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Abstract—We propose a method for automatic segmentation of
tubules in the stained thin sections of various tissue types. Tubules
consist of one or more layers of cells surrounding a cavity. The
segmented tubules can be used to study the morphology of the
tissue. Some research has been done to automatically estimate
the density of tubules. To the best of our knowledge, no one
has been able to, fully automatically, segment the whole tubule.
Usually the border between tubules is subtle and appears broken
in a straight-forward segmentation. Here we suggest delineating
these borders using the geodesic distance transform. We apply
this method on images of Periodic Acid Shiffs (PAS) stained
thin sections of testicular tissue, delineating89% of the tubules
correctly.

I. I NTRODUCTION

Many organs in vertebrates, such as the kidneys, the prostate
and the testis, contain tubular tissue. Such tissue is composed
in large part of tubules, which are an epithelium surrounding
a lumen, or, in other words, one layer or more of cells
surrounding a cavity. Epithelial cells secrete some substance
into the lumen, through which this substance is transported.
These tissues are frequently studied because of their propensity
for cancer, but also, for example, to study other diseases, or
damage due to environmental pollutants. Commonly, tubular
tissue is fixated, sectioned and stained for observation in a
microscope. A tubular structure can be seen in Figure 1. This
is a histological image of thin section of testicle. These thin
sections show lumens surrounded by epithelial cells, as well
as other cells and connective tissue. The lumens appear as the
brightest areas in the image, and are therefore often easy to
detect automatically. However, distinguishing the different cell
types is a much larger challenge, as is determining which cells
belong to which tubule. A proper staining is necessary for this
task, but no stain can make the task trivial.

Detecting different structures such as nuclei and glands in
histopathology image is a recurring theme in the literature[1],
[2], [3], [4], [5], [6], [7], [8], [9]. There have been some
publications detailing the identification and characterization
of tubules. Hafiane et al. [10] used a combination of fuzzyc-
means clustering with spatial constraints to delineate glandular
structures in prostate cancer histopathology. Basavanhally et
al. [11] used domain information to detect the glands. Naik
et al. [12] used a Bayesian classifier to detect candidate gland
regions by using low-level image features to find the lumen,
epithelial cell cytoplasm, and epithelial nuclei of the tissue. In

probabilistic methods, however, a larger amounts of training
data is needed, to be able to model the prior distribution.
Petushi et al. [13] first segment the cell nuclei on the imagesof
histology slides and classifies them into three categories.The
spatial positions of cell nuclei are then used to detect higher
order tissue structures, such as tubular cross sections andthe
boundaries of high nuclei density regions.

In all of these methods, the high pixel intensity regions are
first detected, and then the cells around each area are used
to decide if it is a lumen of a tubule or not. None of these
methods, however, try to detect the outer border of the tubules.
This means that, with these methods, we are limited in the
type of morphological measurement that can be performed.
For example, to measure size of tubules in the tissue or the
height of the epithelium we need to delineate the outer border
of the tubule. By measuring the height of the epithelium in
testicular tissue an indirect value of possible sperm output can
be estimated [14], [15], [16]. The height of the epithelium
is the distance from the lumen of tubule to its outer border
as shown in Figure 1. In this paper, we suggest a method to
find the outer border of tubules, and thereby fully segment
individual tubule cross-sections. This method does not rely on
identifying the individual cells forming the tubule, instead it
uses the stain color to detect as much of the interstitial tissue
(inter-tubular space) as possible, then infers boundariesfor
individual tubules using lumens and interstitium as hints.

II. A LGORITHM

A. Delineating lumens

To delineate the outer border of tubules, we will start by
identifying the lumens. The lumen will serve as an anchor
point to pick out suitable tubule cross-sections. As it is shown
in Figure 1, the brightest areas of the image correspond to
lumens. Here, we will use an active contour, which can be
seeded inside the lumen and then be stopped at the edges of
the lumen, to distinguish lumens from other types of holes in
the tissue.

The active contour is an evolving interface whose motion
is guided by some internal and external forces. We used the
level set method to segment lumens. In this segmentation
method, we define a level set functionφ(x, y, t) and the
evolving curves are zero iso-contours of this function, i.e.



B A

C

Fig. 1. Histological image of seminiferous tubule in testis; A: lumen B:
epithelium C: interstitial tissue. The arrow shows the epithelial height.

C = {(x, y)|φ(x, y, t) = 0}. The equation for the motion
of the interface is

∂φ

∂t
+ F |∇φ| = 0 . (1)

whereF is a function that models the desired velocity on the
interface and∇ is the gradient operator. The interior and exte-
rior of φ in regionΩ are defined as{(x, y) ∈ Ω|φ(x, y, t) < 0}
and {(x, y) ∈ Ω|φ(x, y, t) > 0}, respectively. The most
difficult task is to establish a level set function that can make a
meaningful segmentation of the image. Li et al. [17] suggested
an energy function for the level set which includes both the
edge and region information. If imageI belongs to domain
Ω, the edge indicator can be defined as

g ,
1

1 + |∇Gσ ∗ I|2
, (2)

whereGσ is a zero-mean Gaussian distribution with standard
deviation of σ. The function g usually has smaller values
at object boundaries than at other locations. For a level set
function φ : Ω −→ R Li et al. suggested energy functions as

ε(φ) = µ

∫
Ω

p(|∇φ|)dx+ λ

∫
Ω

gδ(φ)|∇φ|dx

+ α

∫
Ω

gH(−φ)dx . (3)

The first part of this equation is the level set regularization
term, p is the energy density function,µ, λ and α are the
energy coefficients, andδ and H are the Dirac delta and
the Heaviside functions, respectively. This energy function
is minimized when the contours reach the boundary of the
object. We used the level set algorithm implemented by Li
et al. [17]. For the initialization of the level set, we usek-
means clustering on the RGB image. The potential lumens are
large high pixel intensity regions. As result of the clustering
we have all the high pixel intensity regions as one class. We
use morphological filtering to remove small areas, the result is

used for initialization of the level set algorithm. The coefficient
λ is used to smooth the object boundary. Some of these white
areas that we obtained here are not lumen. Most of these
regions will be excluded at a later step.

B. Delineating the outer border of tubules

Using a straight-forward segmentation of the interstitium
(e.g. usingk-means clustering), the boundary between tubules
is usually detected only partially, or sometimes not at all.
This means that tubules segmented this way are clustered
and usually not seen as individual tubules. If one assumes
each tubule has a lumen, then one can use the watershed
method and let the lumens compete with each other. However,
due to the complex three-dimensional structure of the tissue,
some tubules will be cut such that the lumen is not visible,
making the process of separating tubules more difficult. For
example, Figure 2a shows a connected component resulting
from the segmentation, which consist of four tubules, one of
which does not show a lumen. Here we suggest a method
which discards the tubule that does not have a lumen and
separates the correct tubules. In short, the method looks for the
narrowing in between tubules that hints at where the connected
component should be cut. If we have a propagating curve,
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Fig. 2. (a): One connected component created by the initial segmentation;
(b): Evolving curve from lumen; (c): Plot of length of curve atevery distance.

starting from the border of the lumen (Figure 2b), and measure
the length of this curve at every step (Figure 2c), we will
find a strongly decreased length at the narrowest point in
between two tubules. The location of this minimum is where
the connected component should be cut.

We compute the evolving curve inside a connected com-
ponent using the geodesic distance transform [18], taking the
lumen as the seed. The geodesic distance transform computes
the distance between each pixel in the object and the nearest
seed point. The distance is computed along the shortest path
within the object. The distance along a path is given by the
distance between consecutive pixels on that path; we use a
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Fig. 3. (a) and (b) are two examples of connected components, (c) and (d)
are results of watershed method, (e) and (f) are results of proposed method.

5x5 neighborhood with optimal weights according to [19].
Computing the geodesic distance transform is a minimum-
cost path problem, efficiently solved using Dijkstra’s algorithm
[20]. Points which are at the same distance from the lumen
form an evolving curve; the length of this curve at every
time step is easily obtained by the histogram of the distance
transform. Figure 2b shows this evolving curve for one of the
lumens inside the object. The length of the curve increases
until it reaches the border of object, then it starts to decrease,
and as soon as the curve enters another tubule, the length of
curve increases again. We will thus have a clear minimum
where the tubules connect to each other. For each of the three
lumens in the connected component in Figure 2a, we find the
border of the corresponding tubule using this method.

Figure 3, compares our suggested method with watershed
for two different examples. In the first example (Figure 3a) the
watershed method finds as many tubules as lumens (three),
leaving the fourth tubule attached to one of the others. Our
method instead discards the tubule that does not show a
lumen (Figuer 3e). It is also evident from the second example
(Figure 3b) that our method not only is capable of separating
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Fig. 4. (1) Correct lumen, (2) and (3) are false detected lumens.

connected tubules as the watershed method does, but also can
nicely discard the redundant part of the tubules (Figure 3f).
The separation of tubules might not be still optimal in some
cases but we can get a reasonable and trustworthy result for
the majority of the cases. Another advantage of our method is
discarding the false positive lumens, which will be discussed
in the next section.

C. Removing False Positive Lumens

As mentioned before, we first find the bright area and
then use them as the initialization of the evolving curve.
There might be some false positives when detecting lumens.
This would be large areas of high intensity, such as tears
in the tissue. These bright areas have the same features as
lumens, and it is a challenging task to distinguish them from
the correct lumens. The result of the tubule segmentation is
strongly affected by these wrongly detected lumens. Figure4
shows two types of false detected lumens. We know that the
correct lumens are located in the middle of the tubule and
is surrounded with epithelial cells. The bright areas are used
as seeds for the geodesic distance transform as described in
section II-B. The geodesic distance curve, can not evolve from
the seeds which are completely outside the objects (tubules).
So the evolving curve for these wrongly detected lumens will
not have any minimum and we can discard them. Bright areas
outside of tubules that are connected to a tubule (number 3
in Figure 4), can be distinguished by density function of the
distance between border of the lumens and border of tubules.
All bight areas are assigned to its closest tubule. A false
positive like number 3 partly shares the same border with
its corresponding tubule and the mode of the density of the
distance between their borders becomes zero. For the correct
lumen like number 2, the mode is not zero.

III. R ESULTS

In this section, we apply the suggested algorithm to segment
tubular structure in testicular tissue. Segmented tubulescan be
used later for studying the morphology of tissue. Exposure to
substances like xeno-estrogens during embryonic development



or early in life may affect the morphology and function of
testicular tissue. One suggested quantity to study the mor-
phology of tissue is the height of the epithelium. Epithelial
height as shown in Figure 1 is the distance from the border
of the testicular tubule to the border of its lumen. We use our
algorithm to delineate the borders of the tubule and the lumen.

We obtained white field microscope photographs from tes-
ticular tissue using the following procedure. Healthy, sexually
mature roosters were euthanized and transverse tissue slices
(about 2 mm thick) were cut from testis. The tissue was
fixed in modified Davidsson fluid for 24 hours at 4◦C then
dehydrated and embedded in paraffin wax. The samples were
cut in 5 µm sections and stained with Periodic Acid Shiffs
(PAS). The sections were photographed using a x10 objective
lens.

A sample image is shown in Figure 5a. Using k-means
clustering we find all bright areas (Figure 5b). The result of
k-means clustering is used for initialization of the level set. As
an output of level set, we get a nice and smooth segmented
lumen (Figure 5c), which is used later for initialization of
distance transform. The epithelial tissue of the tubules, and
the interstitial tissue in between the tubules, have a nearly-
identical response to the standard staining process, and their
color values are mostly the same.For these kind of images,
in which the color of different objects are similar, usually
color spaces like L∗a∗b∗ give a better contrast than RGB color
space. This is because L∗a∗b∗ separates the brightness from
the color components. The L∗a∗b∗ color space consists of a
brightness channel L∗, a color channel a∗ indicating where
the color falls along the red-green axis, and a color channel
b∗ indicating where the color falls along the blue-yellow axis.
Figure 5d shows a∗ channel of the image. As it is seen in this
figure, the interstitial tissue outside the tubules, is quite distinct
in channel a∗. To reduce the noise we convolve the image with
a Gaussian kernel with variance of 1. By choosing a proper
threshold, we can find most of the borders of the tubules.
The result of thresholding is shown Figure 5e. We are only
interested in the tubules with the lumens. Also, often groups
of tubules are connected to each other and labeled as one
object. We use the distance transform, as described in Section
II-B, to separate tubules and to remove the regions without a
lumen. Figure 5f shows that many of the tubule cross-sections
with awkward shapes, caused by sectioning these highly-
bent tubules, have been cut or removed by the algorithm,
leaving only tubule cross-sections suitable for measurement.
We remove the false positive lumens based on the features
we described in Section II-C. The final segmentation result is
shown in Figure 6.

We have applied this method to 36 images, delineating a
total of 1855 tubules. The images are taken from four different
healthy mature roosters (9 images per animal). A tubule like
the one shown in figure 1, where a lumen is surrounded
by epithelial cells, is recognized by biologists as the correct
tubule. Tubules cut in such a way that the lumen is not
visible, or the lumen is cut more than once, are considered
incorrectly presented, as they are unsuitable for measurement.

Fig. 6. Border of the tubules in black and borders of the lumensin white,
obtained based on the suggested algorithm.

89% of regions segmented by the algorithm are correctly
presented and are delineated satisfactorily. About 72% of
incorrect delineations are caused by errors in the detection
of lumen. Although, we remove some of the wrongly detected
lumens, in some of the images where the tissue is severely
damaged we still have false positive lumens. When the border
of the segmented regions is very jagged, we sometimes obtain
strong minima in the evolving curve length before the curve
reaches the border. As a result, the delineation will be wrong
as well. 28% of incorrect delineations are due to this effect. In
spite of this, many tubules with jagged borders are delineated
correctly, as can be seen in the top right corner of the image
in Figure 5f, many tubules with jagged borders are delineated
correctly.

IV. CONCLUSION

We proposed a method based on the geodesic distance
transform for separating clustered tubules from each other
after an initial segmentation. The method uses the lumens
as an initialization for the distance transform. In general,
lumens are easy to detect, as they are big bright areas in
the image. However, tears and some similar issues can have
the same appearance, which make it hard to distinguish them
from the correct lumens. We applied the level set method for
segmenting lumens. Two features based on location of the
bright areas was used to remove the false positive lumens.
However, for the images where tissue is severely damaged,
we need to find better features. 72% of incorrect delineations
of tubules are caused by areas incorrectly marked as lumen.

Once tubules are correctly delineated, a whole host of
new measures becomes available. We have used the method
presented here to obtain a measure of the epithelial height
in testicular tissue. Measures related to the shape, size, cell
count, etc. would be trivial to implement. Our method should
also be applicable for analyzing tissues with similar structures
like kidney and prostate.
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Fig. 5. (a): Thin section of testis. (b): Segmented bright area. (c): Potential lumens as an output of level set method. (d): Channel a∗ of the image. (e):
Result of threshoding (f): Result of the suggested method.
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