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Abstract. In this paper we propose a series of novel morphological operators that
are anisotropic, and adapt themselves to the local orientation in the image. This
new morphology is therefore rotation invariant; i.e. rotation of the image before or
after the operation yields the same result. We present relevant properties required
by morphology, as well as other properties shared with common morphological
operators. Two of these new operators are increasing, idempotent and absorbing,
which are required properties for a morphological operator to be used as a sieve.
A sieve is a sequence of filters of increasing size parameter, that can be used to
construct size distributions.As an example of the usefulness of these new operators,
we show how a sieve can be build to estimate a particle or pore length distribution,
as well as the elongation of those features.

1 Introduction

When analyzing images without a preferred orientation, or images with an unknown
orientation (as is the case, for example, of an image acquired after placing a sample
randomly under a microscope), it is desirable to use rotation invariant operations. A
rotation invariant operation yields an output that is independent of the orientation of the
sample with respect to the sampling grid. There are three different ways of constructing
rotation invariant operators:

– using a single isotropic operator (the kernel itself is rotation invariant),
– using a data-driven anisotropic operator (the kernel is anisotropic, but is oriented to

the local gradient in the image), or
– by combining a set of anisotropic operators.

Non-rotationally invariant filters will almost certainly produce incorrect results if
they are not aligned with the image under study, and an isotropic filter is often limited
in its capabilities. Therefore, it is worthwhile to study rotation invariant operators based
on anisotropic kernels.

For example, consider an isotropic morphological closing, which has a disk as the
structuring element (we regard 2D images for now). If we apply such a filter to an image
with dark objects, such as the microscopical image in Fig. 1, all dark objects smaller
than the structuring element will be removed from the image. If we see the image as a
landscape where the dark features are the valleys and the light ones the hills, as in Fig. 1,
we can imagine the closing as filling up the valleys such that no valleys remain in which
the structuring element cannot fit (see Fig. 2).
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This closing operation can be used as a sieve to detect features larger than a certain
size. The problem is that this size is only determined by the smallest diameter of the
features. To measure length, an anisotropic structuring element is required.

In this paper we will introduce new morphological operators based on isotropic
structuring elements with alower dimensionality than the image under study (and thus
anisotropicin the space of the image). By dropping one or more dimensions, the struc-
turing element gets some degrees of rotational freedom that allows it to align itself with
the features in the image. By selecting the orientation that causes minimum or maximum
response (pixel by pixel), we create a rotation-invariant operator. In the two-dimensional
case, the structuring element would be one-dimensional, with one degree of rotational
freedom. A closing in this new morphological framework would remove an object only
if the line element could not fit. This would mean that its largest diameter (supposing
convex objects) is smaller than the structuring element (see Fig. 3).

We will call this new morphological framework Rotation-InvariantAnisotropic (RIA)
morphology. We can call it morphology because it satisfies the four principles of mor-
phology [1]:

– Translation invariance,
– Compatibility under change of scale,
– Local knowledge, and
– Semi-continuity.

The first three principles are expressed as properties of the operators in Sect. 3, and
proven elsewhere [2]. The principle of semi-continuity requires that the theory in the
continuous world has an approximate counterpart in the discrete world, and is responsible
for this theory to be applicable in practice [3].Although the discretization of the operators
presented here is beyond the scope of this article, it certainly is possible to apply these
operators to discrete images.

In Sect. 4 we will apply the new closing and opening introduced here to do segmen-
tation-free measurements using morphological sieves. Sieves are used to build multi-
parameter (length, width, depth) size distributions that characterize the shapes of objects,
structures or textures in grey-value images. These measured distributions can be used for
image recognition or characterization, and are applicable in a wide variety of situations.

2 Definitions

In this paper we use the notation as specified in Table 1. We will use Greek characters
(especiallyϕ andθ) for rotation angles, and Latin characters (especiallyx andy) for
translation vectors and image coordinates.f andg denote continuos functionsRN → R

(the image being processed). Vectors are not distinguished typographically because it is
obvious from the context which variables are vectors and which ones are scalars.

2.1 Dilation

A flat, isotropic structuring elementD of radiusr can be decomposed into (an infinite
amount of) rotated line segmentsLϕ of length ` = 2r. The dilation then becomes,
withϕ ∈ [0,π),



380 C.L. Luengo Hendriks and L.J. van Vliet

Fig. 1.A portion of the image ‘cermet’, after some processing.

Fig. 2.The image from Fig. 1, after closing with a circular structuring element.

Fig. 3.Result of the new, rotation invariant, anisotropic morphological closing applied to the image
in Fig. 1. Compare with the result of the isotropic closing in Fig. 2.
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Table 1.Notation used in this paper

fϕ rotation off over an angleϕ

fx translation off overx: fx(t) = f(t−x)

fϕ,x rotation off over an angleϕ and then a translation overx

Sbf scaling off with a factorb: Sbf(x) = f(x
b )

⊕ Minkowski addition

Š transpose ofS: Š(x) = S(−x)

δSf dilation off with S, any flat structuring element:

δSf = f ⊕ Š =
∨

x∈Š fx

εSf erosion off with structuring elementS

γSf opening off with structuring elementS

φSf closing off with structuring elementS

A , B definition: “LetA be defined asB”

A
.= B equality by definition: “A is equal toB by definition”

δDf
.= f ⊕D = f ⊕

⋃
ϕ

Lϕ =
∨
ϕ

(f ⊕Lϕ) .=
∨
ϕ

∨
x∈Lϕ

fx . (1)

Note that we ignore the transpose operation sinceĎ = D andĽϕ = Lϕ.
Based on this, we define a new morphological operator, which we will call RIA

dilation, and denote with the symbolδ^,

δ^
Lf ,

∧
ϕ

∨
x∈Lϕ

fx
.=

∧
ϕ

δLϕf . (2)

This operator takes the maximum of the image over a line segment rotated in such
a way as to minimize this maximum. Figure 4 gives an example of the effect that the
operator has on an object boundary. Note that a convex object boundary is not changed,
but a concave one is.

We like to compare this dilation operator with a train running along a track. The
train wagons (which are joined at both ends to the track) require some extra space at
the inside of the curves. This dilation, applied to a train track, and using a structuring
element with the length of the wagons, reproduces the area required by them.

2.2 Erosion

RIA erosion is defined as the dual of the RIA dilation, and will be denoted with the
symbolε^.

ε^
Lf , −δ^

L (−f) .= −
∧
ϕ

∨
x∈Lϕ

(−fx) =
∨
ϕ

∧
x∈Lϕ

fx
.=

∨
ϕ

εLϕf . (3)
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Fig. 4.Effect of the RIA dilation on an object boundary.a: The original boundary.b: The boundary
after the dilation, together with the line segment used as a structuring element.c: Construction of
the dilated object boundary.

2.3 Closing

The closing is usually defined as a dilation followed by an erosion,

φDf
.= εDδDf . (4)

However, it is easier to understand (and modify) if we see it as the maximum of the
image over the support of the structuring elementD, after shifting it in such a way that
it minimizes this maximum, but still hits the pointt at which the operation is being
evaluated, (see Fig. 5a). Or, in other words, the ‘lowest’ position we can giveD by
shifting it over the ‘landscape’ defined by the functionf :

φDf =
∧

x∈D

∨
y∈Dx

fy


 =

∧
x∈D


 ∨

y∈D

fy




x

= εDδDf


 . (5)

In accordance to this, we define a new morphological operation, RIA closing, as the
‘lowest’ position we can give the linear structuring elementL, by shifting and rotating
it over the ‘landscape’f , such that it still hits the pointx being evaluated (see Fig. 5b).
It will be denoted byφ^, and defined by

φ^
Lf ,

∧
ϕ

∧
x∈Lϕ

∨
y∈Lϕ,x

fy , (6)

which is analogous to the definition of the RIA dilation, where we also changed the disk
for a line, and added a minimum over the orientation of that line. As it turns out, this
is the same as the minimum of the closings, at all orientations, with a line segment as
structuring element,

φ^
Lf

.=
∧
ϕ

∧
x∈Lϕ


 ∨

y∈Lϕ

fy




x

=
∧
ϕ

εLϕδLϕf
.=

∧
ϕ

φLϕf , (7)
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a b

Fig. 5. a: The closing with an isotropic structuring element (disk) is determined by shifting the
disk in such a way that it still hits the point being evaluated, and minimizes the supremum of the
image over its support.b: The RIA closing is determined by shifting and rotating the line segment
in such a way that it still hits the point being evaluated, and minimizes the supremum of the image
over its support.

but not equal to a RIA dilation followed by a RIA erosion.
We will show elsewhere [2] that this transformation is increasing, idempotent and

extensive, and therefore we can call it an algebraic closing [4]. Moreover, Matheron has
shown that any intersection of morphological closings is an algebraic closing [5]. We
can interpret

∧
ϕ φLϕf as the intersection of an infinite series of closings, in which case

the increasingness, idempotence and extensivity are proven by Matheron. For previous
work using rotated line segments see Soille [6].

2.4 Opening

The RIA opening is defined as the dual of the RIA closing, and denoted by the symbol
γ^.

γ^
Lf , −φ^

L (−f) .= −
∧
ϕ

∧
x∈Lϕ

∨
y∈Lϕ,x

(−fy) =
∨
ϕ

∨
x∈Lϕ

∧
y∈Lϕ,x

fy
.=

∨
ϕ

γLϕf . (8)

2.5 Extension to Higher Dimensionalities

Until now we have only talked about operations on two-dimensional images. However,
it is very easy to extend the RIA morphology to higher dimensionalities. For example,
in the 3D case, it would be possible to have structuring elements with either one or two
dimensions (i.e. a disk or a line segment); both have two degrees of rotational freedom.A
closing with these two structuring elements can be used to measure the first and second
largest diameters of the (convex) object: the line segment can not fit if it is longer than
the largest diameter; the disk can not fit it is wider than the second largest diameter. To
measure the smallest diameter, the isotropic closing would be used.
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3 Properties

Properties that are valid for all operators are only specified for the RIA dilation. Properties
mentioned only for the RIA closing are by duality also true for the RIA opening but not
for the dilation or erosion.

Property 1. Translation invariance:

δ^
Lfx = (δ^

Lf)x

Property 2. Compatibility under change of scale:

Sbδ
^
Lf = δ^

b·LSbf

The result of the operation is scaled byb if both the image and the structuring element
are scaled byb.

Property 3. Local knowledge:

W1 · δ^
L (W2 ·f) = W1 · δ^

Lf

This property simply states that the result of the operator inside some windowW1 is
independent of the image outside some other windowW2. This implies thatW1 ⊂ W2.

These first three properties are the cornerstones of morphology, without which it is
not possible to define shape. Together with the principle of semi-continuity, they are the
requirements for operators to belong to morphology.

Property 4. Rotation invariance:

δ^
Lfθ = (δ^

Lf)θ

Rotation invariance of the RIA morphology is a key property, necessary for the
correct analysis of images with an unknown orientation, or images without a single
dominant orientation.

Property 5. Contrast invariance:

δ^
L (c ·f) = c · δ^

Lf

This property can be taken further, by stating that both the RIA dilation and the
RIA closing commute with any anamorphoses (which is defined as an increasing and
continuous mappingR → R) [1].

Property 6. Increasingness:

f ≤ g =⇒ δ^
Lf ≤ δ^

Lg
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Property 7. Extensivity / anti-extensivity:

ε^
Lf ≤ f ≤ δ^

Lf

γ^
Lf ≤ f ≤ φ^

Lf

Property 8. Extended extensivity:

ε^
Lf ≤ γ^

Lf ≤ f ≤ φ^
Lf ≤ δ^

Lf

Property 9. Idempotence:

φ^
Lφ^

Lf = φ^
Lf

Property 10. Absorption:

`1 ≥ `2 =⇒



φ^
L(2)φ

^
L(1)f = φ^

L(1)f

φ^
L(1)φ

^
L(2)f = φ^

L(1)f

WhereL(i) is a linear structuring element with length̀i.
This property states that applying a RIA closing at a large scale to the result of the

RIA closing at a smaller scale yields the same results as applying it to the original image.
Furthermore, applying other RIA closings at smaller scales after that has no effect.

Note that idempotence is a special case of absorption, where`1 = `2. Also, the
comutativity of the RIA closing follows from the absorption property, since only the
largest-scale operator influences the result, independently from the order in which they
are applied.

Property 11. Sieving:

`1 ≤ `2 =⇒ φ^
L(1)f ≤ φ^

L(2)f

The sieving property is a requirement for granulometric applications, and is implied
by the increasing, extensivity and absorption properties [5]. Basically, it states that all
features removed at a smaller scale will also be removed at a larger scale. This allows a
sequence of operators of increasing size to ‘sieve’ the features in an image and classify
them according to size (see Sect. 4).

Property 12. Commutativity:

φ^
L(1)φ

^
L(2)f = φ^

L(2)φ
^
L(1)f

This property follows from Property 10, and does not hold for the RIA dilation and RIA
erosion.
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Property 13. Non-distributivity: Unlike the common dilation and erosion, the RIA di-
lation and erosion do not distribute with the extremum operators.

Property 14. Comparison with regular morphology:

f ≤ δ^
Lf ≤ δDf

f ≥ ε^
Lf ≥ εDf

f ≤ φ^
Lf ≤ φDf

f ≥ γ^
Lf ≥ γDf

4 Granulometry

Since the RIA closing and opening comply with the sieving property (Property 11), it
is possible to use them as sieving functions in a granulometric application. A sieve is
composed of a sequence of morphological filters with increasing size parameter [4]. The
filters are applied either in series or in parallel (which produces the same result due to
Property 10, absorption), each one removing a group of image features of certain size.
This size is directly proportional to the filter parameter, and the measure that determines
this size depends on the filter construction. Because of the sieving property, each filter
removes all image features also removed by the smaller filters, and never adds new ones.

The difference between the result of subsequent filters is called agranule image[7],
and contains only image features in a known size range. These granule images can be
used to construct a size distribution. As said before, the measure used to determine the
size of an image feature depends on the filter used.A closing with an isotropic structuring
element (disk) measures the width of dark features. A RIA closing measures the length
of dark features. Openings do the same with light features.

The set of granule images form a scale-space, which allows to measure the size of
the feature that each pixel belongs to. The ‘trace’ of a pixel through the scales is some
sort of local size distribution, which gives (for example through a mean or median) a
scale parameter for that pixel. By going through this process with different filter types,
we can assign different scale parameters to each pixel; for example the length and width
of the pore that it belongs to. Knowing these values, it is easy to construct a distribution
for the elongation.

5 Conclusions

We have defined some new morphological operators, based on the premise that, by
dropping one or more dimensions, an isotopic structuring element in a subspace becomes
anisotropic in the full image space, but also gains some degrees of rotational freedom.
This freedom can be used to have the structuring element align itself to the features in
the image, and thus become rotation invariant.

We have shown that the dilation with such a structuring element, giving it the orien-
tation that causes the result to be maximal, is in fact an isotropic dilation. This comes
from the fact that the isotropic structuring element is the same as the union of (an infinite
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amount of) lower-dimensional isotropic structuring elements with all possible different
orientations. In contrast, if we give the structuring element the orientation that causes
the result of the operation to be minimal, we get the dilation operator proposed here.

In the same manner, we have defined a new erosion, closing and opening operators.
We have stated that all of these operators are rotation, translation, scaling and contrast
invariant, as well as increasing and extensive. We have also mentioned that the closing
and opening defined in this article are idempotent, commutative and absorbing. These
properties are important if we want to use the new operators in the same way we use
other morphological operators.

The morphological framework proposed in this article has been defined in two di-
mensions, but it has been shown that it is easy to extend to higher dimensional spaces.
In two dimensions, the closing and opening as defined here can be used to measure the
length of image features. In three dimensions, different versions of the same operator can
measure both the first and second largest diameters. The smallest diameter is measured
in all cases using an isotropic structuring element.

Finally, we have explored an example application for the new operators, that shows
that they are useful in granulometric applications.
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