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Abstract

Discrete morphological operations with line seg-
ments are notoriously hard to implement. In this pa-
per we study different possible implementations of the
line structuring element, compare them, and exam-
ine their rotation and translation invariance in the
continuous-domain sense. That is, we are interested
in obtaining a morphological operator that is invari-
ant to rotations and translations of the image before
sampling.

1 Introduction

Morphological operations use a structuring ele-
ment (SE), which plays the role of a neighborhood
or convolution kernel in other image-processing oper-
ations. Often, these SEs are composed of line seg-
ments. For example, the square, hexagon and oc-
tagon, which are increasingly accurate approxima-
tions of the disk, can be decomposed into two, three
and four line segments respectively [11, 12]. Thus,
it is possible to create an arbitrarily accurate approxi-
mation of a disk by increasing the number of line seg-
ments used. The advantage of using line segments
instead of N-dimensional structuring elements is a
reduction in the computational complexity. Further-
more, it is possible to implement a dilation or erosion
by a line segment under an arbitrary angle with only
3 comparisons per pixel, irrespective of the length of
the line segment, using a recursive algorithm [17, 13].

Adams [1] showed how to create an optimal dis-
crete disk using dilations with line segments. These
disks are only approximations of the sampled Eu-
clidean disk. The optimality is a trade-off between
accuracy and efficiency. For multi-scale closings
with these disks, however, absorption does not hold.
Jones and Soille [5] improved on this by using peri-

odic lines, so that the absorption property is satisfied.
Nonetheless, these SEs sacrifice accuracy to gain im-
plementation efficiency. The actual implementation
of the line structuring element is not very important,
since the result is an approximation anyway.

Our reason to study the implementation of the line
SE is to improve on the result of morphological op-
erations used to detect and measure linear features in
images. Examples are roads in airborne images [3, 6],
grid patterns on stamped metal sheets [16], and struc-
ture orientation estimation [14, 15]. We also use line
SEs in RIA Morphology [9, 10].

This paper is organized as follows. We start with
an introduction to Bresenham lines, the basic discrete
lines. The most simple implementation of the di-
lation uses a Bresenham line as SE. For efficiency
purposes, one might compute regional maxima over
a Bresenham line across the image (using the recur-
sive algorithm mentioned above). The drawback is
that this operation is not even translation-invariant in
the discrete sense (i.e. invariant over integer pixel
shifts). Jones and Soille [5] introduced periodic lines,
which are studied in Section 3. Using periodic lines,
it is possible to construct recursive dilations that are
translation-invariant in the discrete sense. After that
we introduce operations obtained by interpolating the
image to obtain regional maxima over line segments
(Sections 4 and 5), and a grey-value SE that imple-
ments an approximately band-limited line segment
(Section 6).

All of these approaches are compared in Sec-
tion 7. We then test the two best methods for rotation-
invariance and translation-invariance. Note that when
we talk about translation-invariance, we actually
mean invariance to (sub-pixel) shifts of the sampling
grid; that is, translation-invariance in the continuous-
domain sense (unless explicitly stated otherwise).
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Figure 1: A Bresenham line across the image can be
tiled so that each pixel in the image belongs to a single
line. Along these lines it is possible to compute the
dilation (or any other operation).

2 Basic Discrete Lines: Bresenham
Lines

Bresenham [2] published an algorithm to draw a
line segment of any orientation on a plotter that could
only draw horizontal, vertical and diagonal lines. The
algorithm combines small portions of these lines to
form a line segment of any orientation. In image pro-
cessing, Bresenham lines are formed by steps in the
eight cardinal directions of the grid.

To efficiently implement a dilation with a line seg-
ment of any orientation, the recursive algorithm pro-
posed by van Herk [17] can be applied to a Bresenham
line crossing the image [13], as in Figure 1 (lines can
be tiled to cover the whole image). This results in, at
each point, the maximum over some pixels (along the
line) at each side of that point. The problem is that, for
neighboring pixels, the configuration of this neighbor-
hood is different. Take as an example a line that goes
up one pixel for each two that it goes right. Such a
line is drawn by making one step right and one diag-
onally up (see Figure 2). There are two ways of start-
ing this line (one of the two steps must be taken first),
and each pixel along this line is embedded in one of
two different neighborhoods. The dilation along this
line will therefore be computed with two different SEs
(both versions are an equally good approximation of
the continuous line segment), alternated from pixel to
pixel. When the image is translated horizontally by
one pixel, and translated back after the operation, a
different result is produced than when the operation
is computed without translation.

Only the horizontal, vertical and diagonal lines
can be used to compute dilations that are translation-
invariant (in the discrete sense). For all other orienta-
tions, the shape of the SE changes from point to point
in the image. This should not pose a significant prob-
lem for band-limited images. Both shapes used (in
the example above) are equally poor approximations

Figure 2: The problem with a Bresenham line is that
each pixel along the line is embedded in a differently
shaped neighborhood. Each of these neighborhoods
are equally good approximations of the continuous
line segment.

of the continuous line segment. The error introduced
because of this outweighs the problems caused by the
shape-change due to the recursive implementation.

We implemented this method by skewing the im-
age in such a way that all pixels belonging to the Bre-
senham line are aligned on a row (or column, depend-
ing on the orientation of the line) of the image (that
is, each column is shifted by an integer number of
pixels). On this skewed image the operations can be
applied along the rows, and the result must be skewed
back.

Soille and Talbot [15] proposed to use the inter-
section of the closings (or the union of the openings)
along all possible Bresenham lines of the desired an-
gle. In the example above, where there are two pos-
sible Bresenham lines representing the same continu-
ous line, this would be the minimum of two closings.
Using this method, discrete translation-invariance is
assured, but there are other problems. First of all, de-
pending on the number of Bresenham lines that ex-
ist for the given angle, this can be more expensive
than the non-recursive implementation using a Bre-
senham line segment as SE. Secondly, a closing in
this manner uses a non-rigid line segment: because
the intersection of closings is used, if any of the pos-
sible segments fits a feature, this feature is kept. This
means that the line segment is allowed to “wiggle”
in between the image features. Thirdly, the opera-
tion is still not translation-invariant in the continuous-
domain sense. This method is not applicable for di-
lations or erosions (since the intersection of dilations
is not a dilation and the union of dilations leads to a
dilation with a thick line segment).

Another problem with the discrete line segment
(whether implemented with a recursive algorithm or
not) is that the length, defined by an integer number
of pixels, depends on the orientation of the segment.
For each orientation, there is a different set of lengths
that are possible to construct.
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Figure 3: The problem of the Bresenham line can be
solved by using only a limited number of pixels on
the line. This way, each neighborhood is the same,
although it is no longer connected. This is a periodic
line.

⊕ =

Figure 4: By dilating a periodic line segment with a
small SE, it is possible to join up the SE. This lim-
its the available lengths of the SE to multiples of the
period.

3 Periodic Lines

Periodic lines were introduced by Jones and
Soille [5] as a remedy to the (discrete) translation-
invariance of the morphological operations along Bre-
senham lines. A periodic line is composed of only
those points of the continuous line that fall exactly on
a grid point, see Figure 3. These lines are thus formed
of disconnected pixels, except for lines of one of the
three cardinal orientations. When considering only
these points, it is possible to use a recursive imple-
mentation along the periodic lines that is translation-
invariant in the discrete sense. However, because of
the sparseness of the points along such a line, they
are not useful except in constructing more complex
structuring elements. For example, by dilating a pe-
riodic line segment with a small connected segment,
one creates a connected line segment, as in Figure 4.
Thus, to implement a (discrete) translation-invariant
dilation, one would compute a dilation with a periodic
line segment, and on the result apply another dilation
with a small connected line segment (which does not
need to be implemented recursively because it is so
small).

The drawbacks of this method are the small num-
ber of orientations for which it is useful (there are
only few orientations that produce a short periodic-
ity; for longer periodicities the line segment needed
to connect the periodic line is longer as well), and
the limited number of lengths that can be created (the
length is a multiple of the periodicity, which depends
on the orientation).

Because the result of this implementation is the
same as that obtained by a direct (non-recursive) im-

Skew

Figure 5: After skewing the image, horizontal lines
correspond to lines under a certain angle with respect
to the image data. Some of the original image samples
fall exactly on these lines (·), but most samples used
(◦) lie in between original grid points. The value at
these points is obtained by interpolation.

plementation using a Bresenham line segment as SE,
we do not consider it separately in the comparison of
Section 7.

4 Interpolated Lines by Skewing of the
Image

We mentioned above that operations along a Bre-
senham line can be implemented by skewing the im-
age, applying the operation along a column (or row),
and skewing the image back. In this section we con-
sider image skews with interpolation (that is, the rows
or columns of the image are not shifted by an integer
number of pixels, but by a real value). See Figure 5.

The interpolation method used is an important fac-
tor in the correctness of the output. The better the
method is, the smaller the error will be. We used cubic
convolution [7] to implement the skews. This method
is a good compromise between accuracy, computa-
tional cost and window size.1

The lines obtained in this way are interpolated,
but have the same number of samples as the Bre-
senham line of the same parameters. It is expected
that these result in a somewhat better translation-
invariance. The mayor drawback is that the result
needs to be skewed back. As stated before, morpho-
logical operations do not produce band-limited im-
ages, and therefore the results are not sampled prop-
erly. Interpolating the result of a morphological oper-
ation is questionable at best.

The reason we need to interpolate in the resulting
image is that the result of the morphological operation
is computed at the points along the continuous line
laid across the image, and not at the grid points of
the output image. There are few columns (as many
as there are points in the periodic line representation
for the selected orientation) with zero or integer shift.

1Remember that the image is not infinite in size, and therefore
it is not possible to use the ideal interpolator. The window size is
important because it determines the portion of the image affected
by the border.
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Figure 6: At the expense of some extra computations,
it is possible to directly compute each of the output
columns, so that the inverse skew is not required. Not
having to interpolate in the result of a morphological
operation is the safest way.

For these columns, no interpolation of the output is
required, and the result is at its best.

To improve the result on the other columns, it
might be interesting to sample the lines more densely
before applying the morphological operation. This
makes the inverse skew more accurate because the
aliasing introduced by the operation will be less se-
vere. In [8] we also used interpolation to increase the
accuracy of morphological operations.

5 True Interpolated Lines

The interpolated lines presented above are at their
best on only a few columns (or rows) of the image.
It is, of course, also possible to accomplish the same
accuracy for all output pixels. In this case, for each
output pixel, samples along a line that goes exactly
through it are computed by interpolation, as in Fig-
ure 6. On these computed samples the operation is
performed.

To compute these lines somewhat efficiently, we
resort again to the skew. By changing the offset of the
image for the skew, it is possible to select which group
of columns gets an integer shift. After performing the
skew many times, different images are obtained. Each
of the columns of the input image is represented with
integer shift in one of these skewed images. After ap-
plying the operation on the rows of these images, the
columns with integer shifts can be extracted and used
to construct the output image. No interpolation needs
to be performed in the output images of the opera-
tion. The number of skews that need to be computed
is equal to the periodicity of the periodic line across
the image.

Again, as for all discrete line segments mentioned
up to now, the number of samples used in the com-
putation of the morphological operation depends on
both the length of the segment and the orientation.
Line segments along the grid are the densest, and di-
agonal segments have the least number of samples.
Thus, for some orientations it is more probable to
miss a local maximum (i.e. the maximum falls in

Figure 7: An approximately band-limited line seg-
ment constructed with Equation (1).

between samples) than for others. This makes the
continuous-domain translation-invariance better for
horizontal and vertical lines than for diagonal lines,
and also has repercussions for the rotation-invariance.
Ideally, one would like to sample each of these lines
equally densely. To do so, it would be necessary to
add columns to the image when skewing. As men-
tioned above, this also enables the creation of sub-
pixel segment lengths, in a similar fashion to the in-
terpolation used in [8] to increase the accuracy of the
isotropic closing.

Alternatively, rotating the image instead of skew-
ing it also alleviates this problem. However, when
rotating, only a limited set of samples falls exactly
on output samples, and in the worst case this happens
only for the sample in the origin of the rotation. This
means that a larger number of operations is required
to compute the result of the operation at all output
pixels.

We have not corrected for the number of samples
along the line segment in the comparison below.

6 Band-Limited Lines

A last option when implementing morphology
with discrete line segments is to use grey-value SEs,
which allows to construct band-limited lines. Such a
segment is rotation and translation invariant, and does
not have a limited set of available lengths. The draw-
back is that the line is thicker, but this should not be a
problem for band-limited images, since it should con-
tain only thick lines as well.

A Gaussian function, as well as its integral, are
band-limited in good approximation, and can be sam-
pled at a rate of σ with a very small error [18]. An
approximately band-limited line segment can be gen-
erated using the error-function along the length of the
segment, and using the Gaussian function in the other
dimensions.

Let us define a two-dimensional image L(�,σ), to be
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used as a structuring element, by

L(�,σ)(x,y) = A · exp

(−y2

2σ 2

)
·

1
2

{
1− erf

(
�−2 |x|

2σ

)}
, (1)

where � is the length of the line segment, x is the co-
ordinate axis in the direction of the segment, and y
is the coordinate axis perpendicular to it. Again, set-
ting σ to 1 is enough to obtain a correctly sampled
SE. Figure 7 shows an example of such a band-limited
line segment. Of course, generating line segments in
higher-dimensional images is trivial: y needs to be
substituted by a vector. Note that the grey-value of the
segment is 0, and the background has a value of −A.
A is the scaling of the SE image, and should depend
on the grey-value range in the image to be processed.

It is not directly clear, however, how to scale this
image L(�,σ). It is obvious that the height A of the line
segment must be larger than the range of grey-values
in the image. If it is not, the edge of the image used as
SE will influence the morphological operation, which
is not desirable. But this height will also influence the
shape of the segment. Even though the line segment
is approximately band-limited for any A, its slopes are
not invariant to this grey-value scaling. Since mor-
phological operations can be written as an interaction
between slopes [4], it follows that this scaling defi-
nitely has an influence on the result of the operation.
By relating the value of A to the range of grey-values
in the image, the operation is invariant to grey-value
scaling of the image, but not invariant to e.g. impulse
noise (which increases the grey-value range), or grey-
value scaling of individual objects in the image. We
obtained the best results by setting A just a little larger
than the image grey-value range. We used the factor
1.0853, which sets the region of the SE that can inter-
act with the image to |x| ≤ �/2+ σ .

7 Comparison of Discrete Line
Implementations

We have implemented the following versions of
the dilation and the opening with a line segment SE:
– Method 1: with a Bresenham line segment as SE.
– Method 2: along Bresenham lines across the image

(Section 2).
– Method 3: with periodic lines (Section 3).
– Method 4: along interpolated lines across the im-

age (Section 4).
– Method 5: with true interpolated lines (Section 5).
– Method 6: with an approximately band-limited line

segment as SE (Section 6).
Figure 8 shows the dilation with each of these

methods applied to an image with a discrete delta
pulse and a Gaussian blob. This figure gives an idea

Figure 8: Sample dilation with different implementa-
tions of the line segment SE. This gives an idea about
the shape of the SE used. Top row, from left to right:
methods 1 and 2. Middle row: methods 3 and 4. Bot-
tom row: methods 5 and 6.

about the shape used in the operation. Methods 1
and 2 produce discrete line segments, whereas meth-
ods 4 and 5 produce line segments with grey-values
that do not exist in the input image. As expected, us-
ing a periodic line produces a disjoint collection of
points. Finally, method 6 produces the thickest, but
also the smoothest, line segment.

To compare these different methods, an image was
generated that contains many line segments of fixed
length and orientation, but varying sub-pixel position.
They were drawn using (1). Openings were applied to
this image, changing both the length and orientation
of the SE, and using each of the implemented meth-
ods. The result of each operation is integrated (taking
the sum of the pixel values), and plotted in a graph
(see Figure 9). It is expected that this results in a value
of 1 for the openings in which the angle of the SE
matches that of the segments in the input image, and
the length � is smaller or equal to the length of these
segments. The result should be 0 for any other param-
eter of the SE. The more the result approximates this
ideal situation, the better the specificity of the opera-
tor is.

There are a couple of things that readily come to
mind when comparing these graphs:

– All methods produce a similar result, with the ex-
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Figure 9: Comparison of different implementations of the opening with a line segment SE. See text for details. The
input image has line segments of length 42 pixels, under an angle of 0.4 rad. Top row, from left to right: methods 1,
2 and 3. Bottom row: methods 4, 5 and 6.

ception of the periodic lines (method 3). This is
due to the fact that the periodic line segment is
disjoint, and therefore can “fit” inside two image
features at once. For most of the orientations, the
periodic line segment consists of only 2 points.

– The two discrete, non-interpolated implementa-
tions (methods 1 and 2), never reach values ap-
proximating 1. The interpolated and grey-value
methods (methods 4, 5 and 6) reach higher values,
closer to the ideal value of 1.

– The three methods that work along lines across the
image (methods 2, 4 and 5) show a stair-like de-
pendency on the length. This is because of the
discretized lengths of these segments. Note that
the actual length of the SE depends on the angle.
This dependency is less obvious in method 1 be-
cause there both the length and the angle are dis-
crete. When slightly changing the length, the angle
changes slightly as well. This results in a less or-
dered pattern, which masks this dependency. In the
other methods, first an angle is set, then the length
is rounded to the nearest integer.

– There are very few differences between the two in-
terpolated methods (methods 4 and 5).

– The result of the grey-value method (method 6) is
very smooth, but shows some “ringing”. This can

be explained by the sampling of the SE and the im-
age: morphological filtering uses the maximum or
minimum value in a neighborhood, and it depends
on whether a sample exactly hits such a maximum
or minimum that it can be found or not. By mod-
ifying slightly the angle of the line, a different set
of samples will sit close to maxima or minima (i.e.
the ridge of the line).

Taking these observations into account, it can be
said that the interpolated methods and the grey-value
method produce results more consistent with the ex-
pectations than the discrete methods. Also, it does not
appear to be necessary to use method 5, since it pro-
duces a result very similar to method 4. Method 4 is,
of course, much simpler and computationally cheaper.

To further examine the interpolated method
(method 4), the experiment was repeated changing
the length and orientation of the line segments in the
image. The results are shown in Figures 10 and 11.
When changing the length, it becomes obvious that it
is not possible to distinguish between lengths of 42
and 42.5 pixels. The reason is that the SE length is
rounded to an integer value after skewing. This means
that for each orientation, there is a different set of pos-
sible lengths, as can be seen in the graphs obtained by
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Figure 10: Evaluation of method 4 (opening along an interpolated line). These graphs were obtained by changing
the length of the line segments in the input image. From left to right: 41.5, 42.0 and 42.5 pixels long.
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Figure 11: Evaluation of method 4 (opening along an interpolated line). These graphs were obtained by changing
the angle of the line segments in the input image. From left to right: 0.2, 0.4 and 0.7 rad.
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Figure 12: Evaluation of method 6 (opening using a grey-value line segment). These graphs were obtained by
changing the angle of the line segments in the input image. From left to right: 0.2, 0.4 and 0.7 rad.
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changing the orientation of the line segments in the
image (Figure 11). The angle of the steps in these
graphs change with the selected angles.

This does not happen with the grey-value morphol-
ogy (see Figure 12). The only thing that changes in
these graphs is the strength of the ringing effect. The
smaller the angle, the larger this effect, because there
will be larger sections of the ridge far away from any
sample.

8 Conclusion

In this paper we reviewed some common meth-
ods to implement morphological operations with line
structuring elements on digitized images. Besides
these methods we also proposed some methods that
use interpolation, under the assumption that this
will increase the similarity of the operator to its
continuous-domain counterpart. We also investigate
the use of an approximately band-limited line seg-
ment as a grey-value structuring element.

After comparing these methods, we conclude that
using interpolation indeed improves the performance
of the operator. However, we also note that the avail-
able lengths are still discrete and depend on the orien-
tation of the line segment. Using a grey-value struc-
turing element produces satisfactory results as well,
and removes the discreteness of the length and angle
of the structuring element.
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