is that the result of the mor-
phological operation is computed at the points along the continuous line laid across the
image, and not at the grid points of the output image. There are few columns (as many
as there are points in the periodic line representation for the selected orientation) with
no sub-pixel shift. For these columns, interpolation of the output is not required, and the
result is at its best.

2Remember that the image is not infinite in size, and therefore it is not possible to use the ideal in-
terpolator. The window size is important because it determines the portion of the image affected by the
border.
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Skew

Figure 5.6: At the expense of more computation, it is possible to directly compute
each of the output columns, so that the inverse skew is not required. Not having to
interpolate in the result of a morphological operation produces the most accurate
result.

To improve the result on the other columns, it might be interesting to sample the lines
more densely before applying the morphological operation. This makes the inverse skew
more accurate because the aliasing introduced by the operation will be less severe. In
Section3.4we also used interpolation to increase the accuracy of morphological opera-
tions.

5.4 True Interpolated Lines

The interpolated lines presented above are at their best on only a few columns (or rows)
of the image. It is, of course, also possible to accomplish the same accuracy for all
output pixels. In this case, for each output pixel, samples along a line that goes exactly
through it are computed by interpolation, as in Figure5.6. On these computed samples
the operation is performed.

To compute these lines somewhat efficiently, we resort again to the skew. By changing
the offset of the image for the skew, it is possible to select which group of columns gets
an integer shift. The result is only stored at these columns. The image must be skewed
many times to compute the result for all the columns, but it is not necessary to skew
back the output images. The number of skews that need to be computed is equal to the
periodicity of the periodic line with the same orientation.
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Again, as for all discrete line segments mentioned up to now, the number of samples
used in the computation of the morphological operation depends not only on the length
of the segment, but also on the orientation. Line segments along the grid are the densest,
and diagonal segments have the least number of samples. Thus, for some orientations
it is more probable to miss a local maximum (i.e. the maximum falls in between sam-
ples) than for others. This makes the approximation to continuous-domain translation
invariance better for horizontal and vertical lines than for diagonal lines, and also has
repercussions for the rotation invariance. Ideally, one would like to sample each of these
lines equally densely. To do so, it would be necessary to add columns to the image
when skewing. As mentioned above, this also enables the creation of sub-pixel seg-
ment lengths, in a similar fashion to the interpolation used in Section3.4to increase the
accuracy of the isotropic closing.

Alternatively, rotating the image instead of skewing it also alleviates this problem. How-
ever, when rotating, only a limited set of samples falls exactly on output samples, and in
the worst case this happens only for the sample in the origin of the rotation. This means
that a larger number of operations is required to compute the result of the operation at
all output pixels.

We have not corrected for the number of samples along the line segment in the compar-
ison below.

5.5 Band-Limited Lines

A last option when implementing morphology with discrete line segments is to use gray-
value structuring elements, which allows to construct band-limited lines. Such a segment
is rotation and translation invariant, and does not have a limited set of available lengths.
The drawback is that the line is thicker, but this should not be a problem for band-limited
images, since it should contain only thick lines as well.

In Section3.5, an approximately band-limited disk was generated with a Gaussian pro-
file. It was stated there that a Gaussian function, as well as its integral, is band-limited in
good approximation, and can be sampled at a rate ofσ with only a very small error. An
approximately band-limited line can be generated in a similar fashion to the disk, again
using the error-function along the length of the line, and using the Gaussian function in
the other dimensions.
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Figure 5.7: An approximately band-limited line segment constructed with Equa-
tion (5.1).

Let us define a two-dimensional imageL(`,σ), to be used as a structuring element, by

L(`,σ)(x,y) = A· 1
2

{
1−erf

(
`−2|x|

2σ

)}
·exp

(
−y2

2σ2

)
, (5.1)

where` is the length of the line segment,x is the coordinate-axis in the direction of
the segment, andy is the coordinate-axis perpendicular to it. This is equivalent to an
infinitely thin line convolved with a Gaussian. Again, settingσ to 1 is enough to obtain
a correctly sampled structuring element. Figure5.7 shows an example of such a band-
limited line segment. Of course, generating line segments in higher-dimensional images
is trivial: y needs to be substituted by a vector. Note that the gray-value of the segment
is 0, and the background has a value of−A. Like in Section3.5, it is required to choose
an appropriate value forA, relative to the gray-value range in the image to be processed.
The same conclusions apply here.

5.6 Comparison of Discrete Line Implementations

We have implemented the following versions of the dilation and the opening with a line
segment structuring element:
– Method 1: with a Bresenham line segment as structuring element.

– Method 2: along Bresenham lines across the image (Section5.1).

– Method 3: with periodic lines (Section5.2).

– Method 4: along interpolated lines across the image (Section5.3).

– Method 5: with true interpolated lines (Section5.4).

– Method 6: with an approximately band-limited line segment (Section5.5).
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a: Method 1 b: Method 2 c: Method 3

d: Method 4 e: Method 5 f: Method 6

Figure 5.8:Sample dilation with different implementations of the line segment struc-
turing element. This gives an idea about the shape of the structuring element used.
The input image contains a delta pulse and a Gaussian blob.

Figure5.8 shows the dilation with each of these methods applied to an image with a
discrete delta pulse and a Gaussian blob. This figure gives an idea about the shape used
in the operation. Methods 1 and 2 produce discrete line segments, whereas methods 4
and 5 produce line segments with gray-values that do not exist in the input image. As
expected, using a periodic line produces a disjoint collection of points. Finally, method
6 produces the thickest, but also the smoothest, line segment.

To compare these different methods, an image was generated that contains many line
segments of fixed length and orientation, but varying sub-pixel position (see Figure5.9a).
They were drawn using Equation (5.1). Openings were applied to this image, changing
both the length and orientation of the structuring element, and using each of the imple-
mented methods. The result of each operation is integrated (taking the sum of the pixel
values), and plotted in a graph. It is expected that this results in a value of 1 for the
openings in which the orientation of the structuring element matches that of the seg-
ments in the input image, and the length` is smaller or equal to the length of these
segments; the result should be 0 for any other parameter of the structuring element (as in
Figure5.9b). Since the image contains band-limited lines, it is expected that the result
obtains a smooth transition from one state to the other. The more the result approximates
the ideal situation, the better the specificity of the operator is.
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Figure 5.9:Input image and ideal response for graphs shown in Figure5.10. A value
of 1 is expected for the openings in which the orientation of the structuring element
matches that of the segments in the input image, and the length` is smaller or equal
to the length of these segments. A value of0 is expected for any other parameter of
the structuring element. Because the input image is band-limited, a smooth transition
is actually obtained.

The results are plotted in Figure5.10. There are a couple of things that readily come to
mind when comparing these graphs:

– All methods produce a similar result, with the exception of the periodic lines (method
3). This is due to the fact that the periodic line segment is disjoint, and therefore can
“fit” inside two image features at once. For most of the orientations, the periodic line
segment consists of only 2 points.

– The two discrete, non-interpolated implementations (methods 1 and 2), never reach
values approximating 1. The interpolated and gray-value methods (methods 4, 5 and
6) reach higher values, closer to the ideal value of 1.

– The three methods that work along lines across the image (methods 2, 4 and 5) show
a stair-like dependency on the length. This is because of the discretized lengths of
these segments. Note that the actual length of the structuring element depends on the
orientation. This dependency is less obvious in method 1 because there the orienta-
tion is discrete as well. This results in plateaus in which the structuring element does
not change.

– There are very few differences between the two interpolated methods (methods 4 and
5).

– The result of the gray-value method (method 6) is very smooth, but shows some
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a: Method 1 b: Method 2 c: Method 3

d: Method 4 e: Method 5 f: Method 6

Figure 5.10:Comparison of different implementations of the opening with a line seg-
ment structuring element. See text for details. The input image has line segments of
length 40 pixels, under an orientation of 0.4 rad.

“ringing”. This can be explained by the sampling of the structuring element and the
image: morphological filtering uses the maximum or minimum value in a neighbor-
hood, and it depends on whether a sample exactly hits such a maximum or minimum
that it can be found or not. By modifying slightly the orientation of the line, a dif-
ferent set of samples will sit close to maxima or minima (i.e. the ridge of the line).
Interpolation (as in Section3.4) should diminish this ringing effect.

Taking these observations into account, it can be said that the interpolated methods and
the gray-value method produce results more consistent with the expectations than the
discrete methods. Also, for this test image, it does not appear to be necessary to use
method 5, since it produces a result very similar to method 4. Method 4 is, of course,
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Figure 5.11:Evaluation of method 4 (opening along an interpolated line). These
graphs were obtained by changing the length of the line segments in the input image.
From left to right:10, 20 and 40 pixels long.

Figure 5.12:Evaluation of method 4 (opening along an interpolated line). These
graphs were obtained by changing the orientation of the line segments in the input
image.From left to right:0.1, 0.4 and 0.7 rad.

Figure 5.13:Evaluation of method 6 (opening using a gray-value line segment). These
graphs were obtained by changing the orientation of the line segments in the input
image.From left to right:0.1, 0.4 and 0.7 rad.
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much simpler and computationally cheaper.

To further examine the interpolated method (method 4), the experiment was repeated
changing the length of the line segments in the image. The results are shown in Fig-
ure 5.11. When decreasing the length, the angular selectivity decreases as well. This
can be seen by the wider response in the angular direction. Also, because of the discrete
segment lengths, it is impossible to distinguish lengths that differ by less than one pixel
after skewing. That is, the minimal length difference that can be detected depends on the
orientation. This can be seen in the graphs obtained by changing the orientation of the
line segments in the image (Figure5.12). The length of the steps in these graphs change
with the selected orientations.

This angular dependency of the length does not occur with the gray-value morphology
(see Figure5.13). The only thing that changes in these graphs is the strength of the
ringing effect. The smaller the angle, the larger this effect, because there will be larger
sections of the ridge far away from any sample.

5.7 Angular Selectivity

In Chapter2 we introduced an operation (RIA morphology) that applies a morphological
filter with a line structuring element under all orientations, and then selects, for each
output pixel, the orientation that produces the largest response. To implement this op-
eration, we need to select a finite number of orientations at which to apply the filter. In
this section we determine suitable values for this number.

Response along the Orientation Axis

Section2.3 describes the orientation-space that is generated by e.g. theRIA closing.
Recalling Equation (2.37),

F(x,ϕ) = [φLϕ
( f )](x) , (5.2)

and Equation (2.38),
[φ^

L ( f )](x) =
∧
ϕ

F(x,ϕ) , (5.3)

we see that theRIA closing is formed by the minimum projection along the orientation
axis of this orientation-space. If it were possible to interpolate along this axis, it would
also be possible to define a maximum number of orientations that need to be sampled
(in a similar fashion to the spatial sampling of band-limited signals according to the



Angular Selectivity 103

−0.6 −0.3 0 0.6 0.9 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

π/10
SE angle (rad)

In
te

gr
at

ed
 re

sp
on

se

l = 40.000
l = 28.284
l = 20.000
l = 14.142
l = 10.000
l =  7.071
l =  5.000

a: Angular response

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

SE length (px)
A

ng
ul

ar
 w

id
th

 o
f r

es
po

ns
e 

(r
ad

)

interpolated line
grey−value line  
expected         

b: Angular width

Figure 5.14: The response along the orientation-axis of the morphological
orientation-space.a: Integrated result of the closing with various line lengths`, as a
function of the orientation of the line.b: FWHM of the response ina, together with a
line FWHM∝ `−1.

Nyquist criterion [88, 108]). Unfortunately, due to the non-linear nature of the closing,
this is not possible. The shape of the response along this axis depends on the input
image in a non-linear way, and will, in general, not be band-limited. Figure5.14a shows
this response, integrated over the spatial dimensions, for the interpolated line segment
(method 4) applied to the test image used earlier (Figure5.9a). As found in Section5.6,
the longer the line segment is, the narrower the response will be along orientation-axis.
One would expect this width to be inversely proportional to the length. The full width
at half the maximum (FWHM) is plotted in Figure5.14b. This width is a measure for
the angular width of the response. As can be seen in this figure, it does depend on the
inverse of the segment length.3 It does not give us, however, the number of orientations
that should be used in theRIA closing.

To obtain this quantity, we assume that the distance along the orientation-axis between
samples is given byq/`, ` being the segment length andq being some constant. This is
equivalent to takingbπ`/qc samples between 0 andπ radian. By varying the value of
q and computing a granulometry we find a suitable value forq. The granulometry was
applied to an image similar to that in Figure5.9a, but with the lines at arbitrary orienta-
tions. We usedRIA openings with interpolated line segments. The results are shown in

3The disagreement for shorter line segments is due to the band-limit of the objects in the image.
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Figure 5.15:Granulometries computed usingRIA openings with different number of
orientations sampled. The number of orientations is given byπ`/q.

Figure5.15. Obviously, increasingq diminishes the accuracy of the granulometry. For
values ofq = 0.16 and lower, the graph is quite consistent. Therefore, settingq between
0.1 and 0.2 should produce good results. This implies 600 to 1200 orientations when
computing aRIA closing with a line of 40 pixels in length. We have usedq = 1 in most
applications to decrease the computation time. This yields a small underestimation.

Figure5.15shows a granulometric line (for smallerq) that is negative at smaller`. This
is an error introduced by the interpolation, and does not occur with methods that do not
interpolate, such as the gray-value structuring element.

Figure5.14a shows a small dip at the maximum, that gets more pronounced for smaller
lengths. The reason for this is related to the shape of the orientation-spaceF(x,ϕ), and
the integration over the spatial dimensions. As can be seen in Figure5.16, the response
along theϕ-axis at a single pixel is far from smooth. This is because of the varying
lengths of the line segment as a function of the orientation. By summing many such
profiles, a smoother curve results. But apparently a dip at the maximum coincides for
many of these profiles. Again, using gray-value structuring elements this behavior is not
observed, due to the smoother orientation-space produced by them.
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Figure 5.16:The morphological orientation-space as used to compute the granulome-
tries in Figure5.15. As can be seen inb, the response along the orientation-axis is
not smooth, even though the input image is.





Opportunity is missed by most people because it is dressed in overalls and looks like work

(Thomas Edison)

It's true hard work never killed anybody, but I figure, why take the chance?

(Ronald Reagan)

Chapter 6

Assorted Topics Related to
Granulometries

When using a granulometry in practice, many small difficulties arise that pose an ob-
stacle to an all-purpose analysis package. Many of these difficulties can be overcome
by adequate pre-processing, or by changing the closing (or opening) used in the granu-
lometry. Section6.1 is an overview of alternative granulometries, obtained by using the
various algebraic closings available. Section6.2explores different pre-processing steps
that we used in this thesis and other projects. These pre-processing operations are aimed
at correcting for noise, uneven intensity across the objects, and objects that intersect the
image border. All of these problems introduce additional errors in the estimated size
distributions.

Section6.3 introduces an algorithm that implements a flooding. It was developed as a
pre-processing stage before a granulometry, but it can be used as a sieve in itself and as
a segmentation algorithm.

6.1 Alternative Granulometries

Chapter3 explores the sieve (and granulometry) with structural closings or openings.
However, any one parametric family of algebraic closings or openings that satisfy the
absorption property can be used to create a sieve. Section1.2 enumerated different
algebraic closings. We re-visit them here to explore how they would function in a gran-
ulometry. At the same time, each of them is compared to the isotropic closing to see
what the advantages and disadvantages are.

Remember that, wherever we mention the closing, the opening can be substituted. De-
pending on whether the interesting features are dark or light, one should use the closing
or the opening respectively.
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Rank-Min Closings

The rank-min closing is similar to a structural closing, except that a certain number of
pixels is ignored when computing the maximum over the structuring element. As said
earlier, this is implemented by a rank filter (instead of a dilation) followed by an erosion.
It is usually employed instead of a structural closing to reduce the effects of the noise in
the input image.

The rank-min closing satisfies the absorption property only if the rank is fixed. However,
to reduce the effect of noise, one would like to ignore a number of pixels that is relative
to the size of the structuring element (i.e. a fixed percentage, not a fixed number). Such
a closing does not satisfy the absorption property, and therefore cannot be used for a
granulometry.

Instead of using rank-min closings, it is better to reduce noise in the input image by a
pre-processing step (Section6.2).

Rank-min closings as a granulometry might be useful only for structures with cer-
tain characteristics, e.g. where the interesting features are formed by agglomeration of
smaller objects, which one does not need to see in the granulometry (as in Figure6.1).
A rank-min closing is able to adapt the structuring element to fit these agglomerated
objects. Figure6.2 shows an example of this. Note how, for increasing length of the
structuring element, less of the object is considered “a straight line”, but also more of
the background noise is removed. The increase of contrast obtained by using a rank-min
closing instead of a structural closing is most noticeable with the 95th percentile. When
using a lower percentile, the effective line length is also reduced, thereby increasing the
amount of noise left in the image after the operation, but the contrast is not increased
further.

Closings by Reconstruction

The difference between a structural closing and a closing by reconstruction is that, if the
structuring element fits somewhere inside a feature, it is left intact by the reconstruc-
tion, whereas only the parts where the structuring element fits are kept by the structural
closing. A sieve with such a closing has the advantage of correctly classifying all pixels
belonging to an object, no matter how irregular its shape is. Where a structural closing
would split an object into portions by size, the closing by reconstruction keeps all pixels
together. Figures6.3and6.4 illustrate this difference with an example.
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Figure 6.1:Scanning electron microscope image of polysaccharide strands, imaged
by spraying the strands onto mica, then evaporating Pt/C onto the mica (cooled to
−185◦C) at an angle of6◦ [3]. The dark dots composing the image are caused by
clusters of metal particles (this effect is called self-shadowing). The objects can be
identified by a larger density of these clusters.

The drawback is that, when objects are touching, they are seen as a single object by
the reconstruction, the smaller one being classified on the same scale as the larger one.
Thus it depends on the application whether using a closing by reconstruction instead of
a structural closing would be beneficial.

Attribute Closings

If a closing by reconstruction were beneficial, one might instead use an area closing.
Area closings remove objects of a given area (number of pixels). This classifies objects
on their area instead of on their smallest diameter. For irregular-shaped objects this
might be a more interesting characteristic. Note that a closing by reconstruction is an
attribute closing, and the disadvantage mentioned there is valid here as well: if objects
are touching, it is no longer possible to separate them with this method.

Floodings

A flooding is a very different kind of closing. Since it is based on the watershed trans-
form, it is constructed by a hierarchical segmentation of the image. Depending on the
location within this hierarchy, more of fewer regions are closed. As this location within
the hierarchy is not directly related to a size, it is not possible to construct a size distri-
bution from floodings. But it is possible to obtain a granulometry that can be used as a
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a: SE length 20px b: SE length 40px c: SE length 80px

d: SE length 20px, 95th

percentile
e: SE length 40px, 95th

percentile
f: SE length 80px, 95th

percentile

g: SE length 20px, 80th

percentile
h: SE length 40px, 80th

percentile
i: SE length 80px, 80th

percentile

Figure 6.2: a-c:Result of theRIA closing with line segments of 20, 40 and 80 pixels,
applied to the image in Figure6.1. d-f: Result of theRIA rank-min closings with line
segments of 20, 40 and 80 pixels. The rank was chosen at 95% of the total structuring
element (although for a granulometry the rank has to be fixed, not relative to the
size of the structuring element).g-i: Idem, with the rank set to 80% of the total
structuring element. Note how allowing a small part of the structuring element not
fitting the shape can increase the contrast of the filtered image, although if too much
slack is allowed, the structuring element can fit almost anywhere in the image.
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a: Input b: SE diameter 8px c: SE diameter 18px

Figure 6.3:Isotropic structural closing applied to a test image.

a: Input b: SE diameter 8px c: SE diameter 18px

Figure 6.4:Isotropic closing by reconstruction applied to a test image. Compare to
Figure6.3
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characterization of the structure, without assigning any physical quantities or properties
to it.

We implemented a flooding (described in Section6.3) that, using a couple of parameters,
produces an image from within the segmentation hierarchy. By increasing one of the
parameters, a sieve is obtained, as can be seen in Figure6.5. This type of granulometry
describes the image in a rather different way compared to the size distributions obtained
with other closings or openings, and might be useful in comparing similar structures.

6.2 Pre-processing

The imaging process itself may hamper the image in such a way that the results of a
granulometry are useless. The three properties we found most destructive are noise, un-
even gray-value across the objects (or pores, matrix, etc.) due to uneven illumination,
texture or other object properties, and the image border due to a finite field of view.
These are analyzed in the three subsections below, and adequate pre-processing is dis-
cussed. Obviously, if these aspects can be dealt with by changing the image acquisition
process, one should do so.

Noise Reduction

As stated in the introduction, all images are noisy. If the signal-to-noise ratio (SNR)
is good enough, the noise will just add a little to the noise generated by the sampling
problems of the structuring elements, the quantization of gray-values, the scale sam-
pling, etc. If, however, theSNR is too low, it will affect the granulometry in other ways
as well. There are three major ways in which noise in the image affects the (closing)
granulometry (a similar analysis is valid for the opening granulometry):
– Pixels where noise lowers the actual value add volume to the very small scales. This

is just an offset for the curve.

– Pixel values that are raised above the level of the matrix (the inter-pore space) add
volume to the very large scales. That is, the value of

∫
F(x,∞)dx in Equation (3.2)

increases.

– Pixels inside a pore whose value is increased will divide this pore, adding volume
to the smaller scales and removing volume from the larger scales. This effect of the
noise is the most destructive.

Thus, noise adds to the smallest and largest measured scales, thereby stretching the
granulometric curve to make it less steep, and also shifts volume from larger scales to
smaller scales. The two thick, gray lines in Figure6.6a show this.
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a: Input b: size= 10 c: size= 20

d: size= 40 e: size= 80 f: size= 160

Figure 6.5:Demonstration of the flooding as a sieve.b-f: results of the UpperEn-
velope flooding with increasing merging parameter ‘size’. This parameter can be
interpreted in the following way: the flooding iteratively increases the gray-value of
the darker regions until two of these regions touch. At this point, the size of both is
compared to the ‘size’ parameter of the algorithm; if one is smaller than this value,
the two regions are merged and the flooding of this new, larger region can continue. If
not, the flooding of both regions is stopped. Thus, the larger the parameter is chosen,
the more regions are merged and the larger the flooded regions are. See Section6.3
for more information on this algorithm.
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Figure 6.6: Size distributions obtained from a test image, with and without noise,
and size distributions obtained after various noise-reduction filters were applied. The
small-scale changes induced by noise can be corrected for easily with any noise-
reduction filter. The large-scale changes, however, require a clipping. In this case we
used the soft clipping as in Equation (6.1). The result of the median filter, not shown
here, is very similar to that of the Kuwahara filter.

Reducing noise is traditionally accomplished by filtering the image. Some very well
known filters include the uniform and Gaussian filters, which are linear, and the median
filter (see e.g. [49, 53, 127]) and the Kuwahara filter [64, 65, 85], which are non-linear.
Both the median and Kuwahara are capable of increasing theSNR, without affecting the
edges and other features too much. An excellent alternative are the open-close or close-
open filters [104, 121]. These are obtained by combining the closing and the opening,
and reduce the noise by removing small features that are either darker or lighter than their
surroundings. Obviously the order in which they are applied is significant, but, assuming
a band-limited image with normally-distributed, independent noise, and using a small
structuring element, both filters will produce very similar results. A strong property for
noise-reduction filters isself-duality(invariance to negation) [105]. Linear filters, as
well as the median and Kuwahara filters mentioned above, are self-dual. The open-close
and close-open, however, are not (they are each other’s dual). By averaging the result of
these two operators, self-duality is obtained [134].
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All of these noise reduction filters smooth the flat regions of the image. The linear filters
mentioned above will blur the edges, whereas the non-linear ones might not affect edges
much, or even enhance them. But all of these filters will remove small objects. This
is intentional, since noise forms small features. The consequence is that these filters
effectively flatten (or null) the measured granulometric curve for very small scales. This
is not important because possible interesting objects present at these scales are swamped
by the noise anyway. To measure them it is necessary to increase the sampling density
or reduce the noise level before sampling.

Figure 6.6 shows the effect of these noise-reduction filters. All are very effective at
removing small objects (correcting for the volume added to the small scales), but the
large-scale effects of noise (e.g. large dark objects created by small regions of increased
matrix values at locations far apart) could only be removed by clipping the gray-values.
This is discussed in the next subsection.

Normalizing the Gray-Value of Objects in an Image

If an object has an uneven gray-value across its extent, or if the various objects in an
image have different intensities, the volume-weighing of the granulometry produces a
large error in the estimated size distribution. Remember that the granulometry weighs
the objects by summing the gray-values. Thus, the more even these gray-values are, the
more accurate the granulometry is.

Also, when measuring pores, the intensity of the matrix in between these pores is of
great importance. If the matrix in between two pores has a lower gray-value than the
rest of the matrix (for example because it is very thin, and the point-spread function of
the imaging device has blurred it), the volume of each of the two pores will be split over
two levels: that of the pore itself, and that of the union of the two pores. That is, there is a
shift of weight from smaller to larger scales. Another effect of non-uniform matrix gray-
values, mentioned in the previous subsection, is that small regions of increased gray-
values create very large, though shallow, pores. These add potentially large quantities of
volume to the larger scales of the granulometry.

To overcome these problems, different stretching techniques are available. If the goal
is to flatten both the background and the foreground, without changing the bandwidth
of the image much (so that it is still correctly sampled and the localization of the
edges is not impaired), thesoft clipping (or error-function clipping) is an excellent
technique [139]. Much like hard clipping(in which gray-values larger than the upper
thresholdthigh or smaller than the lower thresholdtlow are set to the respective threshold
values, and none of the other gray-values is changed), soft clipping removes gray-values
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Figure 6.7:The error function as a transfer function. The discontinuous line is the
transfer function of the hard clip.

that are outside the target range. However, this is accomplished by stretching all pixel
values according to the error function (Figure6.7). With adequate normalization this
yields,

fc(x) = erf

(√
π

2
f (x)− tmed

thigh− tmed

)
(thigh− tmed)+ tmed , (6.1)

with tmed= 1
2(thigh+ tlow). The factor

√
π

2 is to make the slope of this transfer function 1
neartmed. The error function keeps the transitions from one phase to the other smooth,
but removes the transitions within a single phase. See Figure6.8for a demonstration.

Another technique is illustrated in Section6.3and Figure6.13.

Correcting for Image Border Effects

Because an image is not infinite in extent (which coincidentally would make imaging
quite difficult since the structures that are imaged are not infinite in extent either), it has
borders. The borders of the image cause problems in two different ways:
– the result of a filter near the edge is undefined because the neighborhood used in the

operation falls partially outside the image, and

– some objects in the image are incomplete.
To overcome the first difficulty, the image is usually extended in some predefined way
(e.g. by making it periodic or mirroring the image data at the border). For morphological
operations, which are selection operations (the result at a given point is the value of a
neighboring point), we usually restrict the neighborhood to the image domain. That is,
the result of the operation is always the value of one of the pixels inside the image. For a
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a: Input b: Soft clipping

Figure 6.8:Demonstration of soft clipping on a test image. Note how the edges of the
objects remain smooth while both the objects and the background are flattened.

closing this means that the possible shifts of the structuring element are restricted; pores
intersected by the image border are regarded smaller than they really are.

This leads to the second problem. Cropped objects should not be regarded when com-
puting a size distribution. However, if all cropped objects are discarded, the resulting
size distribution will be biased because larger objects have a larger probability of inter-
secting the boundary (and therefore a larger probability of not being considered when
estimating the size distribution). One of the findings in stereology (see also page26)
is an unbiased counting procedure [84]. We consider the image as a region in a larger
plane. If this plane is divided into adjacent rectangular regions (of which the image is
one), a tessellation is obtained. One should be able to assign each object in the scene to
one of the regions. If this is done correctly, the number of objects assigned to each region
is an unbiased estimator of the total number of objects (or the density). An exclusion
line (which goes along the boundary between regions, separates the plane in two, and
has a shape as in Figure6.9) should be defined to assign objects to a particular region.
All objects that fall (partially) inside the region should be counted, except the ones that
touch the exclusion line. Note that this procedure is independent of the shapes and sizes
of the objects.

6.3 The UpperEnvelope Algorithm

As mentioned in Section1.2, a flooding is a form of algebraic closing. This section
introduces an algorithm that implements such a flooding. Although it was devised as a
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Figure 6.9:For an unbiased counting of objects, a selection procedure like this one is
required. Here, all objects that fall (partially) within the given cell but do not cross
the white line (exclusion line) are selected. Note that if the same procedure is used on
adjacent cells, none of the objects is counted twice or skipped.

pre-processing step for the granulometry, it can also be used as a segmentation tool or
as the closing operation in the granulometry itself. This section describes the algorithm.
For applications see Sections6.1and6.2.

This algorithm is based on the watershed transform. We therefore first explain a priority-
queue algorithm that implements a watershed, as in [136, 138]. This type of algorithm
sorts the pixels in the image according to their gray-value, and then processes each pixel
only once. The special case where a group of pixels have the same gray-value (a plateau)
should be treated carefully. These pixels need to be considered in the correct order, so
that the watershed line lies half-way on the plateau. To accomplish this, we assume
that the sorting algorithm will sort all pixels with the same gray-value according to their
distance to pixels with lower gray-value. Because this is irrelevant to the performance
of our UpperEnvelope algorithm, we do not discuss how to implement this. For a review
of correct watershed algorithms see [99].

We have integrated a merging step into the algorithm. This is useful to reduce the number
of local minima due to noise.

The Watershed

The watershed algorithm can be summarized by the following actions:

1. Each local minimum is used as a seed, and is assigned a label.

2. Labels are grown according to the image gray-values.
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Figure 6.10: As the water level rises, watersheds are built to keep the catchment
basins separate.

3. When two labels grow together, a decision is made whether to merge them or not.

4. If they are not merged, the line along which these labels meet is marked as a water-
shed.

5. Labels continue to grow in all directions without crossing any watersheds.

6. The watersheds define the segmentation.

This algorithm is comparable to flooding the ‘landscape’ formed by the gray-values in
the image (see Figure6.10). As the water level raises in each of the pools (local minima),
they are kept separate by watersheds (dams). The merging decisions can be made using
information such as the region size and depth. We allow a region that is both small and
shallow to be merged to another region.

Pseudo-code that implements this algorithm can be found in Figure6.11. As can be
seen there, pixels are sorted according to their gray-value. This allows us to process the
pixels from lower to higher gray-value with a single pass through the image, instead of
one pass for every possible gray-level [136, 138]. As noted above, this version does not
handle correctly the plateaus in the image. For these features some extra processing is
required. Also, since each pixel is addressed only once, it is actually not necessary to
mark the watershed pixels: all pixels in the label image that are still 0 at the end of the
algorithm form the watersheds.

The UpperEnvelope

The UpperEnvelope algorithm proposed here is a slight modification on the watershed
algorithm described above. The difference is that, once two labels meet, both are marked
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Input: input image, optionally connectivity and parameters on merging

Create label image (initialize to zero)
Create tableindices with indices into image, sorted according to value in input image;

for plateaus, sort indices according to distance to lower gray-value pixels
Prepare tablelabel_state containing information on each label for merging strategy:
size, min (minimum value)

Assign label1 to pixel indices[1]
Updatelabel_state[1]
lastlabel← 1

for eachi in indices starting at 2nd element:
labels← labels of processed neighbors ofi
caseno neighbors:

Increaselastlabel
Assign labellastlabel to pixel i
Initialize label_state[lastlabel]

case1 neighbor:
Assignlabels[1] to pixel i
Updatelabel_state[labels[1]]

casemore neighbors:
if all labels can be merged:

Rename each label inlabels into labels[1]
Assignlabels[1] to pixel i
Updatelabel_state[labels[1]]

else:
(Pixel i is a watershed pixel)

endif
endfor

Figure 6.11:A watershed algorithm; see text for details.
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umbraumbraumbraumbraumbra

Figure 6.12:The upperenvelope is an increasing transformation of the image based
on the watershed transform.

‘stopped’, and do not grow further. The flooding is obtained when these stopped regions
are filled with their maximal gray-value. The space in between them is not modified
(the input gray-value is retained). See Figure6.12. To keep the watershed properties,
however, it is necessary to keep the growth process going. The simplest solution is to
record the gray-value of the pixel that caused a region to be ‘stopped’. At the end of the
watershed algorithm, all pixels within the catchment basin with a gray-value lower or
equal to this recorded value compose the ’stopped’ region.

As discussed on page37, the UpperEnvelope algorithm implements a flooding. That
is, g, the result of applying the algorithm tof , satisfiesg = f ∨ ε(g) [83].1 However,
the algorithm itself is not a closing because it is not idempotent. It does satisfy the
increasingness criterion.

We have applied the algorithms described in this section to a test image, and show the
results in Figure6.13. As can be seen there, it is possible to generate a ‘bottom’ image
using the watershed results. This image can then be used to stretch the resulting regions
so that each one has an equal depth. This way, each of the regions contributes equally
to the granulometry. Figure6.14contains the pseudo-code for the UpperEnvelope algo-
rithm.

1Although not obvious in the referred article, the erosion needs to be restricted for this to be a sensible
definition; ideally, one should use an infinitesimal erosion.
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a: Input b: Watershed c: UpperEnvelope

d: ‘Bottom’ image e: ‘Bottom’ image (log) f: Normalized blobs

Figure 6.13: Demonstration of the algorithm described in Section6.3. Note how
the shading has little effect on the result of the watershed. Subfiguree is the same
as d, but using a logarithmic mapping of the gray-values.f: Difference between
UpperEnvelope and the input image, stretched using the ‘bottom’ image. Again, the
shading has little effect on the result.
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Input: input image, optionally connectivity and parameters on merging

Create label image (initialize to zero)
Create tableindices with indices into image, sorted according to value in input image
Prepare tablelabel_state containing information on each label for merging strategy:
size, max (maximum value),min (minimum value),stopped)

Assign label1 to pixel indices[1]
Updatelabel_state[1]
lastlabel← 1
for eachi in indices starting at 2nd element
labels← labels of processed neighbors ofi
caseno neighbor:

Increaselastlabel
Assign labellastlabel to pixel i
Initialize label_state[lastlabel]

case1 neighbor:
Assignlabels[1] to pixel i
Updatelabel_state[labels[1]]

(max only updated iflabels[1] is notstopped)
casemore neighbors:

if all labels can be merged:
(meaninglabels[2..end] fit the requirement for merging)

Rename each label inlabels into labels[1]
Assignlabels[1] to pixel i
Updatelabel_state[labels[1]]

(max only updated iflabels[1] is notstopped)
else:

for eachlab in labels that is not stopped:
Mark lab as stopped
Updatelabel_state[lab]

endfor
(Pixel i is a watershed pixel)

endif
endfor

Create output image as copy of input
Paint each output pixel with themax value forlabel if it would increase its value

The bottom image can be generated by painting each pixel with themin value forlabel

Figure 6.14:The UpperEnvelope algorithm; see text for details.





If the only tool you have is a hammer, you tend to see every problem as a nail

(Abraham H. Maslow)

Chapter 7

Applications

This chapter presents a few of the applications we worked on during the course of this
project. All of these applications came from Unilever Research and Development Vlaar-
dingen, and are reported here with their permission.

Section7.1 presents the results obtained on a milk protein gel. The goal here is to find
differences between untreated milk protein gel and milk gel treated with enzymes or
enzymes and a substrate. When the treatments are performed with very small quantities,
the differences are minute. Using isotropic granulometries with the improvements pro-
posed in this thesis it is possible to detect these differences. This project was performed
in collaboration with E.C.M. Bouwens, and submitted for publication in [74].

Section7.2 examines a similar structure, also of a dairy-based product, but this time
the evolution in time of the characteristic length is the interesting property. Mixtures
with varying concentration of amylopectin are recorded in time while they are allowed
to sediment. The increase in characteristic length, which depends on the concentration
of amylopectin, is estimated using a granulometry at each time step, and the results are
compared to those obtained with a classical method, Fourier analysis. This project was
performed in collaboration with P.W. de Bont, and submitted for publication in [18].

Finally, Section7.3 attempts to automate the determination of the quality of rice. The
number of broken kernels determines the price of rice, but counting these is a very
subjective process. In this project we aim at counting the fraction of broken kernels by
scattering rice randomly on a flat-bed scanner. Classical image analysis methods (those
that rely on segmentation of the image) would require the rice kernels to be carefully
separated by hand, a tedious and time-consuming process. Using a granulometry with
RIA openings to measure the length of the kernels, it does not matter if the kernels
are touching one another because no segmentation needs to be done. This project was
performed in collaboration with G. van Dalen, and published in [71].
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Figure 7.1: CLSM slices of a milk protein gel after different treatments. The difference
of the second sample (B) with respect to the other ones is obvious.

Figure 7.2: CLSM slices of a milk protein gel after different treatments, as in Fig-
ure7.1. In this case, the differences are not visible.

7.1 Detecting Minute Differences in Structure

To study the effect of the addition of an enzyme and its substrates on the protein network
of a milk gel, we added the substrate with and without the enzyme to the milk protein
gel. The substrate alone could induce some side effects, which were expected to change
the microstructure of the protein network (visible in the pore sizes of this network). The
enzyme, however, is able to convert the substrate in such a way as to minimize these side
effects. The addition of enzymes and substrates to milk protein would lead to enzymatic
oxidation of this protein, possibly yielding a network with larger pore sizes. This is the
effect of chemical oxidation versus enzymatic oxidation, and these experiments are part
of a study to confirm these processes.

Because the effect of these additives to the milk protein gel should be visible in the
pores of the protein network, we applied the granulometry as described in Chapter3
to CLSM (Confocal Laser Scanning Microscope) fluorescence images of these products.
Rhodamine was used to stain the proteins. Therefore, protein aggregates show up as
regions with high pixel intensity. The dark regions contain water, dissolved protein and
other components that do not contribute to the protein network. These we call the pores.
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The first experiment is carried out on milk protein gel (UHT treated, low fat milk with
2% whey protein added) after four different treatments (see Figure7.1):
– Class A is the original product.

– Class B is the same product with the substrate added.

– Classes C and D are treated with different amounts of the substrate and enzyme
mixture.

All four products have similar, but not identical, properties. Only class B is visually
distinguishable from the others. The images are 512 by 512 pixels.

The second experiment is carried out on similar products (made using skimmed milk
powder to reduce the amount of whey protein). We have 32 uncorrelated images of each
of the classes A, B and C, labelled in the same way as above; one of each is shown in
Figure7.2. They are 256 by 256 pixels. The differences are not discernible by eye.

The main difference between the products of the two experiments is the amounts of
whey protein. These images confirm that the substrate heavily affects these proteins.

We need to note here that the obtained images are two-dimensional sections out of a
three-dimensional structure. This implies that a size distribution obtained from such an
image does not represent a size distribution of the three-dimensional pores, but rather
that of random intersections of those pores with a plane (pore profiles). It could be
possible to obtain a distribution for the three-dimensional pores from it using techniques
from stereology (see [84, 124, 143] for an overview, as well as the text on page26).
However, as we are only interested in comparing the three products with one another,
this is not required. If the pore size distributions of two three-dimensional structures
are the same, then the distributions obtained from an intersection of these pores with a
plane are the same as well. Therefore we are able to directly compare the distributions
obtained from these two-dimensional images.

Although a three-dimensional analysis might provide better discriminating power, we
were unable to do so because the milk protein network was too opaque to obtain a
sufficiently representative three-dimensional image usingCLSM; besides, the resolution
along the optical axis is too low to image the pertinent structure.

Applying the Granulometry

All images were contrast-stretched, making 5% of the pixels black, and 5% white, using
erf-clipping. This counteracts the effect of the clipping that occurred during data acqui-
sition due to a too high dynamic range (see Section6.2). A cumulative size distribution
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Figure 7.3:Cumulative size distributions for the pore profiles of the samples in Fig-
ure7.1. Note how samples C and D are more similar to A than to B.

of the pore profiles, as presented in Chapter3, with two samples per octave and binary
disks as structuring elements, is then computed from each image.

The cumulative size distributions obtained in the first experiment are depicted in Fig-
ure 7.3. It shows that sample B is indeed distinguishable from A, C and D, which are
very much alike. Sample B has smaller pore profiles, which can be seen by its cumula-
tive distribution being above the others.

The second experiment produces the cumulative distributions in Figure7.4, which shows
the averages over each of the 32 distributions acquired for each class. The error bars
show the 95% confidence interval for the mean of each point. This graph shows that
class C has a distribution that is very similar to that of A; the pore profiles in class B
are somewhat larger. The mean values at some scales are statistically different for class
B compared to both A and C. Nothing can be said about differences between classes A
and C.

7.2 Time Evolution of Characteristic Length

Polysaccharides are often used as thickening agents or stabilizers in dairy-based prod-
ucts. They improve the product texture as well as the physical stability. However, pro-
tein and polysaccharide mixtures are usually unstable; they tend to demix in a process
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Figure 7.4:Averaged size distributions for the pore profiles of the three samples in
Figure7.2, with the 95% confidence intervals for these means.

referred to as phase separation. To study phase separation of casein colloids (the pro-
tein) and amylopectin (the polysaccharide), four samples were prepared, each contain-
ing 2.7% (weight) casein, and varying amylopectin quantities (1.0, 1.6, 1.9 and 4.8%
weight). A series of images for each of these samples was recorded usingCLSM. The
casein was labelled with Rhodamine B (which did not influence the macroscopical phase
separation), meaning that the bright parts in the images are the protein-rich phase and
the dark parts compose the protein-poor (and hence polysaccharide-rich) phase. These
four samples were placed in a glass container in which they could be stirred until the
image recording began. The first image in each series was taken immediately after the
stirring was stopped, after which one image was taken at 5 second intervals (except for
the 4.8% mixture, for which the interval was 60s). Measurements were performed at
room temperature at a depth of about 5 to 10µm from the bottom of the container.

Figure7.5 shows the evolution of the four samples during the first 30 minutes. In this
figure the phase-separation of the 1.6% and the 1.9% mixtures is evident. The 1.0%
solution is stable, so it does not demix. The 4.8% sample, however, is not stable but does
not show signs of phase separation in the first 30 minutes. In fact, it takes hours for the
demixing to be clearly visible. This is attributed to the formation of a protein aggregate
network [17], and is also predicted by coarsening theory for mixtures of gelling bio-
polymers [89].

The phase separation in this type of samples is typically measured by estimating the
characteristic length of the structure. The characteristic lengthΛ is defined as the aver-
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Figure 7.5:Evolution of the four samples during the first 30 minutes after the stirring
stopped. The 1.0% sample is stable and does not phase-separate; the 4.8% sample is
not stable but very viscose, so the phase separation is not visible in the first half-hour.
The other two samples demix rather quickly.
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Figure 7.6:Radially averaged frequency spectrum of one of the images in Figure7.5,
together with a fitted function. The fit is not perfect in this case, but the position of
the peak matches the data relatively well. This position is related to the characteristic
length.

age distance between repeating patterns, and can be approximated by adding the average
pore size and the average particle size. This length is expected to satisfy power-law be-
havior in time:Λ(t) ∝ tα [17, 18].

Like the previous application, we are using two-dimensional cross-sections of a three-
dimensional structure. Unlike the previous application, here we are trying to derive
measurements that relate to this three-dimensional structure. To do so we need to assume
the mixture is isotropic, and realize that the results might be biased.

Results

To measure the characteristic length we applied the granulometry to both the dark and
light phases, and used the median as a good estimate of the average size. The sum of the
two medians gives the estimate of the characteristic length. We use the median instead of
the average because it can be computed more easily from the measured size distribution.
We used an error-function clip (see Section6.2) tuned to the 99th percentile, to avoid a
bias in the size distribution due to noise.

The size distribution is expected to be biased after all, because the sieve measures the
minimal distance between structures, not the average distance. Because of the isotropy,
this bias should be small.

We also employed a method often used when analyzing this type of structure: Fourier
analysis [125, 135]. The power-spectrum of one of the images in Figure7.5 yields a



132 Applications

ring (after suitable high-pass filtering to remove shading and the peak atf = 0). Radial
averaging (taking the average value as a function of‖ f‖) results in data as in Figure7.6.
We fitted the function

p(‖ f‖) =
(

b
‖ f‖
a

)2

exp

(
−2
‖ f‖
a

)
(7.1)

to this data, yielding a peak locationa related to the characteristic length byΛ = ∆/a, ∆
being the pixel pitch. The functionp(‖ f‖) does not fit all data equally well, as can be
seen in Figure7.6. But the peak location seems to match pretty well for most images.
The error-function clip required for the granulometry did not influence the results of this
method.

Figures7.7 and7.8 contain the results for the granulometry and the Fourier method,
respectively, and show a good agreement between the two. The power-law constants,
although not identical, are quite similar. Even though both methods have their inaccura-
cies and biases, these appear not to be very large in this case.

In the 1.0% sample some very large, bright blobs appear at two time intervals. These
are probably floating to the bottom of the vial, intersecting the imaging plane at some
point in time. As can be seen in the graphic display of the results, the Fourier method is
heavily influenced by these blobs, whereas the granulometry is not.

Finally, the 4.8% sample may have been imaged with a different gain setting of the
CLSM, or maybe the larger percentage of amylopectin causes the dye to be less effective,
but in Figure7.5we can see that fort = 0 the image of this sample is darker than for the
other samples. This is the reason that, for the granulometry, the initial average object
size is smaller in this sample than in the others. Because we do not expect a difference
at this point, and the Fourier method did not detect such a difference, we conclude that
this is a problem of the granulometry.

7.3 Counting Broken Rice Kernels

The fraction of broken rice kernels in a batch is used to determine its quality. The milling
process employed to extract the kernels from their husk breaks a certain amount of them.
Broken rice causes the consumer’s perception of quality to decrease, along with the
price. This makes it economically important to determine the fraction of broken kernels.

Because manual counting is both expensive and subjective (different people apparently
produce different results), an automated system is required. A flatbed scanner is an ideal
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Figure 7.7:Median pore size plus median object size as a function of time, as mea-
sured with the granulometry. The 4.8% sample has a lower value at t= 0 than the
other samples. This is due to the apparently smaller objects in the images of this
sample.
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Figure 7.8:Characteristic length as a function of time, as measured with the Fourier
method. The 1.0% sample shows a larger oscillation here than with the granulom-
etry. This is due to some very large, bright blobs appearing in the sequence at two
time intervals. These are probably floating to the bottom of the vial, intersecting the
imaging plane at some point in time.
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Figure 7.9:Two images of rice kernels. The image on the left has been made after
carefully separating all kernels to make segmentation easy.

instrument to image rice, but it takes a lot of time to distribute the rice kernels on it in
such a way that segmentation is possible. Therefore, we have applied a granulometry
(with RIA openings), as a segmentation-free measurement technique. From the length
distribution it is possible to derive the fraction of broken kernels. A disadvantage of
using a scanner is that the background is far away from the scanning surface. This, as
well as ambient light, cause the background of the image to be very noisy. This problem
can be overcome with appropriate pre-processing.

Figure7.9 shows two images of rice kernels obtained by placing the rice on a flatbed
scanner. The image on the left has all kernels manually separated before acquisition,
which takes about 15 minutes. The one on the right contains the same kernels randomly
scattered on the scanning surface. As stated before, it is not trivial to correctly segment
such an image. Thus, the classical measuring paradigm (threshold, label, measure the
segmented objects) is not easily applied.

In total we have 6 images of the same sample, 20% of which consists of broken kernels:
– two images with only the broken kernels (one touching, one separated; Figure7.10),
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Figure 7.10:The broken rice kernels used in the images from Figure7.9.

Figure 7.11:The intact rice kernels used in the images from Figure7.9.
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a: Input b: Opening c: Soft-clipping

Figure 7.12:Preprocessing of the images. First, an opening removes thin elements
(b), which are not counted in the length distributions. Then, an error-function clip
(soft-clipping) is applied(c).

– two images with only the intact kernels (again, one touching, one separated; Fig-
ure7.11), and

– two images with all kernels (again, one touching, one separated; Figure7.9).

Applying the Granulometry

When studying the rightmost image in Figure7.9, we notice that the places where the
rice grains touch are quite wide, and do not show any decrease of gray-value. This means
that the line segments of theRIA opening would be able to cross the boundary without
penalty, causing an overestimation of the lengths. This overestimation can be avoided by
increasing the width of the line segments used in theRIA opening. The goal is to avoid
the structuring element from spanning the boundaries between the rice kernels. The best
way to accomplish this is to create a structuring element that has approximately the shape
of a rice kernel. Any other shape (such as elliptic or rectangular) would cause a bias
towards smaller scales. To simplify the task of creating such a structuring element, we
employ some pre-processing that simplifies the shapes in the image. The pre-processing
is discussed below; refer to Figure7.12.

Because we use thick line segments as structuring elements, all kernels and portions
of kernels that are thinner than these lines will be put into the smallest scale of the
granulometry. This adds a bias to the graph. To overcome this bias we remove these
grains using an opening with a disk of diameter equal to the width of the line segments.
Since very few rice kernels are too thin, removing them introduces only a very small
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2w c: l = 2w d: l = 2
√
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Figure 7.13:Part of the sequence of structuring elements used.a is the structuring el-
ement used in the pre-processing step, so it defines the starting point of the sequence.
From b to e, the lengths l increase exponentially with a factor

√
2, to obtain a loga-

rithmic sampling of the scales; here it is expressed in terms of w, the width, which is
13 pixels in this case.

imprecision in the measurements (assuming they do not have a larger probability of
being broken). The thinner portions of the kernels that are also removed (which are
usually the parts surrounding the germ) cause these kernels to be somewhat shorter.
This yields an average underestimation of the lengths of four pixels (result obtained
experimentally). This systematic error yields a shift to the left of the cumulative length
distribution, but can be accounted for if necessary.

The second operation that is applied to the images is an error-function clip (see Sec-
tion 6.2). Its need is two-fold: removing noise in the background, and equalizing the
gray-value over the rice kernels. Some of these contain a chalky portion, caused by an
unbalanced growing process (Figure7.12a). This chalky portion is imaged whiter than
the rest of the kernel, and would influence the length distribution by adding weight to
the smaller scales.

After these pre-processing steps the rice kernels have a somewhat uniform shape with
a half-disk at each end. Rotated versions of such a shape are easy to generate. We do
not need to use interpolation as with the thin line segments in Chapter5, because these
thicker line segments yield a smaller discretization error. Figure7.13 shows some of
the structuring elements used. Using gray-value variants of these shapes (band-limited
shapes like the disks in Section3.5 and the line segments in Section5.5), very similar
results were obtained. The width of the lines was 13 pixels, andd1

2π le orientations were
used for theRIA opening with lengthl . In the terminology used in Section5.7, this is
equivalent of using a value ofq equal to 2. This is a significantly smaller value than
that suggested earlier. However, because of the width of the lines, less orientations are
required. Even so, an over-estimation of the cumulative size distribution at the smaller
scales should be expected.
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The Classical Measuring Paradigm

To compare our results with those obtained with an existing algorithm, we measured the
length distribution using the Feret length measure (longest projection) on the thresholded
and segmented image. This works well on the images where the kernels have been
manually separated before acquisition, but produces poor results on the images with
touching kernels (a similar thing has been done before in e.g. [112, 148]). The algorithm
we used to determine the Feret length uses a chain-code representation of the object
boundary, which can be easily rotated. The longest projection of the boundary is used as
the object length. We used the estimated lengths to build a cumulative volume-weighted
length distribution that could be compared with the granulometric curve.

Results

The length distributions of the rice kernels, measured from the available images using
the proposed granulometry (using four samples per octave, which means thats[i] = 2i/4),
are plotted in Figure7.14. The results for images with touching kernels are almost
identical to the results for images with all kernels separated. For the classical method
this is not the case (see Figure7.15). Touching kernels in this case yield a very large
over-estimation of the lengths.

Comparing these two figures also reveals that the granulometry method produces a result
very close to that obtained by the classical method (on the images with the separated rice
kernels). The largest difference is that the granulometry measures some volume at the
small scales for the intact kernels. As discussed above, this is due to the very limited
number of orientations used in theRIA openings. This bias, however, is easy to overcome
by studying the whole curve instead of specifying a single threshold value (which would
be quite nice to do since this would require only the computation of a singleRIA opening
instead of a whole granulometry).

Figure7.16studies the effect of the opening in the pre-processing stage. It shows the
result of the classic measuring algorithm with and without this pre-processing operation.
It turns out that the discriminating threshold moves from about 5.4mm to about 4.8mm.
However, the discriminating ability is not affected at all.
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Figure 7.14:Cumulative distribution measured for the various input images using
a granulometry withRIA openings with thick line segments. This figure shows that
it is possible to measure the fraction of broken kernels without having to manually
separate each of them: the influence of the contact between rice kernels is very small.
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Figure 7.15:Cumulative distribution measured for the various input images using the
classical measuring paradigm. This figure shows that it is easy to measure the fraction
of broken kernels in this way, given that they are all separated manually (continuous
lines). The procedure breaks down for a random distribution of rice grains on the
scanning surface (dashed lines).
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Figure 7.16:Cumulative distribution measured for the various input images using the
classical measuring paradigm, with and without the opening we employed before the
granulometry. This graph shows the effect of this pre-processing step: the distribution
is biased (shifted towards smaller lengths) meaning that the threshold to discriminate
broken from intact kernels becomes approximately 4.8mm instead of 5.4mm, as should
be used on the original images. (We can also see that on the image with the broken
grains, in spite of the effort put into it, there are still two kernels touching a bit; these
were separated by the opening in the pre-processing stage.)



To steal ideas from one person is plagiarism; to steal from many is research

(Anonymous)

Chapter 8

The Radon Transform

The generalized Radon (or Hough) transform is a well-known tool for detecting param-
eterized shapes in an image. The Radon transform is a mapping between the image
space and a parameter space. The coordinates of a point in the latter correspond to
the parameters of a shape in the image. The amplitude at that point corresponds to the
amount of evidence for that shape. In this paper we discuss three important aspects of
the Radon transform. The first aspect is discretization. Using concepts from sampling
theory we derive a set of sampling criteria for the generalized Radon transform. The
second aspect is accuracy. For the specific case of the Radon transform for spheres, we
examine how well the location of the maxima matches the true parameters. We derive
a correction term to reduce the bias in the estimated radii. The third aspect concerns a
projection-based algorithm to reduce memory requirements.1

8.1 Introduction

One of the first stages in image analysis is the extraction of primitives, such as lines,
edges, curves or simple textures, from an image. In this paper we focus on curve de-
tection, or more precisely,shapedetection. In three- and higher-dimensional spaces,
manifolds (N-dimensional), such as a spherical membrane, are as interesting as curves
(one-dimensional). In general we are interested in a givenfamily of shapes. Our as-
sumption is that the members of this family can be described by a set of parameters.
The task, then, is to find the parameters corresponding to the best fitting member of the
family of shapes. The standard method for detecting parameterized shapes is based on a
family of transformations, which includes the Radon [95] and Hough [47] transforms.

1This paper will be submitted toPattern Recognitionas “The Generalized Radon Transform: Sampling,
Accuracy and Memory Considerations”, C.L. Luengo Hendriks, M. van Ginkel, P.W. Verbeek and L.J. van
Vliet.
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The organization of the paper is as follows: we continue the introduction by briefly
discussing shape representation, followed by a short tutorial overview of the different
transformations. The main point of this overview is to show that the different transfor-
mations are in fact different manifestations of a single unifying transform as has been
described earlier, with some minor differences, in [30, 93, 113, 122]. To clarify the
definitions and results obtained, we will use the detection of hollow hyper-spheres in
D-dimensional space (circles in 2D) throughout the paper.

The transform we describe is continuous and should operate on continuous images, but
to allow computer processing we must work with sampled images. Likewise, the trans-
form should be discretized. This is one of the main points of the paper and is discussed
in Section8.2. To allow discretization we must, in most cases, replace the original trans-
form by a regularized version. The consequences of the regularization are discussed
briefly in Section8.3. We study the particular case of a Radon transform for hollow
spheres in more detail: the regularization in combination with a normalization for the
surface area of the sphere leads to a bias in the estimated radius. This is the second con-
tribution of the paper. The third contribution of the paper is a projection-based scheme
to reduce the memory requirements of the transform-based approach and is described in
Section8.4. We verify our results by performing some experiments on the aforemen-
tioned hollow spheres.

Shape representation using generalized functions

Before proceeding, we introduce the following notation:

~x The spatial coordinates

I(~x) TheD-dimensional image containing theN-dimensional shapes

~p The vector containing the parameters of the curve. Often a subset of the
parameters specifies the location of the shape. It is, therefore, sometimes
convenient to write~p= {~q,~xo}, with~xo the location of the shape (the center
of the sphere), and~q the remainder of the parameters (the radius of the
sphere).

c(~p) A member of a class of shapes described by the parameter vector~p.

~c(~s;~p) The coordinates of a point belonging to the shapec(~p). The coordinates~s
allow us to specify a specific point on the shape.
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C (~x;~p) A set of constraint functions that together define the shape. The number
of constraint functions depends on the dimensionality of the shape:D−N
constraints are necessary to describe aN-dimensional shape. For a point
that lies on the shape, all the constraint functions evaluate to zero:Ci(~x;~p)=
0 for all i.

C(~p,~x) A kernel, also called template, that represents the shape given by~p as an
image with spatial coordinates~x. We can model the imageI as a sum of
several of these templates.

Shapes can be described in different ways. The notation~c(~s;~p) represents the shape.
For a circle in 2D centered at~xo and with radiusr this becomes

~c(φ ;{r,~xo}) =~xo + r

(
cosφ

sinφ

)
, (8.1)

with φ a free coordinate letting us specify an arbitrary point on the circle. Alternatively,
a shape can be defined through the specification of a constraint; this is known as the
implicit representation. In the case of a circle:

C (~x;{r,~xo}) = 0 with C (~x;{r,~xo}) = ‖~x−~xo‖− r . (8.2)

Now recall that the shapes we are looking for are embedded in an image and not directly
available as a set of points. This means that standard results from differential geometry,
such as the expression for the curvature of a plane curve [123]

κ =
ẋÿ− ẏẍ

(ẋ2 + ẏ2)
3
2

(8.3)

are not directly applicable. In this example, the curvature of a curve embedded in an
image in the form of an isophote can still be obtained through the well-known result for
the isophote curvature [60, 63, 133].

In general, however, it may be beneficial to make the embedding of the shapes explicit.
The basic ingredients for such a description are the constraint-based description and the
Dirac delta function. The theoretical basis for this description can be found in Gel’fand
et al. [36, Chapter III, Section 1], who give a very lucid account of this subject matter. It
is not our intention to give a complete exposition of this material; we will merely touch
upon the essentials.

Consider anN-dimensional shape inD-dimensional space. At any point on the shape
we can define a local coordinate system. We will denote the local coordinate vector by
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~u. The firstN coordinatesu1...N span the subspace in which the shape lies and theD−N
remaining coordinatesu(N+1)...D span the subspace normal to the shape. In fact, these
last coordinates act as constraint functions: we can setCi = ui+N. We can describe the
infinitesimal neighborhoodIn by

In(~u) = δ (u(N+1), . . . ,uD) . (8.4)

If we choose an orthogonal coordinate system, then this reduces to

In(~u) =
D

∏
i=N+1

δ (ui) . (8.5)

Let us examine two simple examples in three-dimensional space. Thex-y plane is de-
scribed by the constraintz= 0. Therefore,

I[x-y plane](x,y,z) = δ (z) , (8.6)

represents this plane. A line along thex-axis is described by the constrainty = 0 and
z= 0:

I[line alongx](x,y,z) = δ (y)δ (z) . (8.7)

Because of the simplicity of these two examples, we did not need a local coordinate
system, but in general thisis necessary. There is one last aspect we must consider. The
constraintsz= 0 anda(x,y,z)z= 0 with a(x,y,z) > 0 represent the same shape, but the
imagesI(x,y,z) = δ (z) and I(x,y,z) = δ (a(x,y,z)z) are not the same. The difference
lies in how different points of the shape contribute to a volume integral over the im-
age. This is immediately obvious when using the scaling property of the Dirac delta:
δ (a(x,y,z)z) = (1/a(x,y,z))δ (z). A priori, all the points of the shape should contribute
equally. We can ensure this by scaling theui such that they correspond to the Euclidean
distance (in image space~x) to the shape. If the constraint functions are chosen according
to these principles, we write

I(~x) = δ (C (~x;~p)) . (8.8)

The Radon transform

The Radon transform is named after J. Radon who showed how to describe a func-
tion in terms of its (integral) projections [95]. The mapping from the function onto the
projections is the Radon transform. The inverse Radon transform corresponds to the re-
construction of the function from the projections. The original formulation of the Radon
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cl
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Figure 8.1:Thenormalparameterization of a line. The parameters are the distance
d from the line to the origin, through the normal of the line that intersects the origin,
and the angleφ between that same normal and the x-axis, as indicated in the diagram.

transform is:

R{I}(d,φ) =
∫

R
I(dcosφ −ssinφ ,dsinφ +scosφ)ds , (8.9)

with the projection along the linescl (d,φ), and the parameterization as given in Fig-
ure8.1. Within the realm of image analysis, the Radon transform is mostly known for
its role in computed tomography. It is used to model the process of acquiring projections
of the original object using x-rays. Given the projection data, the inverse Radon trans-
form, in whatever form (most notably backprojection), can be applied to reconstruct the
original object.

The Radon transform can also be used for shape detection. We reformulate the Radon
transform:

R{I}(d,φ) =
∫

(x,y) oncl (d,φ)

I(x,y)dxdy =
∫

RR

I(x,y)δ (xcosφ +ysinφ −d)dxdy . (8.10)

It is now trivial to generalize the Radon transform to arbitrary shapesc(~p). We give
three equivalent formulations, leaving it to the reader to decide which is clearest:

Rc(~p){I}(~p) =
∫

~x onc(~p)

I(~x)d~x =
∫

RN

I
(
~c(~s;~p)

)
||∂~c

∂~s
||d~s =

∫
RD

I(~x)δ (C (~x;~p))d~x . (8.11)

For our study of the discretization of the transform, we choose the third formulation.
The mathematical properties of this generalized form of the Radon transform have been
extensively studied in [35].

Now imagine that there is a shape in the image with parameter set~a. When~p 6=~a, the
Radon transform will evaluate to some finite number which is proportional to the number
of intersections between the shapesc(~p) andc(~a), as illustrated in Figure8.2. However,
when~p=~a, the Radon transform yields a large response (a peak in the parameter space).
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Figure 8.2:The Radon and Hough transforms explained. Left: the Radon transform.
Integrating the intensity values along each of the candidate curves P1–P4 yields small
numbers. Only if a candidate curve happens to fully coincide with a curve in the
image (the solid black circle), will the integral yield a large response. Right: the
Hough transform. The indicated point can be accounted for by the presence of any of
the indicated candidate curves C1–C4. If we consider all the points in the image in
turn, we get many curves that account for individual points, but only candidate curves
that correspond to a true curve (in this case the solid circle) will account for all of the
points.

This response is proportional to theN-dimensional hyper-volume of the shape. We can
now interpret the Radon transform as follows: it provides a mapping from image space to
a parameter spacespanned by the parameters~p. The function created in this parameter
space,P(~p), contains peaks for those~p for which the corresponding shapec(~p) is present
in the image. Shape detection is reduced to the simpler problem of peak detection.

The third formulation of the Radon transform in equation (8.11) demonstrates an impor-
tant reason for using generalized functions. In this notation, we can recognize the form
of a linear integral operator2 LK with kernelC:

(LCI)(~p) =
∫

RD
C(~p,~x)I(~x)d~x . (8.12)

Therefore, if we allow the kernelC to be a generalized function, then we can express the
Radon transform in this format, which is particularly convenient to study its discretiza-
tion. In case of a Radon transform, the kernelC is of the form:C(~p,~x) = δ (C (~x;~p)). In
terms of shape detection, the role of the operatorLC is to compute the match (the inner
product) between the image and a templateC for a given parameter set~p. Here we see
the connection between the Radon transform and template matching.

2This is known as a Fredholm operator.
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Often, the parameters~p consist of the position of the shape~xo and the actual shape
parameters~q. In this case the kernel has a special (shift-invariant) structure:

C({~q,~xo},~x) = C({~q,~xo + ~d},~x+ ~d) for any~d . (8.13)

The operatorLC now reduces to a set of convolutions,

(LCI)(~q,~xo) =
(
KC(~q)∗~x I

)
(~xo) with KC(~q,~x) = C({~q,~x},~0) . (8.14)

This implies a large speed-up: using the convolution property of the Fourier transform,
each convolution reduces to a multiplication in the Fourier domain. We may also note
that the use of generalized functions as convolution kernels is widespread and necessary
to describe the identity system, derivators and integrators.

Use of the Radon transform for shape detection dates back to 1965 [15]. The technique
these authors describe is essentially a Radon transform. Rosenfeld [101] describes this
technique (for straight lines) in Section 8.4.e. Neither [15] nor [101] identify this tech-
nique as the Radon transform.

The Hough transform

Rosenfeld [101] describestwo techniques for curve detection: the first corresponds, as
stated in the previous section, to the Radon transform. The second is a transform due to
Hough [47], which through work by early adopters [33, 57, 81, 109] has become very
popular.

The Hough transform was originally defined to detect straight lines in black and white
images, and seemingly inherently discrete. As it is trivial to generalize the Hough trans-
form to other shapes and gray-value images, we describe it in this extended form. We
set up anN-dimensional accumulator array, each dimension corresponding to one of the
parameters of the shape looked for. Each element of this array contains the number of
votes for the presence of a shape with the parameters corresponding to that element. The
votes themselves are obtained as follows. Consider each point in the input image in turn.
Now we determine which shapes this point, with gray-valueg, could be a member of;
see Figure8.2. We increment the vote for each of these shapes withg. Of course, if a
shape with parameters~p is present in the image, all of the pixels that are part of it will
vote for it, yielding a large peak in the accumulator array. The Hough transform, like the
Radon transform, is a mapping fromimage spaceto aparameter space.

The literature on the Hough transform has focussed on several aspects: error analy-
sis [4, 59, 87, 94, 109, 110, 111, 132], reduction of the computational complexity (see
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Section8.4), extensions [5, 11, 37] (to e.g. other shapes or use of additional information,
such as orientation), and choosing the appropriate parameterization [33, 145, 147]. An
extensive survey of the Hough transform literature up to 1988 is given in [50].

It is possible to construct a continuous formulation for the Hough transform by noticing
that the “voting” procedure accumulates the results in parameter space, which is equiva-
lent to integration. So how do we arrive at a formulation in terms of an integration? The
answer is simple: instead of considering to which points in parameter space a point in
input space contributes, we may turn around and ask “which points in input space con-
tribute (and how much) to any given point in parameter space?”. This line of reasoning
has been used by Stockman and Agrawala [122], and Sklansky [113] to link the Hough
transform to template matching. Strangely enough, none of these authors have taken
the next logical step: defining the continuous Hough transform through the continuous
formulation of template matching, as given in equation (8.12). This final step was first
made explicit by Princen et al. [93].

The starting point in the work by Princen et al. [93] is somewhat different from that
given above and perhaps more in the spirit of the “Hough frame of mind”. At the basis
for their formulation are the constraint functionsC . For any given point~x in the input
space, the constraint(s)C (~x;~p) trace out a manifold in the parameter space spanned by
the parameters~p. If we consider more points~x, we get more of these manifolds. If
consider points~x on a shape with parameters~p0, then the corresponding manifolds will
intersect each other at the point~p0 in parameter space. Nevertheless, in the final step
to obtain the kernel description (8.12), the authors return to the reasoning in [122] and
carry it over to the continuous domain.

The Radon and Hough transform can therefore both be written in the form of (8.12)
with kernel functions of the formδ (C (~x;~p)). The apparent difference between the two is
only superficial and basically amounts to a difference in the computational interpretation
of (8.12):

Reading paradigm (Radon):For each~p, collect all the values ofI(~x), apply the tem-
plate weightsK(~x;~p), and sum everything.

Writing paradigm (Hough): Initialize the entire functionP(~p) to zero. For each point
~x in the input image determine its contribution, weighted withK(~x;~p), to
each of the points inP(~p) and updateP(~p).

The difference in interpretation can be beneficial: if the input data is sparse, the Hough
paradigm offers an immediate reduction in computation time. Vice versa, if we are
interested in only a few points in parameter space, the Radon paradigm is to be preferred.
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The equivalence of the Radon and Hough transforms, as well as the fact that they can
be seen as a form of template matching, has been known for a long time. It seems to
have been tacitly noted by Griffith [40]: the technique he describes is basically a Radon
transform and goes on to refer to Hough [47] as an earlier example of a projection-based
(i.e. Radon) technique. Stockman and Agrawala [122] and Sklansky [113] pointed out
the equivalence of the Hough transform and template matching. Deans [30] discussed
the equivalence of the Radon and Hough transforms, starting from the Radon transform
and showing that it has the same properties as the Hough transform.

Finally, it should be pointed out that Princen et al. [93] claim that the Radon transform
and the Hough transform are only equivalent “under certain restrictive conditions”. This
reasoning is flawed for two reasons. First, they compare the Radon transform to the
original, discrete definition of the Hough transform, instead of their continuous defini-
tion of the Hough transform. Second, they do not seem to have realized that the Radon
transform can be written in the form of a kernel operation as well. Indeed, the kernel as
defined in [93] does not make use of generalized functions. The consequence is that their
kernel has measure zero, meaning that the integral will evaluate to zerounless the input
data contains impulse functions. As we discuss in the next section, we are interested in
a more general model for the input data.

8.2 Sampling the Radon transform

As mentioned in the section about the Hough transform, several authors have investi-
gated the discretization effects associated with it. Here, we will investigate the effects
of sampling on the continuous formulation of the Radon/Hough transform.

It is important to discriminate between two models for the input data. The first is used
in [58, 93]: the input space is continuous and contains points at arbitrary (sub-pixel)
locations,

I(~x) = ∑
i

δ (~x−~xi) . (8.15)

In this model, noise corresponds to perturbations in the position of the points. Given
this model, the conditions under whichP(~p) can be sampled were given by Kiryati and
Bruckstein [58]. Basically, the manifolds that are stamped in parameter space must be
band-limited, very much like the use of Parzen windows for creating smooth probability
density functions [34].

In our work we consider a different model. In most image analysis problems we start
out with a continuous gray-value image, which is subsequently sampled for computer
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processing. Assuming the image is band-limited and properly sampled according to the
Nyquist criterion [21], the sampled image represents the continuous function perfectly:
the original can be reconstructed from the sampled image. The sampled image still
contains all the subtleties of the continuous original, including sub-pixel information.
Curves embedded in the image are faithfully represented. Sethian [106] starts out with
planar curves and subsequently embeds these as zero-crossings in a gray-value image
for this reason. By choosing the operators to be applied to the gray-value image ap-
propriately, the embedded planar curves can be manipulated (shrunk or expanded for
instance).

A large class of images is band-limited by virtue of the image acquisition process. Im-
ages obtained using an optical system are band-limited. If, however, the image is not
band-limited, such as input data of the form given in (8.15), the image must be low-pass
filtered to make it band-limited, implying a certain loss of resolution.

We now wish to process the sampled image such that the discrete processing and the
result thereof are also faithful to their original continuous counterparts. Under which
conditions is it possible to replace a continuous operations by the chain of operations
consisting of sampling, a discrete operation, and reconstruction? This principle is known
assampling invarianceand has been investigated by Verbeek [133] and van Vliet [139].
They have considered convolutions and multiplicative combinations of convolutions.

Here we follow van Ginkel [37] and study the conditions under which equation (8.12)
is sampling invariant. There are two aspects. Keeping~p fixed, we will first consider
under which conditions we may replaceI andC by sampled (along~x) versions and the
integral by a summation. If these conditions are satisfied, we may computeP(~p) for an
arbitrarily chosen~p. We must then show that it is possible to sample the parameter space
P(~p), so that we only need to evaluateP(~p) on a discrete set of points. For simplicity
we restrict ourselves to a one-dimensional example:~p→ p and~x→ x. The Fourier axes
corresponding top andx are denoted by ˜p and x̃ respectively. The sampling distance
alongx is ∆x, the discrete coordinate corresponding tox is n, i.e. the sampled version of
I(x) is I(n∆x). We first investigate under which conditions the following is true:

P(p) =
∫

R
C(p,x)I(x)dx= ∆x ∑

n∈Z
C(p,n∆x)I(n∆x) . (8.16)

We denote the band-limit (alongx) of the productC(p,x)I(x) by bx{CI}. With p fixed,
the sampling criterion for the computation of this integral is a relaxed version of the
Nyquist criterion [133],

sx > bx{CI} , (8.17)
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wheresx is the sampling frequency along thex-axis. Also the band-limit ofCI can be
expressed in that ofC andI ,

bx{CI} ≤ bx{C}+bx{I} . (8.18)

It follows that both the kernelC and the imageI must be band-limited to allow dis-
cretization. Proper sampling of the imageI is a prerequisite for any image analysis
and therefore introduces no new restrictions. This is in general not true for the kernel
C, on which we must impose a bandwidth limitation. This clearly leads to a different
Radon transform, but reflects a conscious choice with well-understood consequences.
These will be discussed in Section8.2. The alternative, samplingC without imposing a
band-limit first, leads to aliasing effects.

We can computeP(p) for an arbitrary value ofp. If P(p) is band-limited, it can be
safely sampled, provided the correct (Nyquist) rate is used. We determine whetherP(p)
is band-limited by computing its Fourier transform:

F {P}(p̃) = F

{∫
R

C(p,x)I(x)dx

}
(p̃) =

∫
R

Fp{C(p,x)}(p̃,x)I(x)dx . (8.19)

If C is band-limited along thep-axis with band-limit bp{C}, then the integral above
evaluates to zero for ˜p > bp{C}, which means thatP(p) is band-limited as well.

The discussion above also holds for the complete multi-dimensional operation: our ar-
gument holds for each spatial dimensionxi separately and for each parameter dimension
p j as well. The same ideas also extend trivially to other sampling schemes, such as the
hexagonal grid.

Band-limiting the kernelC

The Gaussian filter is approximately band-limited with critical sample spacingσ [139]
and corresponding band-limitb = 1

2σ−1. Its properties, in particular good simultaneous
frequency and spatial localization [91], and not introducing new structure [62], make it
a good choice for band-limitingC(~p,~x). We obtainCb, a band-limited version ofC, as
follows:

Cb(~p,~x) = C(~p,~x)∗G(~p,~x;Σ) . (8.20)

The diagonal covariance matrixΣ reflects that we impose band-limitation along each
dimension separately.

By its nature the functionC(~p,~x) = δ (C (~x;~p)) is in general very sparse: for any given
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Figure 8.3:The function K(r,~x) is a cone. For correct normalization, it is required
that this function behave like the Dirac delta function along the normal to the surface.

~p, the points~x which belong to the shape span some curve or manifold inC(~p,~x). The
Radon transform for hyper-spheres provides a convenient example to investigate the
structure ofC(~p,~x) and the effects of band-limitation. The parameter vector~p consists
of the center~xo of the D-dimensional sphere and its radiusr: ~p = (x1, · · ·,xD, r). The
kernelC becomes

C({r,~xo},~x) = K(r,~xo−~x) with K(r,~ξ ) = δ
(1

2

√
2(‖~ξ‖− r)

)
. (8.21)

The functionK represents a cone. Each point on the surface of this cone should have
equal weight as discussed in Section8.1. In essence, we want the integral over the
truncated functionK,

∫ R
0

∫
RD K(r,~ξ )d~ξdr, to equal the surface area of the truncated cone

with a base of radiusR. The cone has a single coordinateu normal to the cone, see
Figure8.3. This coordinate is chosen such that it corresponds to the Euclidean distance
to the surface:u = 1

2

√
2(‖~ξ‖− r). In Section8.3we discuss some issues that lead to a

different choice for the normalization.

What is the effect onK of the Gaussian smoothing applied toC? Let us first consider the
effect of the smoothing applied along the~p-axes. All parameters share the same units
and it is therefore logical to use the sameσK along each dimension. The effect on a local
surface patch, if it can be considered planar locally (σK � r), is that the Dirac profile is
substituted by a Gaussian profile

Kb(r,~xo−~x;σK) = K(r,~xo−~x)∗~xo,r G(~xo, r;σK)≈

G
(1

2

√
2(‖~xo−~x‖− r);σK

)
=
√

2 G(‖~xo−~x‖− r;
√

2 σK) . (8.22)

Because of the linear dependence betweenr and~xo, the actual smoothing obtained along
the grid axis is a factor

√
2 too large, as can be seen in Equation (8.22). This means that
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we can reduce the size of the Gaussian by that factor:

Kb(r,~xo−~x;σK) =
√

2 G(‖~xo−~x‖− r;σK) . (8.23)

The last step is to apply a Gaussian along the~x-axes. Because the structure ofK along
axes~xo and~x is not independent, the Gaussian smoothing along~xo implies a Gaussian
smoothing along~x. This makes it unnecessary to apply the Gaussian smoothing along
the~x-axes, unless the required smoothingσs along the~x-axes is larger than that required
along the~p-axes. A consequence is that the regularization in the parameter space only,
as proposed in [58], is in this case sufficient to avoid discretization errors.

The consequences of the imposed band-limit are as follows: as long as the Gaussian is
small with respect to the curvature ofC, the effects of the Gaussian are negligible. In
fact, it is possible to interpolate inP(~p) and obtain sub-pixel accuracy. High-curvature
structures ofC correspond either to highly curved shapes (such as the point of our cone,
wherer is small) or to shapes which vary rapidly as a function of the parameters. In
neither case is it reasonable to expect good results anyway. The band-limitation does
lead to a bias in the estimated radius. This effect and how it can be compensated for
using a normalization term is the topic of Section8.3.

A perfect discretization?

Under some circumstances it is possible to avoid discretization errors altogether. We
first consider the convolution case [90, Section 8.4]. Letl(x) be an ideal low-pass filter
with a cut-off frequency that corresponds to the band-limit of the imageI(x), and f (x)
the filter to be sampled. Applyingl(x) to I(x) has no effect:I(x)∗ l(x)≡ I(x). This leads
to:

I(x)∗ f (x) = [I(x)∗ l(x)]∗ f (x) = I(x)∗ [l(x)∗ f (x)] , (8.24)

bothI(x) and the term between the brackets are band-limited and can be sampled.

This principle is also applicable to equation (8.12), but only along the~x dimensions.
Only in special cases, such that of the hyper-spheres, is this sufficient. In the general
case it remains necessary to impose a band-limit on the parameter axes.

Ideal low-pass filters have some undesirable properties; ringing artifacts being the most
important. It is also possible to achieve the same effect with Gaussian filters, but at a
certain cost. If we oversample the imageI(x) by a factor three, and choose the sizeσ of
the Gaussian equal to the new sampling distance, we have, to a very good approximation,
I(x)∗G(x)≡ I(x).
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These ideas are interesting, but in practice the influence of the regularization is minor,
so there is no need to resort to oversampling.

8.3 Accuracy of the parameter space

Due to the definition of the functionKb(r,~x;σK) in (8.22), large hyper-spheres will pro-
duce a higher value (higher confidence) than small ones in the parameter space. The
consequence is two-fold:
– a few disconnected sections in the input will be selected as a large hyper-sphere with

a higher confidence than a smaller but complete hyper-sphere, and

– the radii of hyper-spheres with thick walls will be over-estimated.
To avoid this, the spheres that composeKb(r,~x;σK) should be normalized. That is, the
integral of their gray-values should remain constant for anyr. This results in

Kb(r,~x;σK) =
1

SD(r)
G(‖~x‖− r;σK) , (8.25)

whereSD(r) = Qr−(D−1) is the surface area of aD-dimensional hyper-sphere of radius
r, andQ is a constant that depends onD.

This normalization causes a distortion of the shape of the cone, which in turn leads to
an underestimation of the radius. We showed in [69]3 that the error in the position of
a maximum inP(~p) along ther-axis, assumingr � σK , is dominated by the position
of the maximum along ther-axis of Kb(r,~x;σK). To correctly estimate the radius of
hyper-spheres, this maximum should lie at‖~x‖, but is shifted to‖~x‖+ ε(‖~x‖) by the
normalization (see Figure8.4). We find the position of the sifted maximum by equating
the derivative of Equation (8.25) to zero,

∂Kb

∂ r
= Q

[
−(D−1)

rD +
‖~x‖− r

σ2
KrD−1

]
G(‖~x‖− r;σK) = 0 , (8.26)

−(D−1)σ
2
K− (‖~x‖− r) r = 0 , (8.27)

and solving forε = r−‖~x‖, which yields

ε(‖~x‖)≈−(D−1)σ2
K

‖~x‖
− (D−1)2 σ4

K

‖~x‖3
+O

(
‖~x‖−5) . (8.28)

3Printed in AppendixA.
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Figure 8.4: The normalized function Kb(r,~x,σK) from Equation (8.25) is distorted
according to Equation (8.27). The correction we use is an approximation valid for
larger r, and given by Equation (8.28).

We will be using only the first term of this equation. As shown in [69], when taking into
account the shapes in the image a new term ofO

(
‖~x‖−3

)
should be added. However, it

is not possible to correct for it since no assumptions about the image can be made.

Thus, the measured radius,Rm, is given byRm = ‖~x‖+ε(‖~x‖). We substitute‖~x‖ by Rc,
which we then can change such thatRm becomes equal to‖~x‖. Rc is the radius we use
for the creation of the convolution kernelKb(r,~x;σK) at r.

‖~x‖= Rc− ε(Rc) =⇒ Rc =
1
2
‖~x‖+

√
1
4
‖~x‖2− (D−1)σ2

K . (8.29)

Kb(r,~x;σK) =
1

SD(r)
G(‖~x‖−Rc(r);σK) . (8.30)

8.4 Reducing memory requirements

The parameter space for the Radon transform typically has more dimensions than the
input image. This implies that these parameter spaces might not fit into the available
computer memory. This constraint has traditionally prevented wide-spread use of these
transforms for 3D images.

Many authors have tackled this problem in a variety of manners. Most notably, Ballard
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and Sabbah [12] propose to partition the parameter space into two or more spaces with
independent parameters, which can be computed sequentially. For example, it is possible
to first locate all the object centers, and in a second stage determine the sizes. For
(hollow) spheres, this requires the use of gradient information to locate centers [38], and
is only practical for very few objects due to the cost of the second stage. Atherton and
Kerbyson[9] encode the radius as the phase in the complex parameter space, thereby
simplifying the this approach. Hsu and Huang [48] also use a dimensionality reduction
to detect 3D ellipsoids (with 6 parameters, the axes are supposed to lie on the grid). They
split the 6D parameter space into two 4D parameter spaces, which have to be combined
to find the objects.

Another method often employed involves splitting the parameter space into overlapping
regions, from which the maxima are extracted. This does not involve a reduction of
dimensionality, but incurs a penalty in computational cost because of the overlap. In
the case of a sphere, it is natural to split the parameter space along ther-axis, since a
sliceP(r i ,~xo) is computed by a single convolution. We will call this method the Sliding
Window method (SW).

We propose a different approach to reduce the memory requirements. Spheres can be
detected very efficiently by storing only the maximum projection along ther-axis of
P, together with the location of these values on ther-axis (if one is prepared to ignore
concentric spheres). That is, we keep

S(~xo) = max
r
{P(r,~xo)} (8.31)

and
R(~xo) = argmax

r
{P(r,~xo)} . (8.32)

The local maxima inS(~xo) indicate the location of the center of the spheres, andR(~xo)
gives the corresponding radii. Both of these can be computed by a small modification
of the Radon algorithm. Instead of storing all theP(r i ,~xo) slices, we propose to take
the point-wise maximum of each slice with the previously computed intermediate re-
sult. This does not add any computational cost to the algorithm, since finding the local
maxima needs to be done anyway. This maximum projection even simplifies this task.
We call this method the Maximum Projection method (MP), and should be both faster
and much less memory-hungry than theSW method.

The resulting parameter spaceS(~xo) is not band-limited. But, if the spheres are clearly
identifiable and well separated, it turns out to have nicely-shaped peaks (i.e. the neigh-
borhoods of the local maxima are band-limited or nearly so). Thus, it is still possible
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to obtain the center of the sphere with sub-pixel accuracy. However, ther-axis at each
position has been discretized to sampling locations. The accuracy to whichr can be
estimated depends on the number of samples taken, not the band-limit ofKb(r,~xo;σK)
along ther-axis.

It is possible to implement such a Radon transform for other shapes as well, in which
case the maximum projection can be taken over more than one dimension. That is, only
the spatial dimensions need to be kept, all other dimensions can be collapsed into one
maximum image and one or more maximum position images, of which there are as many
as the number of parameter dimensions that are collapsed.

8.5 Results

Evaluation

To demonstrate the claims made in the previous sections, we computed the Radon trans-
form of 25 synthetically generated, 3D test images, 1283 pixels in size, each containing
20 spheres of different radii (between 6 and 18 pixels) at random, sub-pixel locations.
Some of the spheres were touching, but none were overlapping. These spheres had a
Gaussian profile (withσi = 1), thereby approximating band-limitness. We computed
the Radon transform with the two methods explained above (SW and MP), using the
normalized kernel of Equation (8.25) and the corrected kernel of Equation (8.30) (set-
ting σK = 1). TheSW method uses a window of 7 slices in the radius direction, from
which 2 slices overlap other regions. It required five times as much memory, and took
about twice as much time to finish, as compared to theMP method. This is because
the algorithm we used to find the local maxima is relatively expensive compared to the
convolutions themselves.

We evaluated both methods by computing the differences between the true parameters
of the spheres and the estimated ones. Table8.1compares the errors in the location for
the different methods. We found that bothSW andMP found the location of the spheres
with the same precision and accuracy (for any given sphere the parameters found by the
two methods are almost identical; differences are in the order of 2%). The bias is very
small, not significant in relation to the standard deviation. Figure8.5 shows the errors
in the estimated radii for theSW method with and without correcting the kernel for bias.
TheMP method found the rounded values of the radii found by theSW method.

To examine the influence of noise, we added Gaussian noise to the images used above
and repeated the experiments; the results are also shown in Table8.1 and Figure8.5.
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Table 8.1:Error made when estimating the position of spheres in synthetic 3D images.
The numbers shown are standard deviations of the error (in pixels) in the x, y and z-
directions for the various methods (estimated from 500 spheres of radius between 6
and 18 pixels).

std(δx) std(δy) std(δz)

non-correctedSW 0.055509 0.057290 0.059277

noiseless image correctedSW 0.055204 0.056107 0.060896

correctedMP 0.054276 0.055121 0.059372

non-correctedSW 0.067684 0.066870 0.070712

noisy image correctedSW 0.067816 0.065254 0.071266

correctedMP 0.067446 0.064059 0.070625

The input images have aSNR of 2 (with SNR= maxI(~x)−minI(~x)
σN

, I(~x) the uncorrupted
image andσN the standard deviation of the noise probability density distribution). The
standard deviation in the errors do not increase much for this noise level. This shows
that the projection method is a good approximation with or without noise, and shows
that the Radon transform itself is robust with respect to noise.

The graphs in Figure8.6 are computed without the use of interpolation (by densely
sampling along ther-axis), and show the attainable accuracy in the estimation of the
radius with and without normalization and/or correction. They also show the effect of the
width σK of the probes and the widthσi of the spheres in the image. The non-normalized
method is heavily influenced byσi , but not at all byσK . Normalizing the kernel makes
the transform almost independent ofσi , but it becomes dependent onσK . The bias
correction proposed in Equation (8.30) removes this dependency, but the assumption
made (r � σ ) breaks down for smaller radii and largerσ .

Ballotini

As a demonstration application, we used a rather poor-quality x-ray micro-CT image of
ballotini (small, hollow glass beads, see Figures8.9a and8.10a). Some of the glass walls
give a very wide response in the imager (probably caused by refraction or reflection). In
one such region many small spheres can be fitted. To avoid this, we replaced the kernel
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Figure 8.5:Error made when estimating the radius of spheres in synthetic 3D images.
The bias of the corrected method is due to the approximations used when computing
Equation (8.28). The oscillatory nature of the lines is due to the interpolation along
the r-axis: the error is smaller for values near sample points.

Kb by a kernelK′b that penalizes for high gray-values inside the sphere:

K′b(r,~xo;σK) = Kb(r,~xo;σK)−Kb(r−d,~xo;σK) , (8.33)

with Kb the corrected kernel as given in Equation (8.30), andd the difference in radius.
By requiring that the inner part of the sphere be empty, the discriminating abilities of the
transform (for these images) are greatly enhanced (compare image b to e in Figures8.9
and8.10). The computational complexity remains the same. We setd = 4σK , such that
the sphereKb(r,~xo;σK) is not affected too much (see Figure8.7), since that would cause
a large underestimation of the radius. In the synthetic test images of the evaluation we
performed earlier, this setting leads to a slightly larger bias: an underestimation of about
0.1 pixel for large spheres, see Figure8.8. This bias might be corrected for in the same
manner as before.

To find the spheres in the parameter spaceS(~xo), a threshold is used to decide which local
maxima are important enough to represent a sphere in the input images. More complex
decision rules could be used, but are outside the scope of this paper. Figures8.9and8.10
show the results for two different slices of the 3D image.
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Figure 8.6:Minimal error in estimation of the radius of spheres in synthetic 3D im-
ages, obtained without interpolation. These graphs show the effectiveness of the nor-
malization and correction of the kernel Kb(r,~x;σK), as well as the effect ofσK and the
σi used to create the input images.



Results 161

0 2 4 6 8 10 12 14 16 18 20

0

distance to sphere center (x)

gr
ey

−v
al

ue

r = 12

Kb(r, x; σK)                                                       
Kb(r, x; σK) − Kb(r −2, x; σK)
Kb(r, x; σK) − Kb(r −4, x; σK)
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Figure 8.8:Error made when estimating the radius of spheres in synthetic 3D images,
using a negative inner sphere in the convolution kernel. Compare to the results for
the corrected kernel in the left graph of Figure8.5, which is computed on the same
images. The underestimation here is about0.1 pixel for large spheres.
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a: Input b: S (using K′b) c: R (using K′b)

d: Output e: S (using Kb) f: R (using Kb)

Figure 8.9:One slice of the 3D ballotini image and the corresponding slices of the
results of the Radon transform. a: Slice of the input image. b: S(~xo) and c: R(~xo)
obtained using the modified K′b(r,~xo;σK) from (8.33). d: Image generated with the
found parameters. e: S(~xo) and f: R(~xo) obtained using the regular Kb(r,~xo;σK) from
(8.30).
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a: Input b: S (using K′b) c: R (using K′b)

d: Output e: S (using Kb) f: R (using Kb)

Figure 8.10:One slice of the 3D ballotini image and the corresponding slices of the
results of the Radon transform. a: Slice of the input image. b: S(~xo) and c: R(~xo)
obtained using the modified K′b(r,~xo;σK) from (8.33). d: Image generated with the
found parameters. e: S(~xo) and f: R(~xo) obtained using the regular Kb(r,~xo;σK) from
(8.30).





A conclusion is the place where you got tired of thinking

(Arthur Block)

Chapter 9

Conclusions

Throughout this thesis we have seen how the granulometry can be applied to accurately
estimate the (volume-weighted) size distribution of objects in an image. Such a size
distribution can be used, for example, to characterize the structure being imaged. Several
aspects are examined (Section9.1), including the creation of the structuring elements
used, the selection of the morphological operation, the preparation of the image (in the
form of pre-processing), and the conversion of the granulometric curve to a cumulative
size distribution. When examining these aspects, we focus on the continuous image
being represented by the samples in the discrete image. The reason for this is that we are
interested in measuring a property of real-world objects, which have been imaged and
sampled for computer processing. Applying discrete morphological operations on such
an image yields measurements related in part to the coincidental sampling positions with
respect to the objects. That is, when applying morphology to measure object properties,
different results are obtained each time the same objects are imaged. One important
aspect of this thesis is substantially reducing these discretization errors. The results on
this aspect are summarized in Section9.2.

Section9.3 presents the conclusions from Chapter8 about the Radon transform. This
transform detects parameterized shapes in an image, and can therefore also be used to
construct a size distribution. The most important difference between the Radon trans-
form and the granulometry is that the former is linear, whereas the latter is strongly
non-linear. Both methods do not require any form of segmentation, although they can
benefit from pre-processing.

9.1 The Granulometry

A granulometry is the projection of a morphological scale-space on the scale axis. The
morphological scale-space is built with a sieve: an operation that is extensive (or anti-
extensive), increasing and absorbing. The structural opening and the closing always
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satisfy the first two of these properties, but not always the third. The structuring element
used must be chosen carefully. In the continuous domain, structuring elements such as
the disk do satisfy the absorption property.

The closing sieve is defined by

F(x,s) = [φB(x,s)( f )](x) , (9.1)

with s the scale-axis of the scale-space. The granulometry is the projection ofF onto
this axis.

Once the granulometry has been computed, a volume-weighted, cumulative size distri-
bution follows by normalization:

H(r) =
∫

F(x, r)dx−
∫

F(x,0)dx∫
F(x,∞)dx−

∫
F(x,0)dx

. (9.2)

We propose logarithmic sampling of the scale-axis, so that the relative error of the dis-
crete operation remains constant across all scales, and improper statistics are avoided
when estimating the size distribution (usually larger objects are fewer in number than
small ones).

Selecting a Suitable Morphological Operation

As stated above, the structural opening or closing with a disk as structuring element can
be used in the granulometry. A disk (or a sphere in three dimensions) is an isotropic
structuring element and as such has the additional, desirable property of rotation invari-
ance. The granulometry that uses it measures the width of objects.

But there are other morphological operations that satisfy the sieving properties. Among
these are:

– RIA opening and closing, to measure object length. These operations complement
the isotropic structuring element that measures the smallest object diameter. TheRIA

operations can measure all other diameters.

– Rank-max opening and rank-min closing, which ignore a certain amount of pixels.
Both isotropic andRIA morphology can be applied in this way to measure, for exam-
ple, objects formed by agglomeration of smaller particles.

– Opening and closing by reconstruction, only to be used on objects easily segmented.
Touching objects will be considered a single object by these filters.
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– Attribute openings and closings, also only to be used on objects easily segmented.
Instead of measuring the largest or smallest diameter, other attributes such as area
can be measured.

– Floodings, that would produce a granulometry not related to a size distribution, but
potentially useful in characterizing a structure.

The Pre-Processing

Another important aspect of analyzing an image is preparing it in such a way that the
chosen method performs best. This is often called pre-processing, and involves noise
removal, contrast enhancement, artifact removal, etc.

One of the most important effects noise has on the granulometry is flattening it. It adds
volume to both the small and large scales, thereby making the curve less steep. We have
seen that a combination of low-pass filtering (either by linear filters such as the Gaussian
filter or by non-linear filters such as the median, Kuwahara or open-close filters) and
soft-clipping provide the best pre-processing of an image for accurate size distribution
estimation.

Since the granulometry computes a volume-weighted distribution based on the gray-
value volume of the objects in the image, it is important to give all objects a uniform
gray-value over their extent, and to give all objects in the image the same gray-value. If
this does not happen, some objects will have a larger influence on the estimated distribu-
tion. We propose to use soft-clipping to equalize the gray-values of both the foreground
and the background.

Finally, it is important to know that, if the acquisition can be improved, it is worth doing
so. Any pre-processing needed to make the images fit for analysis also yields unwanted
side-effects. These should be avoided, if possible. For example, as seen in Section6.2,
none of the noise reduction filters are perfect. They disturb the image in some way, and
are unable to remove all the effects of the noise.

9.2 Sampling and Morphology

As stated before, we are interested in measuring a property of real-world objects, which
have been imaged and sampled for computer processing. Therefore, it is important
that the operations used for measuring are independent of the sampling. A major part
of this thesis deals with the actual algorithms for the opening and closing, which lack
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the sampling-invariance property. By applying some algorithmic changes (as described
below) to these filters, we were able to dramatically reduce the discretization errors,
thereby improving the discrete approximation to the continuous filters. We examined
two structuring element shapes: disks (or balls in 3D) and line segments.

Interpolation in Morphological Operations

Increasing the density of the sampling grid directly translates to a reduced discretiza-
tion error. Assuming band-limited and correctly sampled input images, interpolation
introduces no error (except close to the image border). However, because the struc-
turing element itself also is sampled more densely, the relative error of the operation
decreases. For the granulometry, where only the projection on the scale-axis is required,
no sub-sampling needs to be done after the operation. If sub-sampling were required,
the improvement would be less significant.

For the line segment as structuring element, interpolation can be used in another manner:
by obtaining the exact function values along the line instead of using the nearest samples.
We have shown how such a strategy diminishes the errors due to sampling in the opening
with a line segment.

Shifting the Disk

We also found that by slightly shifting the disk with respect to the sampling grid, the area
of the binary structuring element as a function of the scale parameter becomes smoother
and better resembles its ideal continuous counterpart (this can, of course, not be done
for the erosion and dilation, since these are not invariant to translations of the structuring
element). This effect can be explained by the loss of symmetry of the discretized struc-
turing element. As a result, the granulometry can be sampled more densely. The optimal
shift found was(0.19,0.31) in 2D and(0.16,0.24,0.34) in 3D. Additionally, this mod-
ification reduces the errors due to the lack of rotation invariance. This improvement is
equivalent to a 4-fold subsampling for smaller scales, but less noticeable at the larger
scales because of the chosen logarithmic sampling.

Gray-Value Structuring Elements

Both the disk and the line segment can also be implemented using gray-value structuring
elements by creating approximately band-limited shapes. We propose an error-function
to simulate the edge of a band-limited object. This is equivalent to convolving the binary
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shape with a Gaussian kernel. One of the more difficult aspects of using such a struc-
turing element is the scaling of its gray-values, which must be related to the gray-value
range of the image. We use a factor of 1.0233 for this relation, making the gray-value
range of the structuring element just a bit larger than that of the image. This factor is
chosen to make the cut-off point of the structuring element to be 2σ pixels from the edge
of the shape.

The gray-value structuring elements performed better than the original binary ones. For
the disk, the performance in the rotation-invariance test was equivalent to subsampling 4
to 8 times, depending on the disk size. For the line segment, the differences are smaller
since the proposed binary version also uses interpolation. However, the increase in com-
putational cost might reduce the usefulness of the gray-value structuring elements. This
is especially true for the line segment, which in its binary form can be computed with a
one-dimensional operation, but as a gray-value structuring element has the same dimen-
sionality as the image.

Sampling-Free Morphology

The only way of completely avoiding discretization errors in mathematical morphol-
ogy is using an alternative image representation. For one-dimensional images we have
proposed to use a piece-wise polynomial representation, based on spline interpolation.
Because this is a continuous representation, discretization effects are no longer relevant.
The structuring element is limited to flat shapes (defined by a domain). With a dedicated
algorithm, dilations and erosions can be computed on this representation, yielding a new
image in the same representation.

A granulometry with these operations was shown to have a smaller bias than the discrete
operation. This bias is introduced by the (non-ideal) cubic spline interpolation, not the
subsequent morphological operations. Additionally, the shape of the structuring element
is not limited to an integer number of pixels.

Extending the algorithm to higher-dimensional images is very complicated, but should
be possible. Extending the algorithm to gray-value images might also be possible by
using the slope transform.

Sampling the Orientation Axis

For use inRIA morphology, we also require a finite number of orientations under which
to compute the morphological operations. We found, as was expected, that this number
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is directly proportional to the line length. If this number is expressed asπ`/q, a simple
experiment showed that settingq between 0.1 and 0.2 will yield good results. Nonethe-
less, we often used a value of 1; this leads to a small underestimation of the measured
length.

9.3 The Radon Transform

We have given the conditions under which the Radon transform can be computed free
of discretization errors. Assuming that the input image is correctly sampled, these con-
ditions are met by imposing a band-limit on the operator function. This has no conse-
quences for sufficiently smooth shapes. The parameter space that results is band-limited,
which allows sampling and interpolation, and thus sub-pixel accuracy in the estimated
parameters.

To avoid a larger weight being assigned to larger shapes, the operator function should
be normalized. We studied the effect of this normalization in the case of the Radon
transform for spheres, and propose a way of correcting for the bias this introduces in the
estimated radius.

The Radon transform reduces to a convolution for position-type parameters, yielding a
large speed-up. We propose a memory-efficient algorithm, computing (through convo-
lution) a singler-slice ofP(r,~xo) at a time. We keep track of the maximum projection
and the argument-maximum projection along ther-axis as we compute the slices. We
argue that this approach can be used for other shapes as well.

We have applied this modified Radon transform to a 3D image of glass hollow beads. To
compute its parameter space we have employed a convolution kernel that contains not
only a sphere, but also a second, smaller, concentric sphere with negative gray-values.
The resulting parameter space has a much higher discriminating ability than that which
would result from the same transform with a single sphere.



For every complex problem, there is a solution that is simple, neat, and wrong.

(Henry L. Mencken)

Appendix A

Underestimation of the Radius
in the Radon Transform
for Circles and Spheres

In this technical report we compute the underestimation of the radius in the Radon trans-
form for circles and spheres. Our implementation of the Radon transform uses spheres
with a Gaussian profile, and normalizes the gray-value of each of the spheres so that a
very large sphere matching only a couple of segments will not get a higher confidence
(value of the peak in the parameter space) than a very small sphere completely matched
in the image. This normalization causes an underestimation of the radius.1

A.1 Introduction

The Radon transform for anN-dimensional hyper-sphere is defined as

P(~x, r) =
∫

Cb(~p, r)I(~x−~p)d~p , (A.1)

with

Cb(~x, r) =
1

SN(r)
δ
(1

2

√
2(‖~x‖− r)

)
∗G(~x;σp)

=
1

SN(r)
G(‖~x‖− r;σp)

(A.2)

1This report is published as “Underestimation of the Radius in the Radon Transform for Circles and
Spheres”, C.L. Luengo Hendriks, M. van Ginkel and L.J. van Vliet, PH Report number PH-2003-02, Pattern
Recognition Group, Delft University of Technology, The Netherlands.
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the convolution kernel that defines the shape of the sphere, andI(~x) the input image. In
these equations,SN(r) is the surface area of the sphere of radiusr. G(~x;σ) denotes the
Gaussian function:

G(~x;σ) =
1(

σ
√

2π
)N e

− 1
2

(
‖~x‖
σ

)2

. (A.3)

Let us assume that the input image has a single sphere with a Gaussian profile centered
at~x = 0, having a radius ofRand a Gaussian parameterσi :

I(~x) = G(‖~x‖−R;σi) . (A.4)

P(0, r), has a shape given by the integral of the product of two Gaussian curves (that of
Cb(~x, r) and that ofI(~x)),

P(0, r) =
∫

Cb(~p, r) I(0−~p) d~p

=
∫

1
SN(r)

G(‖~p‖− r;σp) G(‖~p‖−R;σi) d~p

= SN(1)
∫ ∞

0

1
SN(r)

G(ρ− r;σp) G(ρ−R;σi) dρ .

The location of the maximum alongr is then used as an estimate of the radius of the
sphere in the input image.

Using the substitutionsσ2
s = σ2

p +σ2
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σ2
e

= 1
σ2

p
+ 1

σ2
i

ands= σ2
e

(
r

σ2
p
+ R

σ2
i

)
, The product

of the Gaussians can be re-written as

G(ρ− r;σp) G(ρ−R;σi)

=
1√

2πσp
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=
1

2πσpσi
exp

− 1
2σ2

e

[
ρ−σ

2
e(

r
σ2

p
+

R

σ2
i

)

]2

− (r−R)2

2σ2
s


=

σeσs

σpσi
G(ρ−s;σe) G(r−R;σs)

= G(ρ−s;σe) G(r−R;σs) .

Using this, one obtains

P(0, r) =
SN(1)
SN(r)

G(r−R;σs)
∫ ∞

0
ρ

N−1G(ρ−s;σe) dρ

=
1

rN−1 G(r−R;σs)
∫ ∞

−s
(x+s)N−1G(x;σe) dx

=
1

rN−1 G(r−R;σs)
∫ ∞

−s

N−1

∑
k=0

(
N−1

k

)
xksN−k−1G(x;σe) dx

=
1

rN−1 G(r−R;σs)
N−1

∑
k=0

(
N−1

k

)
sN−k−1

∫ ∞

−s
xkG(x;σe) dx .

(A.5)

The integral can be split∫ ∞

−s
xkG(x;σe) dx=

∫ ∞

0
xkG(x;σe) dx+

∫ −s

0
xkG(x;σe) dx

= 2
k−1

2 σ
k+1
e

[
Γ(

k+1
2

)+ γ(
k+1

2
,

s2

2σ2
e
)
]

,

but this does not lead us anywhere. The second term, the lower incomplete Gamma
function, depends onr (throughs) but cannot be solved forr analytically. Therefore, we
cannot determine the location of the maximum alongr without choosing a dimensional-
ity.

A.2 The 2D case

P(0, r) =
1
r

G(r−R;σs)
∫ ∞

−s
(x+s)G(x;σe) dx . (A.6)
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The solution to the integral is given by

s
∫ ∞

−s
G(x;σe) dx+

∫ ∞

−s
xG(x;σe) dx

= s

[∫ ∞

0
G(x;σe) dx−

∫ −s

0
G(x;σe) dx

]
+
∫ ∞

−s
xG(x;σe) dx

= s

[
1−erf(

−s√
2σe

)
]
+σ

2
e G(−s;σe) .

AssumingR> 3σi or so (if this is not true, the input image will not have recognizable
circles), and knowing that the position of the peak is close to its expected location,
r ≈ R, it can be assumed thatR> 3σe. This means that the error function takes a value
of approximately−1, and the Gaussian of 0.

P(0, r)≈ 2s
r

G(r−R;σs) = 2σ
2
e

(
1

σ2
p

+
R

σ2
i r

)
G(r−R;σs) .

To find the position of the maximum, we equate the derivative to zero.

dP
dr
≈ 2σ

2
e

[
−R

σ2
i r2

+

(
1

σ2
p

+
R

σ2
i r

)
R− r
σ2

s

]
G(r−R;σs) = 0 .

Solving forx = r−Ryields

0 =
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a third-degree equation. Again assumingR> σi andx is close to 0,

0≈ (2σ
2
i +σ

2
p)Rx2 +σ

2
s R2x+σ

2
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2
pR

has a simpler solution. We select the root closest to 0.
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. (A.7)
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A fifth-order approximation around 1/R= 0 of this is given by

x≈−
σ2

p

R
−

σ4
p

R3

σ2
p +2σ2

i

σ2
s

+O
(
R−5)

=−
σ2

p

R
−
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(A.8)

Note that bothσs andσe depend on the input image, but the first term (which is good for
an approximation of the third order), depends only onσp, defined by the algorithm.

A.3 The 3D case

P(0, r) =
1
r2 G(r−R;σs)

∫ ∞

−s
(x+s)2G(x;σe) dx . (A.9)

The solution to the integral is given by
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Again the error function takes a value of approximately−1, and the Gaussian of 0.
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To find the position of the maximum, we equate the derivative to zero.
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a fourth-degree equation. Again assumingR> σi andx is close to 0,
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has a simpler solution. We select the root closest to 0.
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A fifth-order approximation around 1/R= 0 of this is given by
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(A.10)

As in the 2D case, the first term (which is good for an approximation of the third order),
depends only onσp, defined by the algorithm.
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A.4 Kernel Normalization

To show that the most important part of the under-estimation of the radius is caused by
the normalization, we compute the position of the maximum along ther-axis ofCb(~x, r).
We expect this maximum to be close to‖~x‖= R. We recall the definition ofCb(~x, r),

Cb(~x, r) =
1

SN(r)
G(‖~x‖− r;σp) =

K
rN−1G(R− r;σp) ,

with K some constant that depends on the dimensionalityN. The derivative alongr is
given by
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R3 +O
(
R−5) . (A.11)

This explains the first term of equations (A.8) and (A.10), as well as a portion of the
second term. The rest of those equations is due to the asymmetry of the peak resulting
from the convolution. This asymmetry is caused by the curvature of the two interacting
shapes.

To correct for this bias, we need to draw the kernel with an alternative radiusR′. This
should be selected such that the maximum in ther-direction lies exactly atr. For larger
R this is:

r = R′+
(N−1)σ2

p
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=⇒ 0 = R′2− rR′+(N−1)σ2
p
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1
2
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4
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p .

(A.12)
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This list contains the page numbers where each term is defined. The term is emphasized
in the text to make it easier to find. Terms from Chapter8 (about the Radon transform)
are not included.

absorption,35

adaptive filtering,41
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background invariance,21

binary image,19
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infimum reconstruction,38
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opening,33

ordering relation,34

orientation-space,56

parametric closing,37

pattern spectrum,58

photon noise,18

pixel, 18

probability density function,16

propagation,38

quantization,17

rank filter,37

rank-min closing,37

read-out noise,18

reconstruction by dilation,38

RIA closing,48

RIA morphology,41

RIA opening,49

RIA sedimentation,43

RIA wear,44

sampling,17

sampling criterion,18

sampling invariance,20

sampling-free morphology,75

scale-space,57

scaling invariance,21

sedimentation,42

segmentation,38

self-duality,114

sieve,57

size distribution,17

soft clipping,115

steered filtering,41

stereology,26

stochastic error,16

structural closing,35

structure,15

structuring element,27

systematic error,16

thermal noise,18

umbra,31

upper leveling,37

voxel,18

watershed transform,38

wear,42
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