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Abstract. The generalised Radon transform is a well-known tool for
detecting parameterised shapes in an image. Applying the Radon trans-
form to an image results in a parameter response function (PRF). Curves
in the image become peaks in the PRF. The location of a peak corre-
sponds to the parameters of a shape, and the amplitude to the amount of
evidence for that shape. In this paper we discuss two important aspects
of the Radon transform. The first aspect is discretisation. Using concepts
from sampling theory we derive a set of sampling criteria for the Radon
transform. The second aspect concerns a projection-based algorithm to
reduce memory requirements.

1 The Radon transform

The (generalised) Radon transform is a technique for detecting parameterised
shapes. Given a model of the shape, it defines a mapping from the image space
onto a parameter space. The axes of the parameter space correspond to the pa-
rameters of the model. When applied to an image, the Radon transform yields
a parameter response function (PRF) defined on the parameter space. A shape
in the image becomes a peak in the PRF. The location of the peak corresponds
to the parameters of the shape. Shape detection is thus reduced to peak detec-
tion. We discuss two aspects of the Radon transform: its discretisation and an
algorithm to reduce its storage requirements. We focus on the Radon transform
for (hyper-)spheres, but the discussion of the discretisation holds for arbitrary
shapes. In its most general form, the Radon transform is

P (p) =
∫

s on c(p)

I(s)ds, (1)

with P (p) the PRF, I(s) the image and c(p) the shape for parameter vector p.
There are two common approaches to the discretisation of the Radon trans-

form. The first is a straight-forward discretisation of the integral using standard
numerical algorithms. It chooses a point in parameter space and computes its
value by integrating the image over all the points belonging to the curve. In the
second algorithm we choose a point in the image and add its contribution to all
the appropriate points (or bins) of the PRF, a process known as voting. This
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approach is traditionally known as the Hough transform. We stress that the two
are identical in the continuous domain [3]. An advantage of the Radon paradigm
is that it gives us control over how we visit the points in parameter space. Later
we use this property to reduce the memory requirements for storing the PRF.

2 Sampling the Radon transform

Several authors have addressed discretisation-related effects, in particular bin-
ning effects, of the Hough transform [1, 7] and references therein. Here, we pursue
a different approach: we apply the principles of sampling theory to the Radon
transform, thus trying to avoid discretisation errors altogether. Sampling the-
ory gives us the conditions under which a signal can be sampled without loss
of information. The same theory is also applicable to the discretisation of an
arbitrary linear operator, including the Radon transform. We start by writing
the Radon transform in the form of a general linear operator:

P (p) =
∫

R

C(p, s)I(s)ds. (2)

This equation becomes a Radon transform by choosing the function C(p, s)
appropriately. If a subset x of the parameters p represents the spatial position
of the shape, then C has a special form:

C(p, s) = K({p \ x}, x − s), (3)

where {p \ x} denotes all the parameters in p except those in x. Along the
dimensions x the integral reduces to a convolution [8, 9]. Using the convolution
property of the Fourier transform, the operation reduces to a multiplication in
the Fourier domain resulting in a huge speed-up.

Following [4], we will now investigate sampling criteria for equation (2). There
are two aspects. Keeping p fixed, we will first consider under which conditions
we may replace I and C by sampled (along s) versions and the integral by
a summation. If these conditions are satisfied, we may compute P (p) for an
arbitrarily chosen p. We must then show that it is possible to sample the PRF
P (p), so that we only need to evaluate P (p) on a discrete set of points. For
simplicity we restrict ourselves to a one-dimensional example: p → p and s → s.
The Fourier axes corresponding to p and s are denoted by p̃ and s̃ respectively.
The sampling distance along s is ∆s. The discrete coordinate corresponding to
s is n, i.e. the sampled version of I is I(n∆s). We first investigate under which
conditions the following is true:

P (p) =
∫

R

C(p, s)I(s)ds = ∆s
∑
n∈Z

C(p, n∆s)I(n∆s). (4)

We denote the band-limit (along s) of the product C(p, s)I(s) by bs{CI}. With
p fixed, the sampling criterion for the computation of this integral, s̃s > bs{CI},



is a relaxed version of the Nyquist criterion [10]. Also the band-limit of CI can
be expressed in that of C and I:

bs{CI} ≤ bs{C} + bs{I}. (5)

It follows that both the operator function C and the image I must be band-
limited to allow discretisation. Proper sampling of the image I is a prerequisite
for any image analysis and poses no specific problem. This is not true for the
operator function C, which is not band-limited in general. We must impose a
band-limit on C. This clearly leads to a different Radon transform, but this
reflects a conscious choice with well-understood consequences. The alternative,
sampling C without imposing a band-limit first, leads to aliasing effects.

We can compute P (p) for an arbitrary value of p. If P (p) is band-limited, we
may sample P (p) at the correct (Nyquist) rate. We determine whether P (p) is
band-limited by computing its Fourier transform:

F{P}(p̃) = F
{∫

R

C(p, s)I(s)ds

}
(p̃) =

∫
R

Fp{C(p, s)}(p̃, s)I(s)ds. (6)

If C is band-limited along the p axis with band-limit bp{C}, then the integral
above evaluates to zero for p̃ > bp{C}, which means that P (p) is band-limited
as well.

The discussion above also holds for the complete multi-dimensional opera-
tion: our argument holds for each spatial dimension si separately and for each
parameter dimension pj as well. The same ideas also extend trivially to other
sampling schemes, such as the hexagonal grid.

Kiryati and Bruckstein [6] have proposed band-limitation of the Hough trans-
form. Their approach consists of replacing the sinusoids that are stamped in pa-
rameter space by band-limited versions (see also the references in [6]), in essence
the same technique used by the Parzen estimator. In our formalism, this cor-
responds to imposing a band-limit on C(p, s) along the p axes. The difference
between their and our approach lies mainly in the model for the input data:
in their case a set of mathematical points in a continuous space, in our case a
sampled image.

2.1 Band-limiting the operator function C(p, s)

The Gaussian filter is approximately band-limited with critical sample spacing
σ [11] and corresponding band-limit b = 1

2σ−1. Its properties, in particular good
simultaneous frequency and spatial localisation, make it a good choice for band-
limiting C(p, s): We obtain Cb, a band-limited version of C, as follows:

Cb(p, s) = C(p, s) ∗ G(p, s;Σ). (7)

The diagonal covariance matrix Σ reflects that we impose band-limitation along
each dimension separately.

The function C(p, s) is in general very sparse. This follows directly from
equation (1): for any given p, the points s which belong to the shape span some



curve or manifold in C(p, s). The Radon transform for hyper-spheres provides
a convenient example to investigate the structure of C(p, s) and the effects of
band-limitation in some detail. The parameter vector p consists of the centre x
of the D-dimensional sphere and its radius r: p = (x1, · · ·, xD, r). The operator
function C becomes

C(p, s) = K(r, x − s) with K(r, ξ) = δ
(1
2

√
2(‖ξ‖ − r)

)
(8)

for a sphere. The function K represents a cone. If we consider a sufficiently small
surface patch of the cone, we may consider it as a plane. Along the normal to
this plane, the function K should behave like a Dirac delta. Hence the factor
1
2

√
2 in (8). With this normalisation we have that

∫ R

0

∫
RD K(r, ξ)dξdr equals the

surface area of the truncated cone with a base of radius R.
What is the effect on K of the Gaussian smoothing applied to C? Let us first

consider the effect of the smoothing applied along the p axes. All parameters
share the same units and it is therefore logical to use the same σK along each
dimension. The effect on a local surface patch, if it can be considered planar
locally (σK � r), is that the Dirac profile is substituted by a Gaussian profile

Kb(r, x− s; σ) = K(r, x− s) ∗x,r G(x, r; σK) ≈ G(
1
2

√
2(‖x− s‖− r); σK

)
. (9)

The next step is to apply a Gaussian along the s axes; but this is, in fact,
unnecessary. The structure of K along axes x and s is not independent. The
Gaussian smoothing along x implies a Gaussian smoothing along s, as is evident
from (9). It is unnecessary to apply the Gaussian smoothing along the s axes,
unless the required smoothing σs along the s axes is larger than that required
along the p axes.

The Gaussian smoothing has been chosen to allow a sampling distance of
σK along the normal to the plane. The actual sampling will be along ξ and r.
When using a rectangular sampling grid, the off-axis band-limit is larger than
the on-axis band-limit. In the case of our cone, this means that we can reduce
the size of the Gaussian by a factor of

√
2:

Kb(r, ξ) =
√

2 G(‖ξ‖ − r; σK ). (10)

The consequences of the imposed band-limitation are as follows: as long as the
Gaussian is small with respect to the curvature of the manifolds represented by
the operator function C, the effects of the Gaussian are negligible. In fact, it is
possible to interpolate the PRF and obtain sub-pixel accuracy. High-curvature
patches of C correspond either to highly curved shapes or to shapes which vary
rapidly as a function of the parameters. In neither case is it reasonable to expect
good results.

3 Reducing memory requirements

The parameter space for the Radon transform typically has more dimensions
than the input image. This implies that the PRF might not fit into the available



computer memory. This constraint has traditionally prevented wide-spread use
of these transforms for 3D images.

Many authors have tackled this problem in a variety of manners. Most no-
tably, Ballard and Sabbah [2] propose to partition the parameter space into two
or more spaces with independent parameters, which can be computed sequen-
tially. Hsu and Huang [5] apply this method to detect 3D ellipsoids (with 6
parameters, the axes are supposed to lie on the grid). They split the 6D param-
eter space into two 4D parameter spaces, which have to be combined to find the
objects.

Another method often employed involves splitting the parameter space into
overlapping regions, from which the maxima are extracted. This does not involve
a reduction of dimensionality, but incurs a penalty in computational cost because
of the overlap. In the case of a sphere, it is natural to split the parameter space
along the r-axis, since a slice P (ri, x) is computed by a single convolution. We
will call this method the Sliding Window method (SW).

We propose a different approach to reduce the memory requirements. Spheres
can be detected very efficiently by storing only the maximum projection along
the r-axis of P , together with the location of these values on the r-axis (if one
is prepared to ignore concentric spheres). That is, we keep

S (x) = max
r

{P (r, x)} and R (x) = argmax
r

{P (r, x)} . (11)

The local maxima in S(x) indicate the location of the center of the spheres, and
R(x) gives the corresponding radii. Both of these can be computed by a small
modification of the Radon algorithm. Instead of storing all the P (ri, x) slices,
we propose to take the point-wise maximum of each slice with the previously
computed intermediate result. This does not add any computational cost to
the algorithm, since finding the local maxima needs to be done anyway. This
maximum projection even simplifies this task. We call this method the Maximum
Projection method (MP), and should be both faster and much less memory-
hungry than the SW method.

The resulting PRF S(x) is not band-limited. But, if the spheres are clearly
identifiable and well separated, it turns out to have nicely-shaped peaks (i.e.
the neighbourhoods of the local maxima are band-limited or nearly so). Thus,
it is still possible to obtain the center of the sphere with sub-pixel accuracy.
However, the r-axis at each location has been discretised to sampling locations.
The accuracy to which r can be estimated depends on the number of samples
taken, not the band-limitation of Kb(r, x) along the r-axis.

It is possible to implement such a Radon transform for other shapes as well,
in which the maximum projection can be taken over more than one dimension.
That is, only the spatial dimensions need to be kept, all other dimensions can be
collapsed into one maximum image and one or more maximum position images,
of which there are as many as parameter dimensions are reduced.



4 Results

To demonstrate the claims made in the previous sections, we computed the
Radon transform of 25 synthetically generated, 3D test images, 1283 pixels in
size, each containing 20 spheres of different radii (between 6 and 18 pixels)
at random, sub-pixel locations. Some of the spheres were touching, but none
were overlapping. These spheres had a Gaussian profile (with σ = 1), thereby
approximating band-limitness. We computed the Radon transform with the two
methods explained above (setting σK = 1 in equation (10)): SW and MP. The
SW method uses a window of 7 slices in the radius direction, from which 2
slices overlap other regions. It required five times as much memory, and took
three times as much time to finish, as the MP method. Apparently the local
maxima algorithm we used is relatively expensive compared to the convolutions
themselves. We evaluated both methods by computing the differences between
the true parameters of the spheres and the computed ones. The average error
and the standard deviation give a quantitative performance measure for the
algorithm. These results are summarized in Table 1.

We found that both methods found the location of the spheres with the
same accuracy (actually the parameters found for an individual sphere were
very similar). The bias is very small, not significant in relation to the standard
deviation. Both methods underestimate the radius in the same way, but the MP
method found the rounded values of the radii found by the SW method. The
underestimation of the radius depends on r, and it is possible to correct for it
by increasing the radius of the functional Kb(r, x).

We added Gaussian noise with standard deviation σN such that the signal-
to-noise ratio SNR = max I(s)

σN
= 2 (with I(s) the uncorrupted image). The

standard deviation in the error of the spatial coordinate increases by about
50% for this noise level, but is still very small. This shows that the projection
method is a good approximation with or without noise, and shows that the
Radon transform itself is very insensitive to noise.

4.1 Ballotini

As a demonstration application, we used a rather poor quality X-ray micro-CT
image of ballotini (small, hollow glass beads, see Fig. 1, the two images on the top
left). Some of the glass walls give a very wide response in the imager (probably
caused by refraction or reflection). In one such region many small spheres can
be fitted. To avoid this, we replaced the kernel Kb by a kernel K ′

b that penalizes
for high grey-values inside the sphere:

K ′
b (r, x) = Kb (r, x) − Kb (r − 4, x) , (12)

with Kb the original kernel as given in Eq. (9).
By requiring that the inner part of the sphere be empty, the discriminating

abilities of the transform (for these images) are greatly enhanced (see Fig. 1).
The computational cost is increased minimally, since only generating the image



Fig. 1. Two slices of the 3D ballotini image and the results of the Radon transform.
Top to bottom, left to right: Slice of the input image; corresponding slice of the image
reconstructed with the found parameters. Another slice of the input image; correspond-
ing slice of the output. Corresponding slice of S(x); slice of R(x). S(x) without the
inner sphere; S(x) when the inner sphere has a diameter 2 pixels smaller than the
outer sphere (instead of 4 as actually used).

for the functional K ′
b(r, x) is more expensive. The “magic number” 4 used in this

functional was chosen such that the sphere Kb(r, x) was not affected too much
(2 · 2σK = 4), since that would cause a heavier underestimation of the radius.
In the synthetic test images used in above, this setting leads to an average
underestimation of the radius of 0.3 pixels (v.s. 0.2 pixels for the transform with
Kb as the kernel). As before, this systematic error can be corrected for.

To find the spheres in the PRF S(x), a threshold is used to decide which
local maxima are important enough to represent a sphere in the input images.
More complex decision rules could be used, but are outside the scope of this
paper. Figure 1 shows the results for two different slices from the 3D image.

5 Conclusions

We have given the conditions under which the Radon transform can be com-
puted free of discretisation errors. In general these conditions must be imposed
by actively band-limiting the operator function C. This has no consequences
for sufficiently smooth shapes. The PRF that results is band-limited, allowing
interpolation, and sub-pixel accuracy in the estimated parameters.

The Radon transform reduces to a convolution for position-type parameters,
yielding a large speed-up. We propose a memory-efficient implementation com-
puting a single r slice of P (r, x) (through convolution) at a time. We keep track
of the maximum projection and the argument-maximum projection along the r
axis as we compute the slices. We argue that this approach can be used for other
shapes as well.

We have applied this modified Radon transform to a 3D image of glass hollow
beads. To compute its PRF we have employed a convolution kernel that contains



Table 1. Error made when estimating parameters of spheres in synthetic 3D images.
The error in the position (δx = x̂ − x) and the error in the radius (δr = r̂ − r) are
shown separately (the units are pixels for both). The error in the position considers
the first spatial coordinate only.

SNR = ∞ SNR = 2
MP Method SW Method MP Method SW Method

E(δx) −0.00130 −0.00127 −0.00356 −0.00385
std(δx) 0.02917 0.02938 0.04478 0.04605
E(δr) −0.20706 −0.21850 −0.20906 −0.21986
std(δr) 0.30502 0.07142 0.30683 0.07326

not only a sphere, but also a second, smaller, concentric sphere with negative
grey-values. The resulting PRF has a much higher discriminating ability than
that which would result from the same computation with a single sphere.
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