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Abstract. Length distributions can be estimated using a class of morphological
sieves constructed with a so-called Rotation-Invariant, Anisotropic (RIA) mor-
phology. The RIA morphology can only be computed from an (intermediate)
morphological orientation space, which is produced by a morphological opera-
tion with rotated versions of an anisotropic structuring element. This structuring
element is defined as an isotropic region in a subspace of the image space (i.e. it
has fewer dimensions than the image). A closing or opening in this framework
discriminates on various object lengths, such as the longest or shortest internal
diameter. Applied in a sieve, they produce a length distribution. This distribu-
tion is obtained from grey-value images, avoiding the need for segmentation.
We apply it to images of rice kernels. The distributions thus obtained are com-
pared with measurements on binarized objects in the same images.

1 Introduction

The fraction of broken rice kernels in a batch is used to determine its quality. The
milling process used to extract the kernels from their husk breaks a certain amount of
them. Broken rice causes the consumer’s perception of quality to decrease, and so
does the price. This makes it economically important to determine the fraction of
broken kernels.

Because manual counting is both expensive and subjective (different people appar-
ently produce different results!), an automated system is required. A flatbed scanner is
an ideal instrument to image rice, but it takes a lot of time to distribute the rice kernels
on it in such a way that segmentation is possible. Therefore, we have applied a seg-
mentation-free measurement technique to estimate the length distribution of kernels in
an image, which can be used to derive the fraction of broken ones. It involves mor-
phological filtering (RIA morphology) at different scales, from which a particle
length distribution is obtained. The length of a kernel can be used to determine if it is
broken or not. This multi-scale morphological filtering is called sieving.

A sieve is a technique that builds a scale-space using a single morphological op-
eration with a scale parameter. This operation has to be chosen carefully. The mor-
phological operations that are allowed to be used in a sieve must satisfy three proper-
ties: increasingness, extensivity and absorption [1]. In this scale-space, image features
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are separated into different levels according to some size measure. The chosen mor-
phological operation determines to what level each feature is assigned.

Since our application requires the measurement of object length, we need a mor-
phological operation that discriminates features based on their length. To this end, we
have developed a morphological framework based on a structuring element that is
isotropic in a subspace of the image, and thus anisotropic in the image space itself.
Since the structuring element has full rotational freedom, this framework is rotation-
invariant. It also possesses most of the properties of regular morphology. We name it
Rotation-Invariant Anisotropic (RIA) morphology. An RIA opening removes an ob-
ject in the image if it cannot encompass the structuring element under any orientation.
This allows the RIA opening to discriminate objects on their characteristic lengths
(supposing convex objects). In the case of an ellipsoid, these would be the principal
axes. On an N-dimensional (hyper-)ellipsoid, a 1-dimensional structuring element
finds the longest axis, a 2-dimensional one the second longest, etc. An N-dimensional
structuring element is isotropic in the image space, and therefore has no rotational
freedom; its usage reverts to regular isotropic morphology.

2  The Sieve

Morphological sieves were first proposed by Matheron [1]. They have been exten-
sively used with both binary and grey-value morphology to measure particle-size
distributions. Since a sieve has an increasing scale parameter, it results in a scale-
space. Many theoretical studies have been made, linking it with linear scale-space
theory and other non-linear scale-spaces (see for example Alvarez and Morel [2], or
Park and Lee [3]). A sieve can be built with any closing or opening operation W that
satisfies these three axioms [1]:

* Extensivity (W ( f ) > f) or anti-extensivity (W ( f ) <f),

¢ Increasingness (if /< g,then W (f) < W(g) ), and

« Absorption (if A >v then W, (W, (1)) =%, (¥, (1)) =% (/)

By definition, all openings and closings satisfy the first two axioms, but many do not
satisfy the third one [1]. In the next section we will introduce a closing that we use in

the application in Sect. 4, and which does satisfy all three axioms. In this section we
illustrate the notion of sieving with a generic isotropic closing.

2.1 The Closing Scale-Space

We construct a (continuous) scale-space by closing (¢) the image at all scales
r [0 (0,00),

F(xr)=y,/(x) - 1)
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Each image F(x,ry) contains only dark features larger than ry. This is the closing scale-
space. We define F(x,0) = flx). Sampling at discrete scales » = s[i] denoted by i I N
produces a sampled scale-space,

Flxi] =g,/ (x) - )

For uniform scale sampling, s[i] =i + 1. However, if the relative error should be kept
constant, logarithmic sampling suffices. In this case, s[i] = 5" with b =2"", in which
denotes the number of samples per octave.

Some structures contain different scales. Think about a telephone cable, composed
of many bundles, each of which is made out of hundreds of thin wires. The wires are
part of two structures at different scales. The morphological scale-space as described
in this section is capable of finding both scales.

2.2  Size Distributions

The grey-value sum of each of the images in the closing scale-space generates a cu-
mulative size distribution, which is rotation and translation invariant, since the closing
is too [4]. By normalization, the cumulative distribution is made independent from the
image size, contrast, and the fraction of objects. It is thus defined as

ZF[xz] ZF[x
ZF[”’] ZF[ x

where F[x,] is the original image closed with an infinitely large structuring element,
and is thus equal to an image filled with its maximum grey-value.

HI[i] = 3)

2.3 Implementation Aspects

When looking at the description of a sieve, it is obvious that image features composed
of grey-value ramps will be separated into many scales. This can be dealt with by an
appropriate pre-processing step (e.g. high pass-filtering, line or edge detection).

Another important question is how to sample the scale-space. There is relatively
little literature on this topic, and in most articles, one-pixel increments are used as a
default solution. However, we believe it makes sense to use logarithmic sampling,
since we might want to distinguish between 3-pixel features and 4-pixel ones, but not
between 100-pixel features and 101-pixels ones. This causes the relative error to re-
main constant across the scales. We will be using four samples per octave for the
current application, which means that s[i] = 2"*.
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3 RIA Morphology

As stated in the introduction, this morphological framework is based on structuring
elements that are isotropic in a subspace of the image, and thus anisotropic in the
image space itself. By allowing these structuring elements to rotate, we can create
rotation-invariant operators. The operators in this framework that are comparable to
the dilation and erosion are actually not a dilation and erosion in the strict morpho-
logical sense, since they don’t distribute with the intersection and union, respectively.
Therefore we will name them sedimentation and wear, two words with a similar
meaning, but without the morphological connotations. The other two operations de-
fined in this framework are the closing and the opening.

In this section, we use d as the symbol for dilation, € for erosion, and, as in the pre-
vious section, @ for closing. As subscripts to these, we provide its structuring element.
Translation is also denoted with a subscript: £.(f) = f(#—x).

3.1 Sedimentation and Wear

By decomposing the dilation with an isotropic structuring element D with radius r
into a union of dilations with rotated one-dimensional isotropic elements Ly with
radius r and orientation @, we get

51)f:f@D:f€BUL¢ :y%f . @)
[

Note that here ¢ is taken as a multi-dimensional orientation, or orientation vector. If,
instead of taking the maximum over the dilations, we take the minimum, we get a new
operator, which we will call RTA sedimentation,

Here L can be any isotropic support with less dimensions than the image itself, and
thus does not need to be a line. This operator takes the maximum of the image over
the structuring element, rotated in such a way as to minimize this maximum. Fig. 1
gives an example of the effect that this operator has on an object boundary. Note that
a convex object boundary is not changed, but a concave one is.

In the 2D case, in which L is a line, we can compare this sedimentation operator
with a train running along a track. The train wagons (which are joined at both ends to
the track) require some extra space at the inside of the curves. This sedimentation,
applied to a train track, and using a structuring element with the length of the wagons,
reproduces the area required by them. Note that this analogy is only true if the length
of the structuring element is small compared to the curvature of the boundary. This is
always true for a train track, but not necessarily so for a grey-value image.

By duality, one can define the RIA wear as the maximum of a set of erosions with
rotated line segments.
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Fig. 1. Effect of the RIA dilation on an object boundary. The white line in b represents the
original object boundary. In ¢, its construction

3.2 Opening and Closing

The closing is usually defined as a dilation followed by an erosion. However, it is
easier to understand (and modify) if we see it as the maximum of the image over the
support of the structuring element D, after shifting it in such a way that it minimizes
this maximum, but still hits the point ¢ at which the operation is being evaluated. Or,
in other words, the ‘lowest’ position we can give D by shifting it over the ‘landscape’
defined by the function

ar=AVI, FANAE =485 ©®
x0D@ D, g

In accordance to this, we define a new morphological operation, RIA closing, as the

‘lowest’ position we can give the subspace structuring element L, by shifting and

rotating it over the ‘landscape’ f; such that it still hits the point x being evaluated. It is

defined by

of= /\/\ \VA (7

¢ xOLy B Ly

This turns out to be the same as the minimum of the closings, at all orientations, with
the structuring element L (but not equal to an RIA sedimentation followed by an RIA
wear),

¢ff=/)é}|yfﬁ /\% 5,/ = /\%f : )
~ ¢

According to Matheron, this operation is an algebraic closing since it is an intersec-
tion of morphological closings [1]. This implies that extensivity, increasingness and
absorption are satisfied, and they can be used in a sieve. The two-dimensional case is
an intersection of closings with rotated lines, which have been used before (see for
example Soille [4]), and we will use in the next section.
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By duality, one can define the RIA opening as the maximum of openings with ro-
tated line segments.

3.3 Morphological Orientation Space and RIA Morphology

The morphological operation P by rotated versions of an anisotropic structuring ele-
ment L can be used to construct a morphological orientation space

Joo(x.0.0)=W, f(xy) . 9)

The RIA sedimentation and closing now result from a maximum projection along the
orientation axes,

Wif(xy)= /)fw,L (x.7.0) . (10)

The RIA wear and opening result from a minimum projection. In a sieve, this orienta-
tion space would be extended with a scale dimension.

4 Length Measurement of the Rice Kernels

Fig. 2 shows two images of rice kernels obtained by placing the rice on a flatbed
scanner. The image on the left has all kernels manually separated before acquisition,
which takes about 15 minutes. The one on the right contains the same kernels ran-
domly scattered on the scanning surface. As stated before, it is not trivial to correctly
segment such an image. Thus, the classical measuring paradigm (threshold, label,
measure the segmented objects) is not easily applied.

Fig. 2. Two images of rice kernels. The image on the left has been made after carefully sepa-
rating all kernels to make segmentation easy
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In total we have 10 images of the same sample, 20% of which consists of broken
kernels:
¢ two images with only the broken kernels (one touching, one separated),

* two images with only the intact kernels (again, one touching, one separated), and
* six images with all kernels (two touching, four separated).

Accurate and reliable measurements can be obtained by applying the sieve with an
RIA opening to an image with all kernels separated (as the image on the left of Fig.
2). However, that is the easy problem. An image with touching kernels will produce
an over-estimation of the particle sizes, since groups of rice kernels can accommodate
larger line segments than single rice kernels. The solution would be to use ‘thick
lines’ (ellipses). If these are thick enough not to fit through the union point between
touching rice kernels (which is usually thinner than the kernels themselves), the
measurements produce the same results as on the first image.

4.1 Preprocessing

To increase the accuracy of the measurements we do some preprocessing on the im-

ages (see Fig. 3 for the results of these steps). The goals are twofold:

1. remove imaging artifacts, and

2. remove kernels that are thinner than the structuring element to avoid an underesti-
mation of the lengths.

Fig. 3. Preprocessing of the images: first, an opening removes thin elements, which are not
counted in de length distributions (middle). Then, an error-function clip is applied (right)

Because we use thick line segments as structuring elements, all kernels and por-
tions of kernels that are thinner than these will be put into the smallest scale of the
granulometry. To overcome this we remove these features by an opening with a disk
of diameter equal to the width of the line segments. Since very few rice kernels are
too thin, removing them introduces only a very small imprecision in the measure-
ments. The thinner portions of the kernels that are also removed cause these to be
somewhat shorter. This yields a systematic error, an average underestimation of the
lengths of four pixels (result obtained experimentally). This causes a shift to the left
of the cumulative length distribution. This error would, however, also be produced by
the introduction of thick line segments (in addition to an overestimation of the small-
est scale).
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The second operation that is applied to the images is an error-function clip. This is
a clipping that introduces less aliasing than hard clipping [5]. Its need is two-fold:
removing noise in the background, and equalizing the grey-value over the rice ker-
nels. Some of these contain a chalky portion, caused by an unbalanced growing proc-
ess. This chalky portion is imaged whiter than the rest of the kernel, and would influ-
ence the length distribution by adding weight to the smaller scales.

4.2 The Classical Measuring Paradigm

To compare our results with those obtained with an existing algorithm, we measured
the length distribution using the Feret length measure [6] on the thresholded and seg-
mented image. This works well on the images where the kernels have been manually
separated before acquisition, but produces poor results on the images with touching
kernels. The algorithm we used to determine the Feret length uses a chain-code repre-
sentation of the object boundary, which can be easily rotated. The longest projection
of the boundary is used as the object length.

4.3 Results

The length distributions of the two images in Fig. 2, obtained by the proposed sieve as
well as the Feret length, are plotted in Fig. 4. The results for both images using the
sieve are almost identical and only slightly different from the measurement obtained
using the classical method applied to the image with separated kernels. However, the
classical method applied to the image with touching kernels produces a very large
over-estimation of the sizes. Fig. 5 shows the results obtained by the sieve on the ten
images. In all cases, the sieve applied to the images with touching kernels produces
only a minimal overestimation of the kernel length.

7 8 9 10 1 3 4 5 7 8 9 10 1
Length of ice grains (mm)

4 5
Length of ice grains (mm)

Fig. 4. Comparison of the classical segment  Fig. 5. Cumulative distribution measured for
and measure method, and the sieve with the  the images. This figure shows that it is easy
RIA opening. For the latter, touching rice  to measure the fraction of broken kernels in
kernels do not influence the measurement this way. The difference induced by the
very much. Note the logarithmic scaling of  contact between rice kernels is very small
the horizontal axis
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5 Conclusion

For the application discussed in this article, as well as many other applications, seg-
mentation is very difficult or not possible at all. Segmentation-free measurement
techniques are therefore desirable. Sieves, a form of multi-scale morphological filter-
ing, are very useful in this context. Sieves produce size distributions from grey-value
images, and the measure for the size of the image features is determined by the cho-
sen morphological operation. Since this application requires length measurement, RIA
openings have been used in a sieve to obtain length distributions.

RIA (Rotation-Invariant Anisotropic) openings are the openings in a new morpho-
logical framework that results from decomposing an isotropic structuring element into
rotated lower-dimensional isotropic structuring elements. An RIA opening only re-
moves an image feature if the chosen structuring element does not fit under any ori-
entation.

The proposed sieve is applied to measure the length distribution of rice kernels ac-
quired with a flatbed scanner. These were scattered quickly onto the scanning surface,
so that many are touching. To minimize the influence of the touching kernels, we
have modified the RIA openings slightly, using line segments of certain width, in-
stead of using one-pixel thin line segments. With this modification, the obtained dis-
tributions are almost identical for the images with separated and touching kernels. In
contrast, the classical measuring paradigm (which uses a threshold, segmentation of
the objects, and measuring the length based on these binarized shapes) produces in-
correct results for the image with the touching kernels.
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