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Abstract

Length distributions can be estimated using a
class of morphological sieves constructed with a so-
called Rotation-Invariant, Anisotropic (RIA) mor-
phology. The RIA morphology can only be com-
puted from an (intermediate) morphological orienta-
tion space, which is produced by a morphological
operation with rotated versions of an anisotropic
structuring element. This structuring element is
defined as an isotropic region in a subspace of the
image space (i.e. it has fewer dimensions than the
image). A closing or opening in this framework
discriminates on various object lengths, such as the
longest or shortest internal diameter. Applied in a
sieve, they produce a length distribution. This distri-
bution is obtained from grey-value images, avoiding
the need for segmentation. We apply it to images of
rice kernels. The distributions thus obtained are
compared with measurements on binarized objects
in the same images.

1. Introduction

The fraction of broken rice kernels in a batch is
used to determine its quality. The milling process
used to extract the kernels from their husk breaks a
certain amount of them. Broken rice causes the con-
sumer’s perception of quality to decrease, and so
does the price. This makes it economically important
to determine the fraction of broken kernels.

Because manual counting is both expensive and
subjective (different people apparently produce
different results!), an automated system is required.
A flatbed scanner is an ideal instrument to image
rice, but it takes a lot of time to distribute the rice
kernels on it in such a way that segmentation is
possible. Therefore, we have applied a segmenta-
tion-free measurement technique to estimate the
length distribution of kernels in an image, which can

be used to derive the fraction of broken ones. It
involves morphological filtering (RIA morphology)
at different scales, from which a particle length dis-
tribution is obtained. The length of a kernel can be
used to determine if it is broken or not. This multi-
scale morphological filtering is called sieving.

A sieve is a technique that builds a scale-space
using a single morphological operation with a scale
parameter. This operation has to be chosen carefully.
The morphological operations that are allowed to be
used in a sieve must satisfy three properties: in-
creasingness, extensivity and absorption [6]. In this
scale-space, image features are separated into differ-
ent levels according to some size measure. The cho-
sen morphological operation determines to what
level each feature is assigned. Section 2 gives a
description of sieves and the derivation of size dis-
tributions.

Since our application requires the measurement
of object length, we need a morphological operation
that discriminates features based on their length. To
this end, we have developed a morphological
framework based on a structuring element that is
isotropic in a subspace of the image, and thus aniso-
tropic in the image space itself. Since the structuring
element has full rotational freedom, this framework
is rotation-invariant. It also possesses most of the
properties of regular morphology. We name it Rota-
tion-Invariant Anisotropic (RIA) morphology. An
RIA opening removes an object in the image if it
cannot encompass the structuring element under any
orientation. This allows the RIA opening to dis-
criminate objects on their characteristic lengths
(supposing convex objects). In the case of an ellip-
soid, these would be the principal axes. On an N-
dimensional (hyper-)ellipsoid, a 1-dimensional
structuring element finds the longest axis, a 2-
dimensional one the second longest, etc. An N-
dimensional structuring element is isotropic in the
image space, and therefore has no rotational free-



dom; its usage reverts to regular isotropic morphol-
ogy.

The theory and implementation details of RIA
morphology are discussed in Section 3. Finally,
Section 4 contains the results of applying these
methods to the images of rice kernels.

2. The Sieve

Morphological sieves were first proposed by
Matheron [6]. They have been extensively used with
both binary and grey-value morphology to measure
particle-size distributions. Since a sieve has an in-
creasing scale parameter, it results in a scale-space.
Many theoretical studies have been made, linking it
with linear scale-space theory and other non-linear
scale-spaces (see for example Alvarez and Morel
[1], or Park and Lee [8]).

A sieve can be built with any closing or opening
operation Ψ that satisfies these three axioms [6]:
• Extensivity ( ( )f fΨ ≥ ) or anti-extensivity

( ( )f fΨ ≤ ),

• Increasingness (if f g≤ , then ( ) ( )f gΨ ≤ Ψ ),

and
• Absorption (if λ ν>  then

( )( ) ( )( ) ( )f f fλ ν ν λ λΨ Ψ = Ψ Ψ = Ψ ).

By definition, all openings and closings satisfy
the first two axioms, but many do not satisfy the
third one [6]. In the next section we will introduce a
closing that we use in the application in Section 4,
and which does satisfy all three axioms.

In this section we illustrate the notion of sieving
with a generic isotropic closing.

2.1. The Closing Scale-Space

We construct a (continuous) scale-space (see
Figure 1) by closing (φ) the image at all scales
r ∈ (0,∞),

( ) ( ) ( ), D rF x r f xφ=    . (1)

Each image F(x,r0) contains only dark features
larger than r0. This is the closing scale-space. We
define F(x,0) = f(x). Sampling at discrete scales
r = s[i] denoted by i ∈ � produces a sampled scale-
space,

[ ] [ ]( ) ( ),
D s i

F x i f xφ=    . (2)

For uniform scale sampling, s[i] = i + 1. However, if
the relative error should be kept constant, logarith-
mic sampling suffices. In this case, s[i] = bi with
b = 21/n, in which n denotes the number of samples
per octave. The difference between subsequent
scales contains features with sizes between s[i] and
s[i+1], and is called a granule image:

[ ] [ ] [ ], , 1 ,g x i F x i F x i= + −    . (3)

g[x,i] forms the granule scale-space. Note that, as
stated in Section 1, the measure for the size of a
feature is determined by the chosen morphological
operation.

Some structures contain different scales. Think
about a telephone cable, composed of many bundles,
each of which is made out of hundreds of thin wires.
The wires are part of two structures at different
scales. The morphological scale-space as described
in this section is capable of finding both scales. Take
as an example the middle pore in Figure 1, which is
formed by walls of grey-value a, inside a region
bounded by a higher grey-value b. A closing at some
scale will cover the pore with grey-value a. A clos-
ing at a larger scale will cover the whole containing
region with grey-value b. This results in a single
pore being represented at two levels of the scale-
space: at the one level with grey-value a, and at the
other with grey-value b-a.
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Figure 1. Sieve with flat closings.

2.2. Size Distributions

Based on either the granule scale-space or the
closing scale-space, it is relatively easy to construct
a size distribution. The grey-value sum of each of
the granule images provides information on the
amount of features of each size. Similarly, the sum
of each of the images in the closing scale-space can
be used to construct a cumulative distribution. Both
distributions are rotation and translation invariant,
since the closing is too [9]. The difference is that the
cumulative distribution is independent of the chosen
scales, whereas the granule images are not. By nor-
malizing the cumulative distribution, it is made
independent from the image size, contrast, and the
fraction of objects. The cumulative distribution is
thus defined as
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where F[x,∞] is the original image closed with an
infinitely large structuring element, and is thus equal
to an image filled with its maximum grey-value. A
size distribution is the derivative of the cumulative
distribution, which can be approximated by
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This is actually the same as what results after nor-
malizing the distribution obtained using the sum of
the granule images, i.e.
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and is often called a size histogram [5].

2.3. Implementation Aspects

When looking at the description of a sieve, it is
obvious that image features composed of grey-value
ramps will be separated into many scales, just like
the multi-scale pore of Figure 1. This can be dealt
with by an appropriate pre-processing step (e.g. high
pass-filtering, line or edge detection).

Another important question is how to sample the
scale-space. There is relatively little literature on this
topic, and in most articles, one-pixel increments are
used as a default solution. However, we believe it
makes sense to use logarithmic sampling, since we
might want to distinguish between 3-pixel features
and 4-pixel ones, but not between 100-pixel features
and 101-pixels ones. As stated before, this causes
the relative error to remain constant across the
scales. We will be using four samples per octave for
the current application, which means that s[i] = 2i/4.

3. RIA Morphology

As stated in the introduction, this morphological
framework is based on structuring elements that are
isotropic in a subspace of the image, and thus aniso-
tropic in the image space itself. By allowing these
structuring elements to rotate, we can create rota-
tion-invariant operators. The operators in this
framework that are comparable to the dilation and
erosion are actually not a dilation and erosion in the
strict morphological sense, since they don’t distrib-
ute with the intersection and union, respectively.
Therefore we will name them sedimentation and
wear, two words with a similar meaning, but without
the morphological connotations. The other two op-
erations defined in this framework are the closing
and the opening.

In this section, we use δ as the symbol for dila-
tion, ε for erosion, and, as in the previous section, φ
for closing. As subscripts to these, we provide its

structuring element. Translation is also denoted with
a subscript: fx(t) = f (t–x).

3.1. Sedimentation and Wear

By decomposing the dilation with an isotropic
structuring element D with radius r into a union of
dilations with rotated one-dimensional isotropic
elements Lϕ with radius r and orientation ϕ, we get

D Lf f D f L f
ϕϕ

ϕϕ
δ δ= = =�� � V    . (7)

Note that here ϕ is taken as a multi-dimensional
orientation, or orientation vector. If, instead of tak-
ing the maximum over the dilations, we take the
minimum, we get a new operator, which we will call
RIA sedimentation,

L Lf f
ϕ

ϕ
δ δ=S    . (8)

Here L can be any isotropic support with less
dimensions than the image itself, and thus does not
need to be a line. This operator takes the maximum
of the image over the structuring element, rotated in
such a way as to minimize this maximum. Figure 2
gives an example of the effect that this operator has
on an object boundary. Note that a convex object
boundary is not changed, but a concave one is.

a b

c
Figure 2. Effect of the RIA dilation on an object boundary.
The white line in b represents the original object bound-
ary. In c, its construction.

In the 2D case, in which L is a line, we can com-
pare this sedimentation operator with a train running
along a track. The train wagons (which are joined at
both ends to the track) require some extra space at
the inside of the curves. This sedimentation, applied
to a train track, and using a structuring element with
the length of the wagons, reproduces the area re-
quired by them. Note that this analogy is only true if
the length of the structuring element is small com-



pared to the curvature of the boundary. This is al-
ways true for a train track, but not necessarily so for
a grey-value image.

By duality, one can define the RIA wear as the
maximum of a set of erosions with rotated line seg-
ments.

3.2. Opening and Closing

The closing is usually defined as a dilation fol-
lowed by an erosion. However, it is easier to under-
stand (and modify) if we see it as the maximum of
the image over the support of the structuring element
D, after shifting it in such a way that it minimizes
this maximum, but still hits the point t at which the
operation is being evaluated (see Figure 3a). Or, in
other words, the ‘lowest’ position we can give D by
shifting it over the ‘landscape’ defined by the func-
tion f,
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In accordance to this, we define a new morphologi-
cal operation, RIA closing, as the ‘lowest’ position
we can give the linear structuring element L, by
shifting and rotating it over the ‘landscape’ f, such
that it still hits the point x being evaluated (see Fig-
ure 3b). It is defined by
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This turns out to be the same as the minimum of the
closings, at all orientations, with the structuring
element L (but not equal to an RIA sedimentation
followed by an RIA wear),
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According to Matheron, this operation is an alge-
braic closing since it is an intersection of morpho-
logical closings [6]. This implies that extensivity,
increasingness and absorption are satisfied, and they
can be used in a sieve. The two-dimensional case is
an intersection of closings with rotated lines, which
have been used before (see for example Soille [9]),
and we will use in the next section.

By duality, one can define the RIA opening as
the maximum of openings with rotated line seg-
ments.

a b

Figure 3. Construction of the 2D isotropic closing (a), and
that of the 2D RIA closing (b).

3.3. Morphological Orientation Space and
RIA Morphology

The morphological operation ψ by rotated ver-
sions of an anisotropic structuring element L can be
used to construct a morphological orientation space

( ) ( ), , , ,L Lf x y f x y
ϕ

ϕΨ = Ψ    . (12)

The RIA sedimentation and closing now result from
a maximum projection along the orientation axis,

( ) ( ),, , ,L Lf x y f x y
ϕ

ϕΨΨ =S    . (13)

The RIA wear and opening result from a minimum
projection.

In a sieve, this orientation space would be ex-
tended with a scale dimension.

3.4. Implementation

Morphological operations that use line segments
as structuring elements are often implemented using
approximations of line segments, such as periodic
lines [4]. These might be a very good solution for
binary images, but for grey-value images we can do
much better.

Since grey-value images are an exact representa-
tion of a continuous function (if sampled correctly),
they can be resampled at arbitrary locations. This
makes it possible to rotate the image instead of the
line segment. Using a horizontal or vertical line
produces the smallest discretization error for the
structuring element. For each two orientations, the
image must be rotated, the one-dimensional filter
applied in both horizontal and vertical directions, the
two results combined, and the result rotated back to
be combined with the results for other orientations.
Of course, this is only possible because the results
are combined using a maximum or minimum opera-
tion.

The region of influence for the dilation and ero-
sion is a circle with radius r (being the diameter of
the structuring element in the subspace). For the
opening and closing it has a diameter of 2r. To take
all the pixels in these neighborhoods into account,
respectively rπ / 2 and rπ orientations are needed.



This means that rπ rotations of the image are re-
quired for an opening operation. To save on some
computation, we skew the image instead of rotating
it. However, each skew only allows for the compu-
tation of a single orientation, which means that for
each orientation two skews are required instead of
three (a rotation can be accomplished with three
skews [3, 7, 10]).

The quantification error is produced by the ap-
proximated line segment length in the skewed im-
age, which is not the same for all orientations.

4. Length Measurement of the Rice Ker-
nels

Figure 4 shows two images of rice kernels ob-
tained by placing the rice on a flatbed scanner. The
image on the left has all kernels manually separated

before acquisition, which takes about 15 minutes.
The one on the right contains the same kernels ran-
domly scattered on the scanning surface. As stated
before, it is not trivial to correctly segment such an
image. Thus, the classical measuring paradigm
(threshold, label, measure the segmented objects) is
not easily applied.

In total we have 10 images of the same sample,
20% of which consists of broken kernels:
• two images with only the broken kernels (one

touching, one separated),
• two images with only the intact kernels (again,

one touching, one separated), and
• six images with all kernels (two touching, four

separated).

  

Figure 4. Two images of rice kernels. The image on the left has been made after carefully separating all kernels to make
segmentation easy.

    
Figure 5. Preprocessing of the images: first, an opening removes thin elements, which are not counted in de length distribu-
tions (middle). Then, an error-function clip is applied (right).



Accurate and reliable measurements can be ob-
tained by applying the sieve with an RIA opening to
an image with all kernels separated (as the image on
the left of Figure 4). However, that is the easy prob-
lem. An image with touching kernels will produce
an over-estimation of the particle sizes, since groups
of kernels can accommodate larger line segments
than single ones. The solution would be to use ‘thick
lines’ (ellipses). If these are thick enough not to fit
through the union point between touching rice ker-
nels (which is usually thinner than the kernels them-
selves), the measurements produce the same results
as on the first image.

4.1. Preprocessing

To increase the accuracy of the measurements
we do some preprocessing on the images (see Figure
5 for the results of these steps). The goals are two-
fold:
1. remove imaging artifacts, and
2. remove kernels that are thinner than the struc-

turing element to avoid an underestimation of the
lengths.
Because we use thick line segments as structur-

ing elements, all kernels and portions of kernels that
are thinner than these will be put into the smallest
scale of the granulometry. To overcome this we
remove these features by an opening with a disk of
diameter equal to the width of the line segments.
Since very few rice kernels are too thin, removing
them introduces only a very small imprecision in the
measurements. The thinner portions of the kernels
that are also removed cause these to be somewhat
shorter. This yields a systematic error, an average
underestimation of the lengths of four pixels (result
obtained experimentally). This causes a shift to the
left of the cumulative length distribution. This error
would, however, also be produced by the introduc-
tion of thick line segments (in addition to an overes-
timation of the smallest scale).

The second operation that is applied to the im-
ages is an error-function clip. This is a clipping that
introduces less aliasing than hard clipping [11]. Its
need is two-fold: removing noise in the background,
and equalizing the grey-value over the kernels.
Some of these contain a chalky portion, caused by
an unbalanced growing process. This chalky portion
is imaged whiter than the rest of the kernel, and
would influence the length distribution by adding
weight to the smaller scales. Figure 6 shows the
result of this error-function clip on a one-

dimensional portion of the image through a rice
kernel.

Figure 6. Error-function clip on a 1D portion of the image
through a rice kernel. The bottom dotted line is the median
over the whole image; the top one is the maximum value.
The chosen range of the clipping is half the distance be-
tween these values, so that the influences of the back-
ground noise and the dense portion of the rice kernel are
reduced.

4.2. The Classical Measuring Paradigm

To compare our results with those obtained with
an existing algorithm, we measured the length dis-
tribution using the Feret length measure [2] on the
thresholded and segmented image. This works well
on the images where the kernels have been manually
separated before acquisition, but produces poor
results on the images with touching kernels. The
algorithm we used to determine the Feret length uses
a chain-code representation of the object boundary,
which can be easily rotated. The longest projection
of the boundary is used as the object length.

4.3. Results

The length distributions of the two images in
Figure 4, obtained by the proposed sieve as well as
the Feret length, are plotted in Figure 7. The results
for both images using the sieve are almost identical
and only slightly different from the measurement
obtained using the classical method applied to the
image with separated kernels. However, the classical
method applied to the image with touching kernels
produces a very large over-estimation of the sizes.

Figure 8 shows the results obtained by the sieve
on the ten images. In all cases, the sieve applied to
the images with touching kernels produces only a
minimal overestimation of the kernel length.
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Figure 7. Comparison of the classical segment and measure method, and the sieve with the RIA opening. For the latter,
touching rice kernels do not influence the measurement very much. Note the logarithmic scaling of the horizontal axis.
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Figure 8. Cumulative distribution measured for the images. This figure shows that it is easy to measure the fraction of broken
kernels in this way. The difference induced by the contact between rice kernels is very small.

5. Conclusion

For the application discussed in this article, as
well as many other applications, segmentation is
very difficult or not possible at all. Segmentation-
free measurement techniques are therefore desirable.
Sieves, a form of multi-scale morphological filter-
ing, are very useful in this context. Sieves produce
size distributions from grey-value images, and the
measure for the size of the image features is deter-
mined by the chosen morphological operation. Since
this application requires length measurement, RIA
openings have been used in a sieve to obtain length
distributions.

RIA (Rotation-Invariant Anisotropic) openings
are the openings in a new morphological framework
that results from decomposing an isotropic structur-
ing element into rotated lower-dimensional isotropic
structuring elements. An RIA opening only removes
an image feature if the chosen structuring element
does not fit under any orientation.

The proposed sieve is applied to measure the
length distribution of rice kernels acquired with a
flatbed scanner. These were scattered quickly onto
the scanning surface, so that many are touching. To
minimize the influence of the touching kernels, we
have modified the RIA openings slightly, using line
segments of certain width, instead of using one-pixel
thin line segments. With this modification, the ob-



tained distributions are almost identical for the im-
ages with separated and touching kernels. In con-
trast, the classical measuring paradigm (which uses a
threshold, segmentation of the objects, and measur-
ing the length based on these binarized shapes) pro-
duces incorrect results for the image with the
touching kernels.
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