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Abstract 

We will construct a morphological scale-space 
using closings at logarithmically sampled scales. 
From this, we derive a measure for the pore-size 
distribution. We will apply this method to images of 
food products, acquired using confocal microscopy, 
to demonstrate how it can be used to differentiate 
the microstructure of these products. The micro-
structures are responsible for important macro-
scopic properties (firmness, foaming characteristics 
and mouth-feel). Two applications will be discussed: 
analysis of monoglycerides, and detection of subtle 
changes in the microstructure of a dairy product due 
to different treatments. 

1. Introduction 

Microstructures of food products determine im-
portant macroscopic properties such as firmness, 
foaming characteristics, and mouth-feel. 

In this article, we will measure the pore-size dis-
tribution of food products in confocal images using a 
morphological scale-space. The scale-space is build 
using a difference of closings at logarithmically 
sampled scales. This causes the pores to be separated 
into different levels according to their smallest 
diameter. Section 2 presents the morphological 
scale-space. Section 3 shows the results of applying 
it. First, we will apply it to a synthetic image to 
demonstrate its capabilities. Then we will apply it to 
a monoglyceride sample to analyze its pores. Fi-
nally, we will use this measure to detect minor 
changes in the microstructure of a dairy product 
after some treatment. 

2. Methods 

2.1. Morphological scale-space 

Combining linear scale-space [9, 12] and mathe-
matical morphology [10], we obtain a non-linear 

scale-space with many interesting properties [2, 3, 
6]. Many of the properties of linear scale-space are 
also valid for morphological scale-spaces (like 
casualty, regularity, affine invariance, etc. [1]). The 
main advantage over linear scale-space is the fact 
that the edges of the objects are not blurred. 

Widely used morphological scale-spaces are the 
M-sieve and N-sieve [4]. A sieve is a cascaded set of 
non-linear, increasing scale filters that operate in 
series. It results in the signal being separated into a 
set of increasing scale components (granule func-
tions or granule images). Sieves are the non-linear 
counterpart of the band-pass filter banks (like the 
Laplacian scale-space). The Mr operator is the result 
of applying the opening operator γ and then the 
closing operator φ at scale r, 

 ( )( ) ( )( )( ) =r r rM f x f xφ γ    . (1) 

The Nr operator applies the same operations in the 
reverse order. What these operators do is remove all 
extrema of size smaller than the size r of the struc-
turing element. Since we want to examine the pores, 
we use only the morphological closing, which will 
remove minima of size smaller than the structuring 
element. Our scale-space could therefore be named 
closing-sieve or pore-sieve. 
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Figure 1. Sieve with flat closings 
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We construct this scale-space (see figure 1) by 
first closing the image at all the scales ri; then we 
take the difference between subsequent scales. Thus, 
the granule image at scale ri is 

 ( ) ( )( ) ( )( )
1

=
i i ir r rf x f x f xφ φ

−
−    . (2) 

Note that, since we use an isotropic structuring 
element, the morphological closing is determined by 
the smallest diameter of the pores. Therefore, when-
ever we mention the size of a pore, what we actually 
mean is its smallest diameter. This isotropy enables 
us to apply this method to images of any dimension-
ality. 

Some structures contain different scales. Think 
about a telephone cable, composed of many bundles, 
each of which is made out of hundreds of thin wires. 
The wires are part of two structures at different 
scales. The morphological scale-space as described 
earlier is capable of finding both scales. Take as an 
example the middle pore in figure 1. It is formed by 
walls of grayvalue a, and is inside a region bounded 
by a higher grayvalue b. A closing at some scale will 
cover the pore with grayvalue a. A closing at a 
larger scale will cover the whole containing region 
with grayvalue b. This results in a single pore being 
represented at two levels of the scale-space; at the 
one level with grayvalue a, and at the other with 
grayvalue b-a. 
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Figure 2. Sieve with parabolic closings. 

The figures presented until now suppose a flat 
structuring element, which is binary, meaning that it 
is never correctly sampled. This produces problems, 
especially when a finely sampled scale-space is 
required (and thus the differences between the 
required sizes of the structuring elements are small). 
The obvious solution is to use a parabolic structuring 
element, which can be sampled more accurately. 
However, a parabolic closing does not produce the 
desired result, and a closing-sieve that uses parabolic 
closings will split a pore into a whole range of 
levels, which is undesirable here (see figure 2 for an 
example that clarifies this). The correct solution 
would be to interpolate the image, so that the flat 
structuring element can be sampled more densely, 
reducing the discretization error. Ideally, one would 
want to downsample the image for the larger struc-

turing elements, so that the discretization error is 
approximately equal for all levels of the scale-space. 

 
2.2. Pore-size distribution 

Once the pores are classified, it is relatively easy 
to build a size distribution. We propose to use the 
grayvalue sum at each level as size contribution. To 
avoid differences in this distribution due to differ-
ences in sampling density along the scale axis, it is 
necessary to divide these quantities by the step size 
or granule (i.e. the difference between the scales at 
subsequent levels). The pore-size histogram is then 
given by 
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1
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   . (3) 

Furthermore, by normalizing the distribution we 
make it invariant to contrast and image size (for this, 
the scale range has to remain constant) 
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( )1

N
k

H i
H i

H k
′ =

�
   . (4) 

The question remains on how to sample the scale-
space. There is relatively little literature on this 
topic, and in most articles, one-pixel increments are 
used as a default solution. It makes sense to use 
logarithmic sampling, since we might want to 
distinguish between 3-pixel pores and 4-pixel ones, 
but not between 100-pixel pores and 101-pixels 
ones. We will be using two or three samples per 
octave. 

3. Results 

3.1. A Synthetic test image 

To show that the proposed method works, we 
apply the closing-sieve to a synthetic image (fig-
ure 3-O). It is a superposition of two line patterns, 
the finer one having squares half the size, and with a 
grayvalue 50% lower, than the coarser one. The 
position and orientation of the lines that compose the 
image have been distorted by white noise (standard 
deviation of 1 pixel and 1 minute, respectively). We 
have added a small line pattern to the bottom of the 
image, with increasing frequency; this is for calibra-
tion purposes. Figure 3 shows a four-level closing-
sieve resulting from this image. All the holes yield 
an equal response in two levels, since they all 
contribute to two different scales. (The sampling of 
the scales has been chosen to create interesting 
images.) Figure 4 shows the pore-size distribution 
for this image, as calculated using the closing-sieve. 
Note that the jaggedness of the line is due to the size 
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of the granules. We have applied the sieve on the 
zoomed image, increasing the scale of the structur-
ing elements proportionally. The thickest line, 
calculated on the image zoomed by a factor 8, has 
the smallest discretization error. The differences are 
mainly in the small-scale part. The difference in the 
second peak (it becomes larger for ‘better’ sampled 
structuring elements) can be attributed to the nor-
malization of the distribution. In figure 4 we have 
also indicated the granules used for generating the 
images in figure 3. 

 

    

   
Figure 3. Test image (O) and four levels of the closing-

sieve (A-D). 
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Figure 4. Pore-size distribution using different interpola-

tion factors. 

 
3.2. Monoglyceride 

Next, we applied the same method to a slice of a 
CSLM (Confocal Scanning Laser Microscopy) 
image. Figure 5 shows a single slice from a 
monoglyceride sample. Monoglycerides are surfac-
tants used in the production of margarine substitutes 
[8]. They posses a card-house like structure at 
microscopic scale, composed of randomly placed 
planes that enclose water (seen as holes of different 
sizes). Figure 6 shows the four levels of a closing-
sieve, and figure 7 shows the distribution of the pore 
sizes, along with an indication of the granules shown 
in figure 6. This graph shows that taking smaller 
granules does not necessarily improve the sampling 
of the scale-space, since the error made by the 

sampling of the structuring element is stressed by 
the small granules. 

 
Figure 5. One slice from a CSLM image of a monoglyc-

eride sample. 

  

  
Figure 6. Four levels of a closing-sieve, superimposed 

over the original image. 
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Figure 7. Pore-size distribution using different sampling 

densities. 

 
3.3. Pore-size distribution in dairy products 

The three images in figure 8 are CSLM slices of a 
dairy product, after different treatments: 
- Sample A is the original product. 
- Sample B is the same product with a substrate 

added, which has the side effect of lumping the 
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proteins together, widening the gaps in between. 
This yields unfavorable reological properties. 

- Sample C is treated with an enzyme that counter-
acts this effect. 
The pores in the image of sample B are supposed 

to be somewhat larger than in the other two, result-
ing in different macroscopic properties. The differ-
ences between the samples are minimal, and not 
visible by eye. We apply the closing-sieve to see if it 
can detect a difference in microstructure. 

We have 32 uncorrelated, 2562 pixel images of 
each sample. The images are contrast-stretched, 
making 5% of the pixels black, and 5% white. This 
is to counteract the clipping that occurred during 
data acquisition due to a too high dynamic range. 
The pore-size distribution is calculated for each 
image. Figure 9 shows the averaged pore-size 
distributions for the three classes, together with the 
95% certainty interval. In this figure, we notice a 
very small, but statistically relevant difference 
between class B and the other two classes (which 
cannot be distinguished from each other). 

 

  

 
Figure 8. CSLM slices of a milk product after different 

treatments. 
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Figure 9. Averaged pore-size distributions for the three 

samples. 

We use the pore-size distribution curve as a 11-
dimensional feature vector (we removed the last four 
points of the distribution), and use a Fisher linear 
discriminant [5] to map that to a two-dimensional 
feature-space. In this 2D space, we determine a 
linear classifier that optimally separates the three 
classes. However, we have too few objects in this 
high-dimensional feature-space to divide them into a 
training set and a test set. Therefore, we use the 
leave-one-out method to test the accuracy of the 
classifier. This means that we apply the Fisher linear 
discriminant and the linear classifier to all the 
samples except one, which we use to test the classi-
fier. This is repeated until each sample has been 
used once to test the classification. Table 1 shows 
the results of this classification in a confusion 
matrix. The classification results are obvious when 
one looks at the 2D Fisher mapping in figure 10 
(which also shows the weights used by this map-
ping). Classes A and C overlap for a very large part, 
whereas class B is somewhat shifted. Class A and C 
are mistaken for each other about half the time, but it 
is less frequent that either A or C is mistaken for B 
and vise-versa. 

Table 1. Confusion matrix for the classification of the 
dairy product. 

  objects of class 
  A B C 

A 15 3 12 
B 1 22 5 classified 

as 
C 16 7 15 
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Figure 10. 2D pore-size distribution as mapped by Fisher, 

and the Fisher weights. 
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The classification result for the images of each 
class is a binomial distribution. Figure 11 shows that 
sample B differs significantly from A and C. The 
error bars indicate the 95% confidence for the 
estimated probability. The dotted line is the score 
that would be obtained by random assignment, 
which would occur if all samples were identical 
(indistinguishable by pore-size distribution). 
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Figure 11. Classification results for images of class B, 

with estimated 95% confidence. 

4. Conclusions 

Closing-sieves are best implemented by flat, iso-
tropic structuring elements. Sampling of small 
isotropic structuring elements causes a large discre-
tization error. Interpolation of the acquired images 
allows an increase of the structuring element by the 
same factor, which effectively reduces the discreti-
zation effects of the flat structuring elements. 

Applying the closing-sieve to CSLM images of 
food products shows that it allows segmentation of 
holes and classification of hole size in a card-house 
like structure such as monoglyceride samples. Subtle 
differences in the microstructure of “treated” dairy 
products have been detected by classifying the 
measured pore-size distributions using a Fisher 
mapping. 
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