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Abstract

This paper presents various methods to increase
the spatial resolution of an undersampled, and thus
aliased, image sequence. Random global translation
between frames in the sequence provides information
that can be used to remove some or all aliasing
present in the frames. Translation vectors for each
frame are estimated from the image content. Using
these estimates, a high-resolution image is computed.
The proposed methods are of moderate
computational complexity and can be implemented
in hardware for real-time use. They also prove to be
robust under noisy circumstances. Previous
approaches to the superresolution restoration
problem involve iterative algorithms, which are not
practical for real-time application. The proposed
methods perform comparably only if enough input
frames are provided. However, they give acceptable
results even when these criteria are not met.

1 Introduction

The lens system in a camera limits the bandwidth
of the image projected onto the detector array. The
detector array can then sample this image. If the
sampling satisfies the Nyquist criterion, the image
projected onto the detector can be exactly
reconstructed from the samples. A typical detector
array used in infrared imaging has a small fill factor,
due to the need to isolate each detector element
separately. However, to have detector elements large
enough for efficient light collection, it is necessary to
limit the amount of detectors on the array. This
causes the array not to be sufficiently dense to
sample according to Nyquist, and the sampled
images are aliased.

Some IR camera manufacturers solve this
undersampling problem by mounting the detector
array on a piezo-electric element that allows
scanning of the image projected onto the detector
plane (‘microscanning’). For example, Carl-Zeiss
incorporates this technique is the ProgRes digital
camera.

The approach explored in this paper is to induce
a random motion by vibration of the camera, and
combine a series of frames to create a single image
with a higher spatial resolution. Note that this can
only work if there is a sub-pixel motion between
those frames. This translation causes the image to be
sampled at more points than provided by the detector
array. Also, note that resolution cannot be improved
upon if the frames are sampled correctly (according
to Nyquist). The requirements that the algorithms
must meet are:
•  low computational cost and, more importantly,
simple implementation and non-iterative algorithms
(to make hardware implementation possible);
•  ability to suppress noise as well as improve
resolution;
•  comparable image quality with respect to existing
methods; and
•  graceful degradation of performance for
increasing amounts of noise, absence of reliable
image content or lower number of input frames.

We will assume that the scene does not change
during the acquisition of the image sequence, and
that the motion is small and random, as if caused by
vibration of the camera. Section 2 presents the
imaging model.

Superresolution restoration requires knowledge
about the relative shifts between the frames. This is
extracted from the frames themselves using one of
the registration algorithms outlined in section 3. The
second step is to fuse the data present in all the
frames. We have developed and tested some
methods that accomplish this. They are presented in
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section 4. A proper evaluation requires extensive
comparison with methods presented in the literature
[1-5, 9, 10]. Section 5 shows the test results, as well
as some results obtained on infrared images.

2 The Imaging Model

Figure 1 shows the imaging model. The object
scene is slightly blurred by the lens (hlens),
introducing a cutoff frequency. It is then shifted
(hshift), integrated over the surface of a detector
element (hpixel), sampled (p(x,y)), and digitized
(ADC). The output image is undersampled and
degraded by noise of various sources, including
readout noise, thermal noise, quantization noise and,
most importantly, photon noise. The signal-to-noise
ratio (SNR) of these cameras can be as high as 40
dB.

hlens hpixelhshift

ADC

f(x,y) f(x-xi,y-yi)

fi(x,y)

fi[m,n]

p(x,y) = Σ δ(x-mTx,y-nTy)

Figure 1: Model for image acquisition.

The motion blur in the individual frames is
negligible because of the small exposure time (less
than 5 ms in the camera we used for our
experiments). The influence of the square integrating
pixel elements can be ignored (due to a small fill
factor) for interpolation factors up to four.

Before interpolating a high-resolution image
from the shifted frames we need to know the
translation vectors for the entire image sequence. To
allow optimal flexibility we will estimate these
vectors from the image content. The camera motion
(vibration) of the presented system causes translation
but no significant rotation of the acquired images.
For scenes with a limited depth range, this yields a
constant image shift over the entire image.

2.1 How many frames do we need?
If the undersampling we are trying to undo is

equal to n in both dimensions, we will create an
image with n2 times the number of pixels, and thus
information, than was in one original frame. It is
therefore easy to see that we will at least require n2

frames to have enough information to fill one high-
resolution image. This will, however, depend
strongly on the distribution of the shifts, as well as
on the signal to noise ratio.

Nyquist’s sampling theorem states that a
bandlimited signal with a cutoff frequency of ωc

should be sampled with a frequency ωs > 2ωc, so no
information is lost [8]. It can, however, also be
interpreted as needing N samples in each period NT,
where T = 2π/ωs, the uniform sampling period [7].
Notice that in the last definition, the sample positions
are not taken into account.

To mathematicians this is not new. For example,
a polynomial of order n is completely defined by
n+1 points, no matter how close together these
points are. However, in mathematics data is never
noisy. Here, we are dealing with noisy data, so the
position can indeed be of influence. It is common
sense to place the available samples as far apart as
possible, to minimize the influence of noise (see
figure 2).

Figure 2: Any three exact samples define a circle (left).
However, if the samples contain noise and are situated
close to one another, almost any circle will fit (middle).
Positioning these samples far apart insures a correct
representation in spite of the noise.

Thus, depending on the distribution of the
samples, we might need more than n2 frames to
correctly reconstruct the high-resolution image.
Reconstruction of an image with too few frames is
sometimes possible, but we should not expect to
achieve the desired resolution. Furthermore, limits to
the resolution of the output image are set by the
resolution of the lens system and the fill factor of the
detector array.

3 Image Registration

As stated in the previous section, we will assume
that there is only a global translation over the entire
image. This simplifies the registration as well as the
interpolation.

For a correct detection of shifts, the image must
contain some features that make it possible to match
two undersampled images. Very sharp edges and
small details are most affected by aliasing, so they
are not reliable to be used to estimate these shifts.
Uniform areas are also useless, since they are
translation-invariant. The best features are slow
transitions between two grayvalues (temperature
ramps), which are unaffected by aliasing. Such
portions of an image need not be detected, but their
presence is very important for an accurate result.
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We have implemented three methods for
estimating the global shift between two images
f0(x, y) and f1(x, y) = f0(x-x1, y-y1).
1) Apply cross-correlation followed by low-pass

filtering and zero-padding in the Fourier domain,
and center-of-mass estimation in the spatial
domain (CZP).

2) Apply cross-correlation and fit a plane through
the low frequencies of the 2-D phase of the
Fourier transform (CPF).

3) Minimize the squared error between a first order
Taylor series expansion of f0 and f1 (MTS).

3.1 Cross-correlation with zero-padding
(CZP)

The two images being compared are shifted
realizations of the same scene. This implies that the
Fourier transforms are equal in magnitude, but differ
in phase [12]. The cross-correlation can be written in
the Fourier domain as a multiplication,
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with u and v the spatial frequencies. Normalization
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In the space domain, this is equal to a delta function
positioned by the shift vector (x1, y1).

As the higher frequencies are most affected by
noise and aliasing, we multiply the frequency
spectrum with a Gaussian to remove the higher
frequencies (using a σ of approximately 1/6th of the
image width). This converts the peak in the spatial
domain to a Gaussian. The frequency spectrum is
then padded with zeros. This interpolates the peak,
making it larger. The center-of-mass gives the
estimated sub-pixel shift.

Using only the samples in a small rectangular
window around the maximum, we make optimal use
of the fact that most of the signal is in the peak itself.
Points outside this area contribute very little
information, but with a very low SNR. Adding these
points to the estimate will lower the accuracy.

3.2 Cross-correlation with phase fitting
(CPF)

A variation to the cross-correlation method uses
eq. 2, and fits a plane through the argument of the
exponential. This is done using least squares, and
only on the lower frequency components (the same
part of the spectrum that is used in section 3.1). The
parameters of the plane are the shifts in the x and y
directions.

This technique can be refined by using only those
values of u and v for which the amplitude of eq. 2 is
sufficiently close to one (between 0.9 and 1.1).
Further refinement is accomplished by removing the
outliers from the phase term after which the fit is
repeated. We define outliers as points with an error
of more than 3 times the standard deviation.

As the phase angle of a complex number is
always in the range [-π, π], it might wrap around for
large shifts (more than one pixel). This makes the
fitting impossible.

However, it is possible to estimate the integer
pixel shift by doing an inverse Fourier transform of
eq. 2, and locating the maximum of the peak. Once
one of the images is corrected for this shift, the sub-
pixel shift can be correctly obtained with this
method.

3.3 First order Taylor series (MTS)
The reference image f0 can be approximated by a

first order Taylor series of f1
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y
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Minimizing the squared difference of both sides, we
obtain a sub-pixel shift estimator as in [1, 5].

The first order Taylor series requires a gradient
operator. We propose the use of the Gaussian
gradient. This requires both images to be convolved
with the Gaussian. As a positive side effect, this
removes higher frequencies, which are most affected
by the aliasing. The resulting Taylor series reads
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The estimated shifts are only accurate if they are
small enough, in comparison to the width of the
Gaussian. Large shifts are estimated less accurately
because of the larger scale at witch the images are
looked at. To overcome this, one of the images can
be corrected for the integer-pixel shift first, and then
the remaining shift can be determined at a smaller
scale (σ = 1 pixel). This can be done in two ways:
1) Estimating the integer-pixel shift as in the CPF

method.
2) Estimating the shift repeatedly using σ = 1. If the

resulting shift is too large to be accurate (larger
than one half of the pixel pitch), one of the
images is shifted one pixel in the correct
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direction, and the process is repeated. Note that
this is actually very cheap since none of the
convolutions needs to be repeated. It is sufficient
to remove rows of pixels at the borders to correct
for integer pixel shift.

3.4 Increasing accuracy
All three methods described above compute the

shift between two images whereas our application
requires the relative position of a set of P images. By
calculating the shifts with respect to a single
reference image, we obtain just one realization of the
relative positions. By repeating the procedure for
another reference image, we obtain a second
estimate for the relative positions. By averaging P
sets of relative positions (centered on their first
moment), we may obtain a better estimate.

4 Image Interpolation

The data to be interpolated is randomly
distributed, because of the random, sub-pixel shifts
of each frame. Nearest neighbor interpolation
provides an easy solution to this problem [1, 2], but
it is less accurate than other methods. It also is not
able to suppress noise.

Popular interpolation techniques like B-splines
and cubic convolution are difficult to implement or
cannot be used at all on this non-uniformly sampled
data.

We studied two alternative interpolation
techniques (LSP, NC), as well as two other
reconstruction algorithms found in the literature (ER,
IT).
1) Interpolation by least-squares fitting of a linear

model (plane) to n data points (LSP).
2) Interpolation by normalized convolution using a

Gaussian kernel (NC).
3) Exact image reconstruction by estimating the

frequency spectrum (ER).
4) Iterative minimization of a cost function based on

a detailed description of the imaging system (IT).

4.1 Least-squares plane fitting (LSP)
After selecting n data points in the vicinity of the

new sample position, a plane is fitted through these
points. The function value of this plane at the new
position is used as the new sample value.

The new sample point is required to lie inside the
convex hull of the n points. This is accomplished by

selecting the first three points using Delaunay
triangulation. Every new sample point has three
unique neighbors that span the current Delaunay
triangle. The remaining points can be selected in a
variety of ways. For simplicity of implementation,
we select them by distance. This, however, might not
be the optimal solution in the case that the shifts are
not evenly distributed (which they often are not).

The number of data points used in the fit is tuned
to balance between resolution improvement and
noise suppression. This parameter can be chosen
once for the whole image, or differently for each
pixel to be calculated (depending on the local
density of the input samples).

4.2 Normalized convolution (NC)
Normalized convolution [6] can be used as an

interpolator of randomly sampled data points. It is
based on the convolution of the samples with a
kernel, normalizing the result to account for the non-
uniformity of the samples. The (continuous)
interpolated image is written as
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with f(x, y) the weighted sum of delta-pulses
representing the input samples, k(x, y) the
convolution kernel, and s(x, y) the sampling
function.

� � � �
� �

f x y f mT x nT y

x mT x y nT y

x i y i
m ni

P

x i y i

, ,

,

,

� � � �

� � � �

��
=1

δ
   , (7)

� � � �s x y x mT x y nT yx i y i
m ni

P

, ,
,

� � � � ���
=

δ
1

 . (8)

Here we use Tx and Ty as the sampling periods,
and xi and yi the shifts of image i.

We have chosen the Gaussian function as kernel.
One of its advantages is that it is defined and
different from 0 over the entire range (-∞,∞), so
h(x, y) in eq. 6 is defined for all (x,y), no matter how
sparse the samples are. Other kernels, however,
might be easier to compute.

The width of the kernel function can be set to
balance between resolution improvement and noise
suppression, just like the number of samples in the
LSP method. It is possible to have it fixed or adapted
to the local sample density.
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4.3 Exact reconstruction (ER)
If the shifts (xi,yi) and the amount of

undersampling is known we can write in a series of
linear equations the relation between the P instances
of the Fourier components Gmn and the target Fourier
components Fmn [5].

G Fmn mn mn= Φ (9)

where the vector Gmn contains the (m,n)th Fourier
component of all input images, Fmn the harmonics of
(m,n) that where aliased onto (m,n), and Φmn the (P
x 2(K+L)) transformation matrix based upon the
estimated shifts.

The solution is obtained by a matrix inversion of
size PxP for each pixel in the (MxN) input image.
This requires as many input frames as the
undersampling factor. If more input frames are
available a least-squares solution is possible. Note
that matrix inversion can be numerically unstable if
the shifts in the input are not evenly distributed.

4.4 Iterative reconstruction (IT)
Several reconstruction methods employ iterative

minimization of an error functional [3, 4, 9, 10]. We

implemented the method by Hardi [4] in which the
functional consists of two terms

( )( ) ( )min map reg
h

i ii
f h h− +






∑ 2

λ    . (10)

The first term represents the difference between the
measured images fi and the version generated from
the high-resolution image h and the second term
penalizes sharp edges and noise. The parameter λ
balances resolution versus smoothness. The
minimization is performed by conjugate gradients
[11]. This method requires a mathematical model of
the imaging process in the function mapi(h).

5 Results

The modules “registration” and “interpolation”
have been tested separately. Synthetic image
sequences were created by subsampling a properly
sampled target image (“trui” as in figure 3a) with
random offsets, using cubic interpolation. The
subsampling factor was four, and the resulting
frames have 642 pixels.

a) aliased input image b) NC (σ=0.075) with 10 input images c) LSP (n=3) with 10 input images

d) 10 iterations IT with 10 input images e) LSP (n=3) with 25 input images f) ER with 16 input images

Figure 3: Interpolation results. Note that the ER method may perform as well as IT and LSP (reasonably “uniform” distribution of
samples) or as poor as shown in (f) for uneven distribution of samples.
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5.1 Image registration
The performance of the registration algorithms

was measured by estimating the known shift between
two synthetic images. The mean error over 490
realizations is shown in table 1. The same set of
images was used for all algorithms. The CZP
algorithm employs zero padding to obtain a grid four
times as large in both dimensions. CPF2 is the same
as CPF, using the removal of outliers as an
improvement. The MTS algorithm is both the
cheapest in computational complexity and the most
accurate.

The MTS algorithm has also been extended as in
section 3.4. We tested it by estimating the shifts of
groups of 10 images. The mean error decreased, but
not significantly.

Table 1: Errors in the estimated shift for the test image
sub-sampled by a factor four. Means and standard
deviations are over 490 realizations.

x shift y shift
mean std.dev. mean std.dev.

CZP 0.019 0.015 0.040 0.030
CPF 0.017 0.014 0.021 0.017
CPF2 0.013 0.011 0.019 0.015
MTS 0.009 0.007 0.012 0.010

5.2 Image interpolation
The algorithms from section 4 were tested by

reconstructing a high-resolution image using
different numbers of input frames p, and calculating
the RMS difference between the result and the
original image. The relative shifts are known exactly.
The results are shown in table 2. Some of the images
obtained are shown in figure 3.

a) high resolution output image b) ROI of aliased input image c) ROI of high resolution

Figure 4: Image of a camera test chart with bar patterns of increasing frequency. The output images (a) and (c) have a four times
higher sampling rate in both directions using MTS (σ = 1) and LSP (n = 3 samples) with 25 frames. All images are contrast

stretched.

a) high resolution output image b) ROI of aliased input image c) ROI of high resolution

Figure 5: Image of a camera test chart: rings with opening of decreasing size. The output images (a) and (c) have a four times higher
sampling rate in both directions using MTS (σ = 1) and NC (σ = 0.075) with 25 frames. All images are contrast stretched.
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Table 2: RMS difference between the reconstructed
images and the original one. As a comparison measure,
the RMS of the bicubic interpolated image is 5.1·10-2.
Grayvalues of the images are in the interval [0,1].

p = 10 p = 16 p = 25
LSP, n = 3 1.8·10-2 1.5·10-2 8.9·10-3

LSP, n = 6 2.2·10-2 1.6·10-2 1.1·10-2

NC, σ = 0.3 2.3·10-2 1.6·10-2 1.1·10-2

NC, σ = 0.6 2.2·10-2 1.7·10-2 1.3·10-2

ER no solution 8.0·10-2 1.8·10-2

IT (10 iter.) 9.1·10-3 5.6·10-3 3.0·10-3

These results show that the ER method does not
work well for random shifts, especially if only the
minimum amount of input frames is available. Both
the LSP and the NC methods are much faster than
the IT algorithm (about 3 times faster than a single
iteration). Although the accuracy of these
interpolation algorithms is not as good as the
iterative scheme, the results are satisfactory.

To examine the tolerance of the proposed
interpolation algorithms to errors in the shift
estimates and noise, we tested a one-dimensional
variant of both LSP (not shown) and NC (figure 6),
adding noise to both the samples and the (known)
shifts. The figure shows the RMS error of the result
compared to the original (ideal) 1D image. We can
see that this algorithm is approximately equally
sensitive to both kinds of noise. Furthermore, it is
apparent that the accuracy needed in the shift
estimates is in the order of 1/20th of the pixel pitch
(for upsampling of a factor four). This accuracy is
achieved with both the MTS and the CPF methods.
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Figure 6: RMS error of the LSP estimator as a function of
the shift SNR and the amplitude or sample SNR, on 1D
images.

5.3 Application to infrared imaging
We have acquired two sequences of 25 test

targets using a vibrating infrared camera in the long
wavelength range (7 to 10 µm). The detector array
has 128x128 pixels, a pixel pitch of 40 µm, and a fill
factor of 0.64. The output has a pixel density four
times as high in both directions (16 times as many
pixels). Shifts were estimated using MTS (σ = 1),
and the interpolation was done using LSP (n = 3)
and NC (σ = 0.075). Some results are displayed in
figure 4 and figure 5.

Note that the hot and cold pixels produced by the
detector array during acquisition were not removed
prior to the application of these algorithms.

6 Conclusion

This paper presents a system for significantly
improving the spatial resolution of an undersampled
(aliased) image sequence in which the frames are
shifted over a sub-pixel distance by random motion
of the camera (vibration). The system uses the MTS
shift estimator and the LSP or NC interpolator. The
MTS algorithm is both fast and yields the best
performance in our comparative study. Both the LSP
and the NC interpolators are sub-optimal choices,
but both methods have a computational complexity
that is much lower than the better performing
iterative method (IT). The systems perform well over
a range of SNR’s that occur in practice. The
performance degrades “gracefully” when the number
of input frames decreases. The system meets all our
requirements and yields a high quality output image
in infrared imaging.
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